FEATURE

Experiments in the
stepwise refinement of
pseudocode show that

you can express this
technique as a
combination of
problem-solving
paradigms.

ROBERT 6. REYNOLDS
JONATHAN 1. MALETIC
STEPHEN E. PORVIN
Woyne State University

STEPWISE REFINEMENT

AND PROBLEM SOLVING

stepwise refinement remains a popular
approach to program-design imple-
mentation, primarily because of its flexi-
bility. As originally proposed by Niklaus
Wirth, the technique involves successively
decomposing design decisions into target
code. With each refinement step, the de-
signer must

¢ note the interdependence of sub-
problems,

¢ attempt to preserve the design’s
functional correctness, and

¢ defer decisions about representation
details as long as possible.!

A more specific goal, stated by Harlan
Mills, is to “divide, connect, and check an
intended function by reexpressing it as an

equivalent structure of properly con-
nected subfunctions, each solving part of
the problem, and each simpler than the
original to further divide, connect and
check.... ...each refinement is taken as a
working hypotheses for further investiga-
don to be judged either sound or amended
as its implication becomes clear.”

In this article, we are interested in ex-
ploring whether or not the traditional no-
tion of stepwise refinement can be
reexpressed as a combinadon of general
problem-solving activities that are based
on paradigms taken from artificial intelli-
gence research. This reexpression can
form the basis for a more explicit view of
programming as a problem-solving activ-

IEEE SOFTWARE

0740-7458/92 /08900/0079/$03.00 © IEEE

79

FEATURE

ity. For intelligent programming environ-
ments to become a forceful presence in
software development, they must be able
to explicitly support the basic problem-
solving activities programmers perform.
The examples of stepwise refinement
given in the literature seldom refer to
these generic problem-solving activities
explicitly. We believe it is
possible to extract evidence

volve a different problem-solving activity.
Therefore, to characterize a refinement
step precisely, the designer must know
how individual stubs are modified. The
refinementactivity associated with a single
stub is called an elaboration.
Changes made in an elaboraton are
expressed in terms of modifications to the
target-code and stub
components. A stub can

from the stepwise refine- ~ NEGCG_uzcGGS——=N.—— |, c;)|,ccd by new stubs
ment process thatd\lvill Examples of stepwise ~ whose sucure i cither
show developers use these . : more complex or sim-
activities unkrr)lowingly. refmemem n The pler thanpthe parent
g ve ot sekfom efer 0. 1o o mor
refinement process into to gene”c complex structure, the
problem-solving actvities. cnh stub has expanded rela-
We analyzed 26 examples pmblem SOlVIng tive to some metric.

of code implementation
using the stepwise refine-
ment of pseudocode. The
box on p. 81 lists these examples and gives
the author of the problem.

We also developed a model that relates
changes in pseudocode structures with ge-
neric problem-solving activities.* We im-
plemented the model using both refine-
ment and partial metrics to measure
changes in pseudocode structure. This
technique lets us encode each refinement
step in terms of the basic problem-solving
activities that it supports.

RELATING METRICS AND PARADIGMS

A pseudocode program has two com-
ponents, stub and code. Fach refinement
step is described in terms of the changes
made to each component. Designers use
two types of metrics, corresponding to
stub and code refinement, to quantita-
dvely describe the changes made in each
refinement step. Each metric is based on
changes in the size of a binary encoded
description of its respective component
made by a design decision. These encoded
descriptions taken together characterize a
problem-solving activity.

Each stub can be viewed as a problem
to be solved. If more than one stub is dealt
with in a refinement step, more than one
problem-solving paradigm might be in-
volved because each stub’s solution can in-

activities explicitly.

Similarly, an elaboration
can either add new target
code to the pseudocode
or remove it. If the target code’s structure
is more complex after the elaboration, the
code has expanded relative to that metric.
Ifit is less complex, it has reduced.

Thus, stepwise refinement can be
viewed as a sequence of elaborations that
result in the formation of a program in a
target language from an initial function
specification. The task of generating a
program module given a functional speci-
fication is an example of a formation prob-
lem. In a formation problem, the problem
conditions are given in the forr-of prop-
erties that the solution as a whole ‘must
satisfy, and the problem solver has to gen-
erate a solution description within a lan-
guage of solution structures that satisfies
the required properties.* Here, the prob-
lem conditions correspond to the genera-
tion of a software system that satisfies a
given I/O specification and can be synthe-
sized using a pseudocode language and a
target lJanguage with a specified grammar.

The steps taken to translate stepwise
refinement into a sequence of elabora-
tions, each associated with an activity that
supports a paradigm for solving formation
problems, are

1. Describe the problem-solving para-
digms used to solve formation problems.

2. Predict the changes to pseudocode
program structure expected when a prob-

lem-solving activity based on a paradigm s
performed.

