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Abstract

One way of gaining understanding of a software system

is the analysis of dynamic information, i.e., program execu-

tion traces. A problem regarding the analysis of such traces

is the fact that these are often extremely large: hundreds of

thousands and even millions of calls within a single trace

are no exception. To aid a user in navigating and under-

standing these vast amounts of information, we propose to

visualize execution traces using two linked views. One is

an element interaction view that shows part of a trace, i.e.,

those calls within a specific time window, using Hierarchi-

cal Edge Bundles (HEBs). The other is a more detailed

Massive Sequence View that is synchronized with the HEB

View and offers detailed information regarding the temporal

location and interleaving of the calls within the current time

window. This view also introduces a novel way of antialias-

ing based on the importance of calls. In this paper, we focus

on the technical aspects of the visualization and rendering

techniques that are necessary to produce scalable visualiza-

tions using HEBs and Massive Sequence Views.

1. Introduction

Within software engineering, it is important to under-

stand a system’s behavior in order to perform specific main-

tenance tasks, like change requests.

It is important to support a software engineer (SE) in

performing such program understanding tasks by facilitat-

ing the program understanding process, since this process is

known to be very time-consuming according to Corbi [4]:

approximately 50% of the time allocated for maintenance

tasks is spent on acquiring system knowledge.

To aid an SE in program understanding tasks, it is often

useful to provide the SE with more information than can be

obtained by simply analyzing the static source code. Pro-

viding an SE with dynamic information, i.e., program exe-

cution traces gathered from a running program, has the ben-

efit that new information becomes available – object identi-

ties, occurrences of late binding, and polymorphism – that

would have been difficult to acquire if only static analysis

had been used.

However, one of the major problems of performing dy-

namic analysis is the vast amount of information that has to

be processed by an SE. Even a single execution trace cor-

responding to a couple of minutes of execution time of a

relatively small program can contain hundreds of thousands

or even millions of calls. Uncompressed execution traces

can thus require hundreds of megabytes or even several gi-

gabytes of storage space [21].

To provide an SE with a clear and concise representa-

tion that allows him or her to quickly gain insight in such

amounts of data, we propose to use a visualization approach

comprised of two linked views. One is an element interac-

tion view that shows the calls within the current time win-

dow of the execution trace using Hierarchical Edge Bun-

dles (HEBs) [10]. The other is a more detailed Massive

Sequence View that is synchronized with the HEB View

and offers detailed information regarding the temporal lo-

cation and interleaving of the calls within the current time

window. These views allow an SE to interactively explore

an execution trace, to look for recurring patterns, and to in-

spect details on demand while providing a high degree of

scalability.

In a companion paper [5], we characterized our ap-

proach using the task oriented framework introduced by

Maletic et al. [14]. We showed how our OpenGL-based

tool implementation called EXTRAVIS [1] – EXecution

TRAce VISualizer – can be used by software developers
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and (re-)engineers to perform trace exploration and phase

detection, feature location, and feature comprehension, us-

ing three extensive case studies on an academic, an open

source and an industrial software system.

In this paper, on the other hand, we focus on the tech-

nical aspects of the visualization and rendering techniques

that are necessary to produce scalable visualizations using

HEB Views and Massive Sequence Views. We furthermore

introduce a novel way of visualizing calls within the Mas-

sive Sequence View. This technique guarantees the visibil-

ity of outlier calls, i.e., calls that are not frequently present

within a certain time interval, when visualizing more than

hundreds of thousands of calls.

Section 2 contains an overview of related work, followed

by a global description of EXTRAVIS in Section 3. Sections

4 and 5 contain an in-depth description of the visualization

and rendering techniques necessary to produce the HEB and

the Massive Sequence View, respectively. Finally, Section

6 contains a summary of the proposed techniques and pos-

sible directions for future work.

2. Related Work

Most of the current methods for visualizing execution

traces are based on two representations. One is a 2D or 3D

node-link graph in which nodes represent elements, e.g.,

classes and objects, and edges (links) represent calls be-

tween elements. The other is a 2D, space-reduced repre-

sentation in which calls between elements are time-ordered

along one axis and the software hierarchy is depicted along

the other axis; an Information Mural-like representation

[11, 12]. Such a representation is, in essence, a zoomed-out,

visually minimalistic version of a UML sequence diagram

providing improved scalability.

Examples of trace visualization techniques that use

node-link representations are the reference pattern view and

class communication graph by De Pauw et al. [17, 18],

the object and class interaction charts by Lange et al. [13],

TraceCrawler by Greevy et al. [9], and the communication

and creation interaction views by Ducasse et al. [7].

