
STEPWISE REFINEMENT
AND PROBLEM SOLVING

Experiments in the
stepwise refinement of
pseudocode show that

you can express this
technique as a
combination of
problem-solving

paradigms.

ROBERT G. REYNOlDS
JONATHAN I. MALETIC

STEPHEN E. PORVIN
Wayne State University

S tepwise refinement remains a popular
approach to program-design imple-

mentation, primarily because of its flexi-
bility. As originally proposed by Niklaus
Wirth, the technique involves successively
decomposing design decisions into target
code. With each re6nement step, the de-
signer must

+ note the interdependence of sub-
problems,

+ attempt to preserve the design’s
functional correctness, and

+ defer decisions about representation
details as long as possible.’

A more specific goal, stated by Harlan
Mills, is to “divide, connect, and check an
intended function by reexpressing it as an

equivalent structure of properly con-
nected subfunctions, each solving part of
the problem, a n each simpler than the d
original to further divide, connect and
check.... . ..each refinement is taken as a
working hypotheses for further investiga-
tion to be judged either sound or amended
as its implication becomes clear.“’

In this article, we are interested in ex-
ploring whether or not the traditional no-
tion of stepwise refinement can be
reexpressed as a combination of general
problem-solving activities that are based
on paradigms taken from artificial intelli-
gence research. This reexpression can
form the basis for a more explicit view of
programming as a problem-solving activ-

IEEE SOFTWARE 07407459/92/0900/0079/~3 00 0 IEEE 79

II

ity. For intelligent programming environ-
ments to become a forceful presence in
software development, they must be able
to explicitly support the basic problem-
solving activities programmers perform.

The examples of stepwise re6nement
given in the literature seldom refer to
these generic problem-solving activities
explicitly. We believe it is

volve a different problem-solving activity.
Therefore, to characterize a rehement
step precisely, the designer must know
how individual stubs are modified. The
refinement activity associated with a single
stub is called an elaboration.

Changes made in an elaboration are
expressed in terms of modifications to the

target-code and stub
possible to extract evidence components. A stub can
from the stepwise refine- -
ment process that will Examples of stepwise !CZfZE~~e~~~Z
show developers use these
activities unknowingly. refinement in the more complex or sim-

In our experiments, we
encoded each step of the

literature seldom refer
pler than the parent

refinement process into
problem-solving activities.
We analyzed 26 examples
of code implementation
using the stepwise reline-

to generic
problem-solving

activities explicitly.

complex structure, the
stub has expanded rela-
tive to some metric.
Similarly, an elaboration
can either add new target

ment of pseudocode. The
box on p. 8 1 lists these examples and gives
the author of the problem.

We also developed a model that relates
changes in pseudocode structures with ge-
neric problem-solving activities.3 We im-
plemented the model using both refine-
ment and partial metrics to measure
changes in pseudocode structure. This
technique lets us encode each refinement
step in terms of the basic problem-solving
activities that it supports.

RELATING METRICS AND PARADIGMS

A pseudocode program has two com-
ponents, stub and code. Each refinement
step is described in terms of the changes
made to each component. Designers use
two types of metrics, corresponding to
stub and code refinement, to quantita-
tively describe the changes made in each
refinement step. Each metric is based on
changes in the size of a binary encoded
description of its respective component
made by a design decision. These encoded
descriptions taken together characterize a
problem-solving activity.

Each stub can be viewed as a problem
to be solved. If more than one stub is dealt
with in a rehnement step, more than one
problem-solving paradigm might be in-
volved because each stub’s solution can in-

or remove it. If the target code’s structure
code to the pseudocode

is more complex after the elaboration, the
code has expanded relative to that metric.
If it is less complex, it has reduced.

Thus, stepwise refinement can be
viewed as a sequence of elaborations that
result in the formation of a program in a
target language horn an initial function
specification. The task of generating a
program module given a functional speci-
fication is an example of a formation prob-
lem. In a formation problem, the problem
conditions are given in the form of prop-
erties that the solution as a wholk’must
satisfy, and the problem solver has to gen-
erate a solution description within a lan-
guage of solution structures that satisfies
the required properties.4 Here, the prob-
lem conditions correspond to the genera-
tion of a software system that satisfies a
given I/O specification and can be synthe-
sized using a pseudocode language and a
target language with a specified grammar.