3. Select the metrics that can measure
those expected changes.

4. Analyze the results.

DESCRIBING PARADIGMS

The most popular paradigms used to
solve formation problems are production
system, reduction system, and relaxed re-
duction.

Production system. This paradigm uses
the notion of state-space search. Given the
space of all possible pseudocode programs
for a pseudocode language and a target
language, the problem is to find a se-
quence of design decisions that produce a
path through the state space that termi-
nates with a program in the target lan-
guage satisfying the required /O behav-
for. Herbert Simon describes
programming in this way, as a heuristic
search through a program space.” To ex-
press a problem in terms of state-space
search, you must define the set of allow-
able states, the possible moves to go from
one state to another, an evaluation func-
tion for states, and a state-selection func-
tion. There are, in principle, no con-
straints on allowable moves within the
space, so there are no restrictions on the
way in which stubs can be elaborated.
Problem-solving activities like unre-
stricted stub decomposition, pruning of
the problem space, and backtracking are
supported here.

Redudtion system. This paradigm is sim-
ilar to the production-system paradigm,
exceptin the type of allowable moves. The
reduction-system paradigm allows only
the moves that transform the current state
into one closer to completion. In the for-
mation problem described earlier, each
stub can be viewed as corresponding to a
subproblem to be solved. A problem-re-
duction move corresponds to the replace-
ment of stubs with new stubs. Each stub is
associated with one or more independent
subproblems that are easier to solve. A re-
duction move is said to be terminal ifa stub
is replaced completely with target code.

80

SEPTEMBER 1882

The result of any reduction move is to
increase the amount of completed code in

the program.

Relaxed reduction. This paradigm is used
when the subproblems produced by a
stub’s decomposition are not indepen-
dent. Relaxed reducton wreats each sub-
problem as independent, solves each sepa-
rately, and then adjusts the partial
solutions to be consistent with each other.

consistencies arise or deferred until all the
subproblems are solved.
PREDICTING CHANGES

The first task in predicting the pseudo-
code changes expected with each para-
digm is to characterize individual elabora-
tons according to how they support the
problem-solving activities associated with
the paradigms. Table 1 shows a possible
classification scheme to associate each

problem-solving activity with the changes
it is likely to produce. Each category en-
forces a particular set of constraints on the
structural changes made by elaborations
that supportit. A category may describe an
activity associated with more than one

paradigm.

Stub reduction. The first row in the table
describes activities associated with the two
reduction paradigms (reduction system
and relaxed reduction). The principle ac-

Adjustment is either done as soon as in-

PROBLEMS USED FOR REFINEMENT SEQUENCES

& Map Color Using Greedy Algorithom. Constructa greedy to
solve a traffic- ixght design problem asa gmph—colonng problem.
~-A. Aho,]J. Hoperoft, andJ: Ullmann

o Payroll Calcudutions, Compute the federal and state taxes for
each employee from tax tables, compute their netincome, and
generate corporate statistics for all employees. — M. Augenstein
and A. Tenenbaum

& Compute X to Power Y: Compmze the function of o inté-
gers, xy, where x> Land y20.—RJ.R Back e

& Calculate First 1,000 Primies. Compute the first 1,000 prime
numbers in increasing order, starting with 2; and place the /th
prime into the ith pwnon ofa 1,000-¢lement integer array.

- E. Dijkstra

- & Crdeulate First N Primes. Generate a pmgram to compute the
first N prime numbers. — R. Fairley ,
" Traffic Survey Statistics. Generate statistics ooncemmg the
number of vehicles passing by a vehicle detector over a given pe-
riod of time, — W. Findlay and D. Wart ~

¢ Streulate a Person’s Life. Generate a computer program that
simulates a week in the life of an individual. — N. Gehani

o Sum the First N Natural Numbers, For each element in a list
of N positive numbers, compute the sum of all namml numbers
up to and including that element.

* Bubble Sort. Develop a procedure to sorta one—dlmensioml
array of arbxtrary size using the bubble-sort algnnthm
—PGilbert

& Asr Pollution Statistics. Generate average pa]iutton values and
reporting errors per hour for a detection device that samples the
air every minute over 24 hours. — J. Hughes and J. Mitchton

" & Ajr Pollution Stamlm (same as above) —— R. Jénsen and
C. Tonies

& A#r Pollution Statistics. (same asabove) — R. Linger, H. Md!s
and B. Witt-

& Exchange Sort. Read in Nintegers and arrange them in order
from smallest to largest. — D. Ince -

& Process Animal Statsstics. ‘Calculate the average weight of pigs ‘

in each group of experimented animals as well as the average over
groups. — G, Jones and M. Headon
& Calculate Emnployee Wages. Compute the take-home pay for
an employee including overtime and various deductions, such as
medical insurance and taxes.