Although such node-link representations work well for

the visualization of calls within small software systems,

they tend to become highly cluttered when large numbers of

calls within large software systems are visualized. A way to

address this is provided by Hierarchical Edge Bundles [10],

a technique that visually bundles the edges within a node-

link representation together. HEBs reduce visual clutter and

also visualize implicit calls between parent elements within

the software hierarchy that are the result of explicit calls be-

tween their respective child elements. We make use of this

technique for our element interaction view.

Trace visualization techniques that use Information

Mural-like representations are visually similar to the visual-

izations produced by the SeeSoft system developed by Eick

et al. [8], which shows source code instead of an execution

trace by mapping each line of code to a row of pixels. Ex-

amples of techniques that visualize execution traces using

Information Mural-like techniques are the Execution Mural

by Jerding et al [12], ALMOST by Renieris et al. [19], in

which the visualization is mapped onto a spiral view, and

the zoomed-out execution view by De Pauw et al. [18].

Often, the elements visualized using Information Mural-

like representations are so densely packed that their height

and/or width is reduced to the size of a single pixel. If even

more information needs to be represented within a single

view, multiple elements are mapped onto the same pixel (or

pixel line) and guaranteed visibility of each individual ele-

ment, especially outliers, becomes a problem. Most pixel-

based representations mentioned above do not address this

problem and suffer from visual aliasing as a result of this.

Jerding et al. address this issue with their Information

Mural representation by incorporating a linear antialiasing

(AA) method [11, 12], but as we show in Section 5, this

only partially solves the problem. In the accordion drawing

technique by Munzner et al. [3, 16], important elements are

marked and drawn in an importance-based order; the most

important elements are drawn first and elements that do not

fit on the screen anymore due to lack of space are not drawn

at all. The importance-based antialiasing (IBAA) technique

by Moreta et al. [15] is somewhat similar to the method that

we use for rendering our Massive Sequence View; it uses a

model that adjusts the individual contribution of calls to an

antialiased pixel line to make outliers more visible. How-

ever, they use a different weighting model and they do not

use a sliding window on the trace data to make the determi-

nation of the importance of a call more noise resistant (see

Section 5).

3. EXTRAVIS

This section provides a global description of EXTRAVIS,

its two main views, and the way in which these views are

synchronized and linked.

The main interface of EXTRAVIS is shown in Figure 1.

The HEB and Massive Sequence View visualize the same

trace time window of an execution trace obtained from run-

ning JHOTDRAW [2], a highly customizable Java frame-

work for graphics editing. The views are linked in the sense

that highlighting of one or more calls or hierarchy elements

in one view results in highlighting of the corresponding

calls or hierarchy elements in the other view (see Figure

2). Both views offer textual details on demand by showing

detailed tooltip information when hovering above a call or

a hierarchy element (Figure 2). Linking to the actual source

code corresponding to a certain call or hierarchy element is

provided by both views as well.
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Figure 1. EXTRAVIS’ main interface showing an execution trace gathered from running JHOTDRAW.

Recurring patterns are clearly shown within the trace – the creation of a new drawing and the inser-
tion of five figures, executed three times in total (call direction: from green (caller) to red (callee)).

3.1. Input Data

As input, EXTRAVIS needs a collection of parent-child

relations that describe the hierarchy of the software sys-

tem, e.g., the (sub)package-class structure in case of a Java

program, and a collection of time-stamped call relations,

e.g., Java class-to-class calls. Although we have been using

trace data collected from Java programs, the input format is

generic enough to enable the interpretation of parent-child

and call relations collected from different programming lan-

guages as well, e.g., data collected from C++ programs.

In case of a Java program, we use a simple Perl tool

to derive the system’s class decomposition from its direc-

tory structure. This results in parent-child relations that de-

fine the system’s structure in terms of (sub-)packages and

classes.

The dynamic information is obtained by tracing a sys-

tem’s execution by monitoring for method invocations and

registering the objects that are involved. We achieve this by

extending the Java SDR framework from our earlier work

[6]. The tracer registers unique objects, method names, in-

formation on the call sites, i.e., source-file names and line

numbers, runtime parameters, and actual return values, and

converts these events into an RSF file (Rigi Standard Format

[20]).

3.2. Hierarchical Edge Bundles View

The HEB View shows the calls within the current time

window using Hierarchical Edge Bundles; calls from one

hierarchy element to another are visualized using a spline

and color-encoded using a green-to-red gradient (by de-

fault) to indicate the caller-to-callee direction (see Figure

1). Spline thickness is used to indicate the number of calls

from one hierarchy element to another within the current

time window (see Figure 3). It is furthermore possible to

switch to a visualization mode in which color is used to

indicate the temporal location of a spline in time using a

continuous color scale (Figure 3).
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Figure 2. Highlighting visual elements in one view results in highlighting of the corresponding ele-
ments in the other view (hierarchy labels provide tooltips and can be scaled to increase readability).

Figure 3. HEB View in temporal mode.