The steps taken to translate stepwise
refinement into a sequence of elabora-
tions, each associated with an activity that
supports a paradigm for solving formation
problems, are

1. Describe the problem-solving para-
digms used to solve formation problems.

2. Predict the changes to pseudocode
program structure expected when a prob-

lem-solving activity based on a paradigm is
performed.

3. Select the metrics that can measure
those expected changes.

4. Analyze the results.

DESCRIBING PARADIGMS

The most popular paradigms used to
solve formation problems are production
system, reduction system, and relaxed re-
duction.

Pdudi~~~ sptm. This paradigm uses
the notion of state-space search. Given the
space of all possible pseudocode programs
for a pseudocode language and a target
language, the problem is to find a se-
quence of design decisions that produce a
path through the state space that term-
nates with a program in the target lan-
guage satisfying the required VO behav-
ior. Herbert Simon describes
programming in this way, as a heuristic
search through a program space.’ ‘To ex-
press a problem in terms of state-space
search, you must define the set of allow-
able states, the possible moves to go horn
one state to another, an evaluation func-
tion for states, and a state-selection fimc-
tion. There are, in principle, no con-
straints on allowable moves within the
space, so there are no restrictions on the
way in which stubs can be elaborated.
Problem-solving activities like unre-
stricted stub decomposition, pruning of
the problem space, and backtracking are
supported here.

Red~cth +m. This paradigm is sim-
ilar to the production-system paradigm,
except in the type of allowable moves. The
reduction-system paradigm allows only
the moves that transform the current state
into one closer to completion. In the for-
mation problem described earlier, each
stub can be viewed as corresponding to a
jubproblem to be solved. A problem-re-
luction move corresponds to the replace-
ment of stubs with new stubs. Each stub is
associated with one or more independent
;ubproblems that are easier to solve. Are-
luction move is said to be terminal if a stub
IS replaced completely with target code.

80 SEPTEMBER 1992

The result of any reduction move is to
increase the amount of completed code in
the program.

Relaxed rdh~~~. This paradigm is used
when the subproblems produced by a
stub’s decomposition are not indepen-
dent. Relaxed reduction treats each sub-
problem as independent, solves each sepa-
rately, and then adjusts the partial
solutions to be consistent with each other.
Adjustment is either done as soon as in-

consistencies arise or deferred until all the
subproblems are solved.

PREDICTING CHANGES

The first task in predicting the pseudo-
code changes expected with each para-
digm is to characterize individual elabom-
tions according to how they support the
problem-solving activities associated with
the paradigms. Table 1 shows a possible
classification scheme to associate each

problem-solving activity with the changes
it is likely to produce. Each category en-
forces a particular set of constraints on the
strucmral changes made by elaborations
that support it. A category may describe an
activity associated with more than one
paradigm.

Stub reduction. The first row in the table
describes activities associated with the two
reduction paradigms (reduction system
and relaxed reduction). The principle ac-

PRURNMS USED FUR JtEfJNEMEJJl SEQUEJKES
l A+p G&r usii-zg ere@&h@. conslrua a greedy to in each groupof experimented animals as well as the average over

solve a traf&-light design problem as a graph-c&ring problem. groups. - G.Jones and M. Headon
-A. Aho, J. Hopcroft, andJ. Ullmann * C&se Jihphyee Hzges. Compute the take-home pay for

4 P~~~a~. Compute the federal and state taxes for an employee in&dingovertime and various deductions, such as
each employee from tax tabl* compute their net incom% and medical insurance and taxes.
generate corporate statis& for ail employees. -M. Augenstein * &zig& lfiizw. Write a program that allows a knight to pass
and A. T~enbaum through every square on a chess board only once. -A. Koenig

* CmnplaeeXm Pomer K eompnte the funcrion of two ime- * MSyimbd Tabk. Design the matching function for a
gem,xy,wherex> 1 and y20.-RJ.RBack compiler thatsea&es an external symbol table to see if the name

+ CalulateFintl,ooO~.compUte~etirst1,ooOprime for a token is &e&y present. - G. Myers
numbers in incmasing order, starting with 2, and place the 8% + Redand Cartcpllb Days. Write a program that reads any date
prjme into the ith position of a l,OOO-~lemen&&ger array. fi-om the tw&ti& century and prints out the corresponding day
- E. Dijkstra ofthe week --V. Rajlich