& Knight's Tour; Write a program that allows a knight to pass
through every square on a chess board only once. — A. Koenig

- & External Symbol Tuble. Design the matching fanction for a
compiler that searches an external symbol table to see if the name
for a token is already present. — G. Myers

" & Read and Calculate Days. White a program that reads any date
from the twentieth century and prints out the corresponding day
of the week. — V. Rajlich-

& Mt queNumbm'. Compute the maximum of
three integers 4, b, and ¢. —]J. Denbign Starkey and R. Ross

 Sokve Quadratic Equation Roots. Develop a program to find a
value for x in the quadratic equation, 4x* + Bx + C= 0, where 4, B,
and Care given as integer values. — D, Watt, B. Wichmann, and

 Sort Names. Develop a program that reads up to 100 individ-
ual names of no more than 20 characters each, and sorts them into
lexicographic order.

o Quicksort. Generate a program that uses the quick-sort algo-
rithm to sort an integer array in ascending order. — J. Welsh, J.
Elder, and D. Bustard

‘¢ Eight Queens. Find a position for each of eight queens so that
noqueen may be taken by another. — N. Wirth

- & Tewt Editor. Generate a program that supports a set of gen-
eral text-editing tasks such as the insertion, deletion, and replace-
mentof lines.

* Read and Caleulate Date I. Write a program that, given the
year, month, and day of the month, will produce the year, month,
and day of the following day, assuming the date lies between Janu-
ary 1, 1900, and December 31, 2099, for the Gregorian calendar.
—D; Wood-

¢ Read and Calrulate Date I1. (same as above). — D. Wood

IEEE SOFTWARE

81

FEATURE

resl-of-expression]

| .rest-of-epo —| I

"y

nxw |l/||

3 (rest-
Eexp I of-expl)

nil

stub

(rest- —

ofexpd) Lot T P
“ 0 s

. & :

o Yy
"constont” “identifier” “input” stwb)" "
{expression)

L

Figure 1. Support subtree and refinement depth and breadth for the expression syntactic cdlass in a directed

acyclic graph.

CLASSIFYING ELABORATIONS ACCORDING TO THE
PROBLEM-SOLVING PARADIGM THEY SUPPORT

TABLE 1

. , Change in code complexity
Changes infub complexity (ode expansion Code reduction
Stub reduction Problem decomposition Problem interation
(reduction) (relaxed reduction)
Stub expansion Pruning (¢ Backerackir

tivity in both paradigms is the decomposi-
ton of a stub into less complex stubs along
with the addition of the target code
needed to embed those stubs. This corre-
sponds to a combination of stub reduction
and code expansion. Problem decomposi-
tion falls in the first row, second column of
the table. All the paradigms can support
this activity to different degrees.

If the subproblems generated by de-
composition are not independent, the de-
signer may have to adjust the partial solu-
dons to reflect these dependencies. When
the adjustments made during stub decom-
position allow for the consolidation or re-
duction of existing code structures, stub
reduction and code expansion are exhib-
ited together. This resolution activity falls
in the first row, third column. The strat-
egy behind relaxed reduction is to solve
each subproblem separately. Thus, adjust-
mentoften removes redundantcode in the
solution of each subproblem rather than
adding new code.

Stub expansion. The second row of the
table shows stub-expansion actvities.
These are the general activities that sup-
port problem solving. The second column
describes elaborations that produce both
stub and code expansion. Pruning of
structural solutions falls into this category.
In pruning, a stub of a given syntax class is
replaced with a stub of an equal or more
complex class. The new stub is embedded
in new target code that reflects a more
precise interpretation of a stub’s charac-
terization, pruning away old alternatives.

For example, astub of class statement is
replaced by target code representing a
conditional branch and a new stub of class
statement, embedded within the code. In
this example, a specific syntactic structure
was selected, removing other alternatives
from consideration.

Backtracking, which corresponds to
stub expansion and code reduction (sec-
ond row, third column) is also an impor-
tant activity in problem-solving systems.
Decomposition can lead to an inadequate
solution, so designers backtrack to an ear-
lier point in the design by removing por-
tions of existing code and replacing the
associated stubs with more complex ones.

82

SEPTEMBER 19892

Backeracking activides will always be a ne-
cessity in the generation of novel designs.

Designers use two types of metrics to de-
scribe changes in the pseudocode. Refine-
ment metrics are used to track changes in the
stub component;® partial metrics are used to
track changes in the code component.”