3.3. Massive Sequence View

Although the HEB View gives a good impression of the

number of calls between hierarchy elements and the activ-

ity of certain parts of the software system, it is less suited

for showing the exact temporal location and interleaving of

calls, since it shows a “time-flattened” view of the current

time window. To show detailed information regarding the

temporal location and interleaving of calls, we use the Mas-

sive Sequence View.

The Massive Sequence View is a representation based on

the Information Mural technique by Jerding et al. [11, 12].

The software hierarchy is depicted as an icicle plot at the top

and calls between hierarchy elements are displayed as rect-

angles ordered from top (first call within the current time

window) to bottom (last call within the current time win-

dow). Rectangles are color-encoded using a green-to-red

gradient (by default) to indicate the caller-to-callee direc-

tion (see Figure 4).

4. Hierarchical Edge Bundles View

HEBs, as presented in [10], reduce visual clutter when

dealing with large numbers of edges by using the layout pro-

vided by a tree visualization as a guide for bundling edges.

Figure 5 illustrates how this is done by using part of a bal-

loon tree layout as an example; LCA(PStart ,PEnd) is the least

common ancestor of PStart and PEnd . The approach is to use

the path along the hierarchy between two nodes having a re-

lation as the control polygon of a spline; the resulting spline
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Figure 4. Massive Sequence View depicting
the hierarchy as an icicle plot and calls as

shaded rectangles (caller/callee = green/red).

is subsequently used to visualize the relation.

If this approach is used directly, ambiguity problems as

shown in figure 6a may arise. The bundling strength β, β ∈
[0,1], controls the amount of bundling by straightening the

control polygon of the spline curve (Figures 6c and 6d). By

varying the value of β, ambiguity problems can be reduced,

as is illustrated in Figure 6e.

Figure 5. Bundling edges. (a) line connection
between P0 and P4; (b) path along the hierar-

chy; (c) a spline depicting the connection us-
ing the path from (b) as control polygon.

Straightening of a control polygon is performed by

straightening each of its control points Pi. These straight-

ened control points P′
i are subsequently used as the new

control polygon to generate the spline:

P′
i = β ·Pi +(1−β)(P0 +

i

N −1
(PN−1 −P0)), (1)

with

N : number of control points,

i : control point index, i ∈ {0, . . . ,N −1},

β : bundling strength, β ∈ [0,1].

Figure 6. The bundle in (a) might contain each

edge from (b); (c) and (d) illustrate the effect
of β; (e) a high β value (0.8) can be chosen to
retain bundles while still resolving ambiguity.

In case of bundles that are mainly comprised of splines

having a similar direction, minimum blending can be used

to draw these splines to spot individual splines within the

bundle having an opposite direction (Figure 8). Minimum

blending returns the minimum of two colors on a per-color-

channel basis. Moreover, this blending mode – imple-

mented in OpenGL using the EXT blend minmax extension

– is commutative, resulting in identical visualizations re-

gardless of the order in which splines are drawn.

Figure 7. A radial tree layout is used for the
inner circle and mirrored to the outside as the
basis for an icicle plot. The structure of the

inner layout is used to guide the bundling.

Figure 7 illustrates how the inner hierarchy that guides

the bundling is constructed (invisible in final visualization)

and how this hierarchy - when mirrored - serves as the basis

for the outer icicle plot that depicts the hierarchy. The final

visualization is depicted in Figure 8 and shows the benefits

of HEBs over node-link graphs that use linear edges.

5. Massive Sequence View

In case of the Massive Sequence View, a problem arises

if the number of calls to be displayed is larger than the
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Figure 8. The HEB view (right) more clearly
shows (1) main calling direction, (2) outliers,

and (3) calls having an opposite direction.

number of available pixel lines; multiple calls need to be

mapped onto a single pixel line in this case. This can be

done through a linear AA technique; use as color a weighted

average of the colors of the calls that need to be mapped

onto a single pixel line. Figure 9 illustrates this procedure

using an example in which five calls need to be mapped onto

three pixel lines.

Figure 9. Mapping multiple calls onto a single
pixel line is done through linear AA.

Although linear AA is an improvement when compared

to approaches that do not use this technique, a problem be-

comes apparent if the technique is used to map multiple,

(mainly) identical calls containing one or a couple of outlier

calls onto a single pixel line. In this case, linear AA results

in the (near) invisibility of outlier calls, even when only a

modest number of calls is being blended; Figure 10 illus-

trates this using an example in which 16 calls are mapped

onto a single pixel line; 15 calls from element B to ele-

ment D and a single outlier call from element A to element

C. Linear AA results in the outlier call being barely visible

( 1
16
·100 = 6.25% visibility).

