
1

Mental Models for
Program Understanding

Dr. Jonathan I. Maletic
<SDML>

Computer Science Department
Kent State University

What is a Mental Model?
Internal (mental)

representation of a
real system’s
behavior,
organization, and
internal structure.

Visual Inspection
Domain
Knowledge

System

Mental
Model

Mental Models

Must construct a mental model of a system in order
to use/modify a software system

The goal is to understand how a system works and is
constructed well enough to support a given task

We use:
Visual inspection, reading
Knowledge about the problem domain, the system, past

experience, heuristics

2

Example

Using a car versus fixing one.
Only need to understand that the gas petal on a car is

pressed down to make the car go faster – if all you want
to do is drive the car this is fine.

If the goal is to fix a sticky accelerator then you need to
look under the hood and (maybe) in a technical manual.

“You don’t have to know how to rebuild a motor to
drive a car”

Complexity of Model

The accuracy and complexity of the model
depends on the task or usage scenario

Only relatively simple mental model of an
automobile is required for driving one

A complex and accurate mental model of an
automobile is necessary to repair or build
one

Mental Models of Software

For many years researchers have tried to
understand how programmers comprehend
programs (software) during:
– Software Development
– Software maintenance/evolution

Novice versus Expert

3

What Purpose Does a Mental
Model Serve?

Mental models allow researchers a way to
analyze the cognitive processes behind
software development and maintenance

What Makes up a Mental Model?

• static elements
• dynamic elements

Static Elements

• Text Structure
• Chunks
• Plans
• Hypotheses
• Beacons
• Rules of Discourse

4

Text Structure

The program text and its structure

– if-then-else
– loops
– variable definitions
– parameter definitions

Chunks

• Knowledge structures containing different
levels of abstractions of text structures.

• Miller’s work from ’56 – 7 +-2

– macro-structure
– micro-structure

Plans

• Knowledge elements for developing and
validating expectations, interpretations, and
inferences.

• They correspond to a vocabulary of
intermediate level programming concepts
such as a counter.

• Example: The average plan includes a
counter plan.

5

Hypothesis

• Conjectures that are results of
comprehension activities that can take
seconds or minutes to occur.

• They are drivers of cognition. They help to
define the direction of further investigation.
– why
– how
– what

Beacons

• Signals that index into knowledge.
• An example of a beacon is a swap.
• It has been proven that experienced

programmers recall beacon lines much
faster than novice programmers.

• They are used most commonly in top-down
comprehension.

Rules of Discourse

• Rules that specify the conventions in
programming.

• They set the expectations of the programmer.
• Examples:

– Variables should reflect function
– Don’t include text that won’t be used
– If there is a test for a condition, the condition should

have the potential to be true.

6

Dynamic Elements

• Strategies
• Actions
• Episodes
• Processes

Strategies

A sequence of actions that lead to a particular
goal.

– opportunistic strategy
– systematic strategy

Actions

Classify programmer activities implicitly and
explicitly during a specific maintenance task.

7

Episodes

Are made up of a sequence of actions.

Processes

An aggregation of episodes.

Maintenance Tasks

• adaptive
• perfective
• corrective
• reuse
• code leverage

8

Adaptive

• Understand the system
• Define requirements
• Develop preliminary and detailed design
• Code changes
• Debug
• Regression tests

Perfective

• Understand the system
• Diagnosis and requirement definition for

improvements
• Develop and design preliminary design
• Code changes and/or additions
• Debug
• Regression tests

Corrective

• Understand the system
• Generate and/or evaluate hypotheses

concerning the problem
• Repair the code
• Regression tests

9

Reuse

• Understand the problem, find solution based
on close fit with predefined components

• Obtain predefined the components
• Integrate predefined components

Code Leverage

• Understand the problem, find solution based
on predefined components

• Reconfigure solution to increase likelihood
of using predefined components

• Obtain and modify predefined components
• Integrate modified components

The type of mental model a programmer uses
is determined by the type of development/
maintenance task he has to perform.

Mental Model

10

Proposed Mental Models

• Letovsky ‘86
• Shneiderman ’79, ‘80
• Brooks ’77, ‘83
• Soloway / Ehrlich ’83, ’84, ‘88
• Pennington ‘87
• Integrated (Von Mayrhauser ’94, ’95, ’97)

Letovsky Model

Opportunistic approach. This model has three
main parts:

• knowledge base
• mental model
• assimilation process (bottom-up/top-down)

Letovsky Model

Knowledge
Base

Assimilation
Process

External
Representation

Dangling
Purpose

Unit
Internal Representation

11

Shneiderman Model

The main parts of this model are:

• short-term memory (uses chunking)
• internal semantics (working memory)
• long-term memory

Shneiderman Model

Program

Problem
Statement

Problem
Statement

Program

Short-term
Memory

Internal
Semantics
Working
Memory

Long-term Memory

Semantic Syntactic
Knowledge Knowledge

Comprehension
Activity

Design
Activity

Brooks Model

Top-down model.This model uses:

• hypotheses
• beacons

12

Brooks Model

Internal Representation - Mental Model
Hypothesis and Subgoals

Programming
Domain

Knowledge

Intermediate
Domain
SchemasVerify Internal

Schema
against External
Representation

Verify Internal
Schema

against External
RepresentationVerify Internal

Schema
against External
Representation

External
Representation

Preliminary & Detailed
Design Documents

External
Representation
(Requirement

Documentation)

External
Representation
(Program Code)

MatchProblem

beaconsbe
aco

ns

beacons

Soloway / Ehrlich Model

Top down approach. Also known as domain
model. This model uses:

• plans
• rules of discourse
• chunks

Soloway / Ehrlich Model

External
Representation

Internal
Representation

(Plans/Schemas)

Understanding
Process

Rules
of Discourse

Programming
Plans (Schemas)

chunks chunks
chunks

chunks

13

Pennington Model

Bottom-up approach. This model uses:

• beacons
• text structures
• chunks
• plans

Pennington Model

Text-Base

Xref
Map

External
Representation

(Document Code)

Plan
Knowledge

Situation
Model

Match
Comprehension

Process

Mental
Representation

External
Representation
(Program Code)

Match
Comprehension

Process

Mental
Representation

Text
Structure

Knowledge

Integrated Model

Top-down, bottom-up approach. This model
contains the following:

• top-down model
• bottom-up model
• program model
• knowledge base

14

Integrated Model
Opportunistic

Top-Down

Systematic
Bottom-Up

Opportunistic or
Bottom-up
Systematic

Lo
ng

 T
er

m
 M

em
or

y Knowledge Structures

Top-Down
Structures

Program
Model

Structures

Situation
Model
Structures

Common Elements of Mental
Model

• Knowledge
– general knowledge
– software specific knowledge

Comparison of the Six Models

• Letovsky Model - general
• Shneiderman Model - hierarchical organization
• Brooks Model - hypothesis driven
• Soloway / Ehrlich Model - knowledge similar to

Letovsky Model
• Pennington Model - detailed, lacks higher level

knowledge
• Integrated Model - combination of the other 5

models.

15

Conclusion

• It is important to learn how programmers
understand code.

• This could lead to better tools, better
maintenance guidelines and documentation.