Refinement metrics. Refinement metrics
characterize the difficulty of the imple-
mentation task associated with the decom-
position of a stb into target code. The
difficulty is expressed in terms of the
grammar for the target language. The es-
timated complexity of the task is com-
puted relative to the nonrecursive directed
acyclic graph for the grammar. That is, all
indirect and direct recursion is eliminated
from the productions that constitute the
grammar. Figure 1 shows part of the
constrained graph for the Backus Naur f
orm grammar of a simple language.
Each nonterminal node represents a
syntactic class or category and has an as-
sociated support subtree consisting of
the set of all possible nodes and arcs
reachable from the nonterminal node.

Refinementdepth represents the num-
ber of decisions necessary in the worst case
to turn a stub associated with a syntactic
class into complete code. Depth is deter-
mined by counting each arc in the longest
path in a syntactic class’s support subtree
from a root to a leaf. In Figure 1, the sup-
port subtree for the syntactic class is out-
lined in a triangle-like shape. The longest
path is delineated by bold arcs. It takes a
maximum of eight productions to transform
the expression into complete target code.

Refinement breadth corresponds to
the diameter for the subtree associated
with a syntactic class. It is measured by
counting the number of unique produc-
tions in the class’s support subtree. In the
same figure, the 22 unique productions are
shown in dashed lines.

Refinement volume reflects the worst-
case number of bits needed to encode (de-
scribe) the sequence of productions used
in implementing a syntactic class associ-
ated with a nonterminal node, 7z, It is cal-

culated by combining refinement depth
and breadth:

volume(n?) = depth(nt) x log2(breadth(nt))
where log2(breadth) is the number of bits
required to uniquely encode any of the
nonterminal nodes reachable from nt at
each step and depth is the worst-case num-
ber of steps needed to implerent the class.

Refinement volume measures changes
in the structural complexity of a stub pro-
duced during elaboration.® Tt measures the
binary encoding of the production se-
quences (from the target language’s gram-
mar) needed to transform the syntactic
category associated with the stub into tar-
get code. As such it measures how difficult
in terms of language, the stub is to imple-
ment. Stub reduction occurs when the re-
finement volume associated with each new
stub is less than the size of the implemen-
tation task associated with its parent. Stub
expansion occurs when the refinement
volume for at least one of the new stubs is
greater than that of its

l

currences in the program and n is the
number of unique occurrences of both
operators and operands.

Changes in the target code’s structural
complexity produced during the elabora-
tion of a stub are expressed as changes in
prescribed volume. Code expands when
the prescribed volume for the pseudocode
program increases after elaboration. Code
reduces when the prescribed volume de-
creases after elaboration.

ANALYZING RESULTS

The last step in relating stepwise re-
finement to problem solving is to translate
the elaboration classifications into the
problem solving activity they represent. In
all 26 problems, we computed the change
in refinement volume and prescribed vol-
ume for each elaboration. We then used
this data to encode stepwise refinement in
terms of the problem-solving activities

using the classification
scheme in Table 1.

parent.

I "Table 2 gives the num-

quﬁnl me'fri(s. Parp'al Reﬁnemem‘ metrics ber of elaborations in the
metrics, which describe . sample that correspond to
code complexity, are ChﬂTGCTelee The each problem-solving op-
i o ion. All -
E:essgog;ld;l;izs W;VC;‘ c(tJ}rﬁ—t . drH:KUhy Of The :élavti;(;rlategorﬁzrszz f:[l)—
ponent classes: projected |mp|emen1'[]h0n T(]Sk resented in the examples.
and prescribed.” The . d . h h The table shows that
projected component associated witn fne elaborations performing
consists of the current set decomposn-lon of a problem decomposition

of stubs in the program.
The information associ-
ated with these stubs is
used to make projections
about their contributions to the overall
structural complexity of the completed
code. The prescribed component consists
of all the target code currently in the pseu-
docode program.

For example, Halstead’s Volume® mea-
sures the size of a program in a target lan-
guage in terms of the number of bits
needed to encode it. For a pseudocode
program, you can compute Halstead’s
Volume by ignoring the contribution of
the projected or stub component. This is
called the prescribed volume. Its precise
formulation is Nlog2n, where N is the

| total number of operator and operand oc-

stub info torget code.

are by far the most fre-
quent, but they account
for less than 90 percent of
all elaborations. The next
most frequently occurring activity is back-
tracking. The 23 observed instances oc-
curred in 10 of the 26 refinement exam-
ples, which indicates that some problems
seem to require more rethinking of the
solution than others. Problem decompo-
sition and backwacking together consti-
tute approximately 92 percent of the elab-
orations.