To increase the visible contribution of outlier calls, we

introduce a model that modifies the weight of a call c based

on its context, i.e., its neighboring calls. The context is de-

fined by a window w that is centered on c. We determine the

number of occurrences of c within w and subsequently nor-

Figure 10. Using linear AA results in the

(near) invisibility of outlier calls.

malize this value by dividing it by |w|, i.e., the total number

of calls within w. This leaves us with the frequency of c,

which is used to determine the visible contribution of call c.

The complete model is as follows:

Wi = f
p
i , (2)

with

Wi : contribution of call i,

p : contribution power (global), p ∈ [−∞,∞],
fi : frequency of call i within w, fi ∈ [0,1].

Determining the contribution of each call thus becomes a

prepass procedure: for each call i within the trace, its contri-

bution Wi is determined using Equation 2 and stored for use

during rendering. Furthermore, the window size |w| should

be sufficiently large to suppress noise; in practice, a window

size of 25 is sufficient to accomplish this.

During rendering, the linear AA technique described

above and depicted in Figure 9 is extended to take the call

contributions Wi into account as well, resulting in IBAA

(see Figure 11).

Figure 11. Linear AA is extended to IBAA by

taking the call contributions Wi into account.

As is illustrated in Figure 11, the rendering of n calls

onto a pixel line l depends on the fractionality Fs of the first

call, the fractionality Fs+n−1 of the last call, and the call

contributions Wi, i.e.:
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l =
∑

s+n−1
i=s (Fi ·Wi · ci)

∑
s+n−1
i=s (Fi ·Wi)

, (3)

with

Fi : fractionality of call i, i ∈ {s, . . . ,s+n−1}:

Fi ∈ [0,1] if i = s or i = s+n−1,

Fi = 1 otherwise,

ci : call i.

In theory, the value of the global contribution power p

in Equation 2 can be set to any value in the range [−∞,∞];
a value of 0 results in linear AA (no discernable IBAA),

positive values visually exaggerate the information by giv-

ing even more weight to calls that are already frequently

present, and negative values give more weight to calls that

are not frequently present, i.e., outlier calls.

In practice, values outside a range of approximately

[−5,5] do not result in discernable visual changes anymore;

it is therefore advisable to limit the value of p to this range.

Figure 12 illustrates our IBAA method using p = −1.0.

6. Summary and Future Work

To tackle the scalability problem that is often associated

with dynamic analysis due to the huge amounts of trace

data, we proposed a scalable visualization solution centered

around two synchronized and linked views of an execution

trace.

The HEB View shows the calls within the current time

window using Hierarchical Edge Bundles. The Massive Se-

quence View is synchronized with the HEB View and offers

detailed information regarding the temporal location and in-

terleaving of the calls within the current time window.

In a companion paper [5], we showed how our tool can

be used to perform trace exploration and phase detection,

feature location, and feature comprehension using three ex-

tensive case studies.

In this paper, we focused on the technical aspects of the

visualization and rendering techniques that are necessary to

produce scalable visualizations using HEB and Massive Se-

quence Views. To summarize, we showed how:

• HEBs can be used to reduce the visual clutter that is of-

ten present when using node-link representations to vi-

sualize a program’s calling behavior. We furthermore

showed how minimum blending can be used to more

clearly visualize outlier calls within a HEB view;

• Both views can be used to complement each other: the

HEB View gives a good impression of the number of

calls between hierarchy elements and the activity of

certain parts of the software system, while the Massive

Sequence View shows detailed information regarding

the temporal location and interleaving of calls;

• IBAA can be used to visualize calls within the Mas-

sive Sequence View in such a way that the visibility of

outlier calls is guaranteed when visualizing more than

hundreds of thousands of calls.

6.1. Future Work

Possible directions for future work surfaced as a result of

presenting EXTRAVIS to the industrial partners within our

project and due to our own use of EXTRAVIS. Those that

we regard as the most useful and interesting are as follows:

• Pattern recognition within execution traces: mark-

ing certain parts of a trace could automatically reveal

(near) identical parts at other locations within the trace.

Pattern recognition could also be used to detect out-

liers, i.e., infrequent calls or calls that are not allowed

to exist for some reason, e.g., because the elements be-

long to non-contiguous architectural layers;

• Execution trace comparison: comparing two or more

traces in a visual way to quickly get an idea of where

changes within a trace are located. Furthermore, ob-

serving two traces side by side might make feature lo-

cation easier.

• Comparison of software hierarchies in support of ex-

ecution trace comparison: two execution traces that

are to be compared might differ from each other not

only because the execution scenario has changed, but

also because the software hierarchy has changed, e.g.,

as a result of classes that have been added, moved, or

deleted. We are currently working on a way to visually

compare two hierarchies and to interactively explore

the differences between them.

Finally, we have made EXTRAVIS available online [1] so

that users can try our tool and share their experiences with

us, e.g., by providing feedback regarding new directions for

future work or suggestions for improvement.
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