The next most frequently observed ac-
tivity, relaxed reduction, occurs when ex-
isting code is reduced in conjunction with
a stub-reduction decision. These transfor-
mations represent code-optimization de-
cisions for the most part. Relaxed-reduc-

IEEE SOFTWARE

83

FEATURE

tion activities that produce more complex
target code in conjunction with stub re-
duction are counted in the problem-re-
duction class.

The final category is pruning. Only six
elaborations, from four refinement exam-
ples, are of this type. Although the num-
bers for this activity are rather small, it is
still important in the overall process. The
problems that use pruning are some of the
more complex among the 26. These ex-
amples may actually be more representa-
tive of the real-world problems designers
face. That these operationsare present, even
as part of a solution for a relatively simple
problem, indicates their importance.

SAMPLE SEQUENCES

To illustrate the variety of paradigms
we actually observed in the 26 examples,
we present three encoded sample refinc-
ment sequences. (We modified the prob-
lems slightly to help standardize data col-
lection and presentation.) Each example is
described as an indexed sequence of re-
finement steps. A refinement step can
consist of multiple elaborations, and each
elaboration is encoded to represent one of
the four categories in Table 1. Each refine-
ment step is described as a collection of
symbols, in which each symbol corre-
sponds to an elaboration class.

TABLE 2
332 ELABORATIONS CLASSIFIED ACCORDING TO BASIC
PROBLEM-SOLVING STRATEGIES
Changesin stub complesity Change in code complexity
"9 P Code expansion Code reduction
Stub reduction 292 11
Problem reduction Relaxed reducuon
Stub expansion 6 23 i
L Pruning Bmkﬁa&@g
TABLE 3

Eight Queens. The example in Figure 2 is
the solution to the Eight Queens problem
(described in the box on p. 81) as described
by Wirth in his ground-breaking paper on
stepwise refinement.! The encoded se-
quence demonstrates a consistent problem-

reduction approach over the first 13 refine-

ment steps, as Table 3 shows.

The final refinement consists of two
major activities. One is performed by an
elaboration that supports a relaxed-reduc-
tion approach, which led to a more effi-
cient code structure. The other is the se-
lection of an approach for handling a
termination process that emerged during
the finishing touches of the design. The
new stub is more complex than its parent
because it contains a more specific solu-
tion structure.

Because the design in the Eight
Queens example focuses onimplementing
a particular approach (algorithm or heu-
ristic), problem reduction is the dominant
activity followed by a set of activities that
tie up loose ends in the design. Tying up
loose ends is similar to making design de-
cisions that depend on decisions about
other tasks. Examples of tasks that often
exhibit such interdependence are code op-
timization and exception handling, both
of which are in the Eight Queens example.

EXCERPTS OF THREE ENCODED REFINEMENT SEQUENCES 1

Refinement number 0] 2

3 4 5 6 1 8

9 10 1 12 13

With =~ PR PR PR
EightOnees = TE
Starkéy andRoss PR PR RR
Maximum of 3
Numbers
Rajlich PR PR B
‘Readand PR PR
Caleute ®»

PR

Days

PR PR PR PR PR
PR PR B
i

PR

PR

PR PR

PR is problem reduction, RR is relaxed reduction, P is pruning, and B is backtracking.

84

SEPTEMBER 18892

Refinement 0: Stub: EightQueens
BOARD;
POINTER;
SAFE;
CONSIDERFIRSTCOLUMN;
foop
TRYCOLUMN;
if SAFE then
SETQUEEN;
CONSIDERNEXTCOLUMN;
else
REGRESS ;
end if ;
exit when LASTCOLDONE
or REGRESOUTISTCOL;
end loop;
Refinement 1a: Stub: TRYCOLUMN
procedure TRYCOLUMN is
begin
loop
ADVANCEPOINTER ;
TESTSQUARE ;
exit when SAFE or LASTSQUARE ;
end loop ;
end ;
Refinement 1b: Stub: REGRESS
procedure REGRESS is
begin
RECONSPRIORCOLUMN ;
if not REGRESQUTI1STCOL then
REMOVEQUEEN ;
if LASTSQUARE then
RECONSPRIORCOLUMN
if not REGRESOUT1STCOL
th

en
REMOVEQUEEN ;
end if ;
end if ;
end if ;
end ;
Refinement 2a: Stub: BOARD
BOARD : array (1 .. 8) of INTEGER ;
Refinement 2b: Stub: POINTER
POINTER : INTEGER;
Refinement 2¢: Stub:SAFE
SAFE : BOOLFAN,;
Refinement 3: Stub:CONSIDERFIRSTCOLUMN
procedure CONSIDER_1ST_COLUMN is

begin

end ;
Refinement 4: Stub: CONSIDERNEXTCOLUMN
procedure CONSIDERNEXTCOLUMN is
begin
J=J+1;
X0 :=0;

end ;
Refinement 5: Stub; RECONSPRIORCOLUMN
procedure RECONSPRIORCOLUMN is
begin
J=J-1;
end;
Refinement 6: Stub: ADVANCEPOINTER
procedure ADVANCEPOINTER is
begin
XP=XP+1;
end;
Refinement 7: Stub: LASTSQUARE
function LASTSQUARE return BOOLEAN is

begin
LASTSQUARE = X() = 8 ;
end;
Refinement 8; Stub: LASTCOLDONE
function LASTCOLDONE return BOOLEAN is
begin
TASTCOLDONE =] > 8;
end ;
Refinement 9: Stub: REGRESOUTISTCOL
fanction REGRESOUTISTCOL return
BOOLEAN is

begin
REGRESOUTISTCOL =] 1;
end;

Refinement 10: Stub: TESTSQUARE
A :array(1. 8) of BOOLEAN,
B :armay(2. 16)of BOOLEAN;
C armay(-7. 7)of BOOLEAN;

procedure TESTSQUARE is

gin
SAFE := A (X()) AND B(+ X())
AND C(J-X(0);

end ;
Refinement 11: Stub: SETQUEEN
prochure SETQUEEN is
begin

A(XP)) =false;
B(J+X()) = false;;
i(]*XG))rfalse;

€n bl
Refinement 12 Stub: REMOVEQUEEN
procedure REMOVEQUEEN is
begin
A(X()) t=true;
B(J+X(J))= true;
C(J-X(D):=true;

enda ;
Refinement 13a: Stub: OUTPUT_RESULTS;
ifJ > 8 then PUT (X);
else FATLURE;

Refinements 13b through 13h: In ConsiderNextColumn, add
code X(J) = I in all procedures make the following refinement:
replace X() by I

Figure 2. Refinement sequence for Wirth’s Eight Queens problem.

{EEE SOFTWARE

85

Refinement 0: Stub: MAX_OF _3
procedure MAX_OF_3 is
A, B, C: INTEGER;
begin
GET (A, B,C)
PUT (MAX (A,B,C))

end ;

Refinement 1: Stub: MAX

return INTEGER is
begin
if A> B then
if B > C then
MAX = A;
else
MAX = C;
end if;
else
if B > C then
MAX = B;
else
MAX = C;
end if;
end if;
end;

changed to

LARGE : INTEGER;

ifA>B then
LARGE :=A;

else
LARGE :=B;

end if;

if LARGE > C then
MAX = LARGE ;

else

function MAX (A, B, C:in INTEGER)

Refinement 2: All prescribed code in function MAX is

MAX:=C;
end if;

Refinement 3: All prescribed code in refinement 2 is changed to
if (A>B)and (A > C) then

MAX = A;
end if;

if B > C) and (B > A) then
MAX = B;

=y

end if;

if (C » By and (C > A) then
MAX = C;

= A

end if;

Refinement 4: In function MAX change > into a >=.
Refinement 5: All prescribed code in refinement 3,4 is changed

to

LARGE : INTEGER;

LARGE := MAXIMUM (A, B);
LARGE := MAXIMUM (LARGE, C);

MAX = LARGE ;

Refinement 6: All prescribed code in refinement 5 is changed to
MAX := MAXIMUM (MAXIMUM (4, B),C);

Refinement 7: Smb:-MAXIMUM
function MAXIMUM (A, B :in INTEGER)
return INTEGER is
begin
if A> B then
MAXIMUM = A;
else
MAXIMUM := B,
end if;
end;

Figure 3. Refinement sequence for Starkey and Ross’s Maximum of Three Numbers problem.

This sequence of problem-reduction op-
erations followed by the solution of sub-
problems requiring global information is
certainly the norm among the 26 exam-
ples. Designers can use this approach
when the problem iswell-defined and they
know the algorithmic structure of its solu-
tdon for the most part.

Some refinement sequences in other
examples differed markedly from this
approach primarily because the nature
of the problems to be solved was differ-
ent. Two possible alternative problem
classes are

1. Problems that can be solved in a
transformational manner. That is, an

initial unsophisticated prototype is pro-
duced, and then incrementally trans-
formed into a more complex version that
satisfies given constraints. Some of these
transformations may not preserve correct-
ness and may require backtracking

2. Problems whose solution (algo-
rithm/heuristic) cannot be completely
known in advance and must be modified
during design. The solution may be a collec-
tion of special cases or rules, in which not all
the relevant rules are known ahead of time.

The problem-solving activities used
to solve these alternative problem
classes may also differ significantly from
the norm. An encoded refinement se-

quence of each is given in Table 3 along
withthe EightQueensproblem.

Maximum of Three Numbers. Figure 3
shows this example, which reflects the
transformatonal approach. The task is to
compute the maximum of three numbers.
The initial approach is a simple extension
of a solution that works for two numbers.
This is implemented as two prob-
lem-reduction steps and a third relaxed-
reduction step.

In step 3, the conditional control is re-
worked. This funcdon did not produce
the desired I/O behavior and was modified
by the transformation in step 4.

86

SEPTEMBER 1892

Refinement 5c: Replace prescribed code from within procedure
in reference with the following prescribed code and stubs:
DISTANCE := (DISTANCE_MM + (YY - 1900)
+(YY - 1901) DIV 4) MOD 7;
if (YY MOD 4 = 0) AND YY /= 1900
AND LATE_MONTH then
DISTANCE := DISTANCE + ;
end if;

Refinement 6: Stub: DISTANCE_MM
function DISTANCE_MM return INTEGER is
begin
DISTANCE := 0;
INIT_MONTH;,
while NOT_OVER loop
DISTANCE_MM := DISTANCE_MM +
MONTH_INCREMENT;
NEXT_MONTH;
end loop;
end DISTANCE_MM;
(Also change DISTANCE_MM to prescribed function call.)

Refinement 7a: Stub: READ_MM;
MM : INTEGER;
procedure READ_MM is
begin
PUT (" ENTER THE MONTH :)
GET (MM);
while MM > 12 OR MM 1) loop
PUT ("INCORRECT!
ENTER DIFFERENT MONTH “);
GET (MM);
end loop;
end READ_MM;
(Also change READ_MM to prescribed procedure call.)

Refinement 7b: Stub: MONTH_LENGTH
function MONTH_LENGTH return INTEGER is
begin
case MM is
when 1,3,5,7,8,10,12
= MONTH_LENGTH :=31;
when4,6,9,11
= MONTH_LENGTH :=30;
when 2 => MONTH_LENGTH :=29;
end case;
end MONTH_LENGTH;
(Also change MONTH_LENGTH to prescribed function call))

Refinement 7¢: Stub: FEBRUARY
function FEBRUARY return BOOLEAN is

begin

Figure 4. Refinement sequence for Rajlich’s Read and Calculate Day problems.

if MM = 2 then
FEBRUARY := FALSE;
else :
FEBRUARY := TRUE;
end if;
end FEBRUARY;
(Also change FEBRUARY to prescribed function call))

Refinement 7d: Stub: LATE. MONTH
function LATE. MONTH return BOOLEAN is
begin :
if MM > 2 then
LATE_MONTH := TRUE;
else
LATE_MONTH := FALSE;
end if;
end LATE_MONTH;
(Also change LATE_MONTH to prescribed function call)

Refinement-7e: Stub: INIT_MONTH
procedure INIT_MONTH is
begin
MONTH := 0
end INIT.MONTH;
(Also change INIT_MONTH; to prescribed procedure call))

Refinement 7¢ Stub: NOT_OVER
function NOT_OVER return BOOLEAN is
begin '
NOT_OVER = MONTH MM,;
end NOT _OVER;)
(Also change NOT_OVER to prescribed function call.)

Refinement 7g: Stub: MONTH_INCREMENT
function MONTH_INCREMENT return BOOLEAN is
begin
case MONTH is
when 1,3,5,7,8,10,12
=> MONTH_INCREMENT :=31;
when 4,6,9,11
=> MONTH_INCREMENT := 30;
when 2 => MONTH _INCREMENT := 28;
endcase; -
end MONTH_INCREMENT;
(Also change MONTH_INCREMENT to prescribed function
call)

Refinement 7h: Stub: NEXT_MONTH
procedure NEXT_MONTH is
begi

gin
MONTH = MONTH + 1;
end NEXT MONTH;

[EEE SOFTWARE

87

Sdll the control complexity was too
high, so the designer backtracks by re-
moving the detailed code and replacing it
with a simple function callinstep 5. Step 6
corresponds to reducing the two calls into
one and is an example of relaxed reduc-
don. The final problem-reduction step
completes the process.

In this example, the problem-solving
activities combine to produce a simple
rapid-prototyping solution within the
context of stepwise refinement.

Read ond Cakulate Day. Figure 4 shows
this program, which reads any date in the
twenteth century and prints out the day of
the week. The solution is effectively a col-
lection of transformation rules. Initially,
some of the more frequently applied rules
are known but new situatons develop as
the design proceeds. These situations
often relate to exception handling. As a
result, backtracking takes place frequently
as new situatons are discovered and added
to the design. This situation is particularly
relevant with somewhat fuzzy problems
like interface design.

In problems such as this one, the goal is
to satisfy the user, so the initial functional
specification doesn’t have enough informa-
don for the designer to structure a solution
directly. Thus, the designer usesa combina-
tion of problem-solving strategies that in-
crementally augment the current solution.

o develop a useful, intelligent program-

ming environment, designers must un-
derstand the nature of the problem-solving
activities to be performed in that environ-
ment. Our experiments with a variety of
problems show that designers can perform
several problem-solving activities within the
stepwise-refinement framework. The pres-
ence of certain combinations of activities
suggests that programmers are implicitly
emulating certain paradigms that have
proved useful in solving complex problems.
Also, as the Wirth example suggests, a par-
ticular paradigm and its associated activities
seem to be applied often throughout the re-
finement sequence for a given problem. It is
also clear that the nature of the problem to
be solved influences the type of activities
performed to achieve a solution, as well as
the problem-solving paradigm that they im-
plicitly support.

Whether the nature and the frequency
of these problem-solving activities for
textbook examples carries directly over to
real-world activities remains to be seen.
For example, backtracking and pruning
will occur more often when a designer is
faced with more sophisticated problems.

We hope to see problem-solving para-
digms and their supporting activities more
explicitly integrated into stepwise refine-
ment. We also expect to see new problem-
solving paradigms emerge that are unique
to software development. ¢

REFERENCES

Mass., 1979.

w

York, 1991, pp. 618-629.

& Sons, New York, 1990, pp.767-779.

wn

Eng., July 1986, pp. 726-732.

=N

New York, 1990., pp. 82-88.

~

rics,” Comm. ACM, Nov. 1987, pp. 956-963.

2]

1. N. Wirth, “Program Development By Stepwise Refinement,” Comm. ACM, Apr. 1971, pp. 221-227.
2. R.Linger, H. Mills, and B. Witt, Structured Programming Theory and Practice, Addison-Wesley, Reading,

. S. Porvin, R. Reynolds, and J. Maletic, “An Empirical Study of the Use of Problem Reduction as a Para-
digm for Problem Solving in Software Engineering,” Proc. ACM Computer Science Conf., ACM Press, New

4. S. Amarel, “Problem Solving” in Encyclopedia of Artificial Intelligence: Volume 2, S. Shapiro, ed., John Wiley
. H. Simon, “Whether Software Engineering Needs to be Artificially Intelligent,” IEEE Trans. on Software

. R. Reynolds and J. Maletic, “An Introduction to Refinement Metrics: Assessing a Programming
Language’s Support of the Stepwise Refinement Process,” Proc. ACM Computer Science Conf., ACM Press,

. R.Reynolds, “The Partial Metrics System: Modeling the Stepwise Refinement Process Using Partial Met-

. M. Halstead, Elements of Software Science, Elsevier North Holland, New York, 1977.

Robert G. Reynolds is an
associate professor of com-
puter science at Wayne
State University, where his
main interests are intelligent
programming environ-
ments, the acquisition of
software-engineering
knowledge, genetic algo-

: = rithms, and adaptive sys-
tems. He is also head of the university’s PM project,
which deals with the use of machine learning tools in
the acquisition of software-engineering knowledge. He
has authored or coauthored more than 60 papers and a
book.

Reynolds holds a PhD in computer science from
the University of Michigan with a specialization in arti-
ficial intelligence (machine learning). He is a member

of the IEEE Computer Society, ACM, and AAAT.

Jonathan I. Maleticisa
PhD candidate in computer
science at Wayne State Uni-
versity and a doctoral stu-
dent working in artificial in-
telligence. His particular
interests are automated soft-
ware design, machine learn-
ing, software reuse, and re-
verse engineering.

Maletic holds a BS in computer science from the
University of Michigan at Flint and an MS in com-
puter science from Wayne State University He is a stu-
dent member of the IEEE Computer Society, ACM,
and AAAL

Stephen E. Porvin is a se-
nior knowledge engineer at
Inference Corp., where his
interests include knowledge
engineering, expert systems,
and the application of artifi-
cial intelligence to software
engineering.

Porvin holds a BA in an-
thropology from the Univer-
sity of Michigan and a BS and an MS in computer sci-
ence from Wayne State University. He is a member of
the IEEE Computer Society, ACM, ACM’s SIGArt
and AAAL

Address questions about this article to Reynolds or
Maletic at Wayne State University, CS Dept., 431
State Hall, Detroit, MI 48202; Internet
rgr@cs.wayne.edu and jlm@cs.wayne.edu.

88

SEPTEMBER 1892