4 CbteFintNh. Genme a program to compute the * w me N&. Compute the maximum of
first Nprime numbers. - R Fairley three integers a, b, and c. -J. Denbign Starkey and R Ross

* Tr& Srwvgr SW. Generate statistics concerning the + Solve Quadratk Equation Roots. Develop a program to find a
number of &ides passing by a vehicle detector over a given pe- ~ue~rxintheqnadraticequation,~+Bx+C=O,whereA,B,
riodof time. - W Findlay and D. Watt and Care given as integer values. - D. Watt, B. Wichmann, and

4 S&&8e a Ptmn’sL$. Generate a computer program that W Fiixllay
Siuks a week in the life of an individuak - N. Gehani * Sort Nma. Develop a program that reads up to 100 individ-

* Sum the Fimt NhhudN~m. For each element in a list ual names of no more than 20 characters each, and sorts them into
of Npositive numbers, compute the sum of ail natural numbers lexicographic&.
up to and including that element. i Qzakti. Genemte a program that uses the quick-sort algo-

+ B&&k Sort. Deveiop a procedure to sort a onedimensiottal rithin ti sort an integer array in ascending order. -J. Welsh, J.
array of arbitrary size using the bubble-sort algorithm. Elder, and D, Bustard
-I? Gilbert ‘t E&=&h. Find a position for each of eight queens so that

+ Air PO&&~ StiW. Genemte average polh~tionvalues and no queen m”y be taken by another. - N. Wirth
re~~ge~~~rh~f~adet~on~~~~~ the * TtiLG&w. Generate a program that supports a set of gen-
aireverymin;lteover~4hours,-J.H~~sandJ.~~~ erai rx+&i&ng tasks such as the insertion, deletion, and replace-

+ Air Pobtiun Stlzbirtjcs. (same as above) - R Jensen and mentoflines.
C. %nies + Redad C&E Date I. Write a program that, given the

+ Air Pa&&n S&L&. (same as above) - R L,inger, H. Mills, year, month, and day of the month, will produce the year, month,
and B. witt. and day of the following day, a!muning the date lies between Janu-

t IZx&mg~ smt. Read in Nintegers and arrange them in order ary 1,19iIO, and December 3 1,2099, for the Gregorian calendar
from smallest to largest - D. Ince -D.W&

+ PmescAnimulStat Calculate the average weight of pigs * Reada& tTibh&e Date@ (same as above). - D. Wood

IEEE SOFTWARE 91

rest-of-exp2 exp3

stub J 1 \

i
&we 1. Support subtm and refinement depth and breadth jiw the eqmwion syntactic class in a dim-ted
vclic graph.

I!
1
,

1
1

(

i

1
1

I

(
<

f

Changes in stub complexity Change in code complexity
Code expansion Code reduction

Stub reduction Problem decomposition
(reduction)

Problem interation
(relaxed reduction)

tivity in both paradigms is the decomposi-
tion of a stub into less complex stubs along
with the addition of the target code
needed to embed those stubs. This corre-
sponds to a combination of stub reduction
and code expansion. Problem decomposi-
tion falls in the first row, second column of
the table. All the paradigms can support
this activity to different degrees.

If the subproblems generated by de-
composition are not independent, the de-
signer may have to adjust the partial solu-
tions to reflect these dependencies. When
the adjustments made during stub decom-
position allow for the consolidation or re-
duction of existing code structures, stub
reduction and code expansion are exhib-
ited together. This resolution activity falls
in the first row, third column. The strat-
egy behind relaxed reduction is to solve
each subproblem separately. Thus, adjust-
ment often removes redundant code in the
solution of each subproblem rather than
adding new code.

Stub expathn The second row of the
table shows stub-expansion activities.
These are the general activities that sup-
port problem solving. The second column
describes elaborations that produce both
stub and code expansion. Pruning of
XlIlChld solutions falls into this category.
ln pruning, a stub of a given syntax class is
replaced with a stub of an equal or more
complex class. The new stub is embedded
n new target code that reflects a more
3recise interpretation of a stub’s charac-
:erization, pruning away old alternatives.

For example, a stub ofclass statement is
-eplaced by target code representing a
:onditional branch and a new stub of class
;tatement, embedded within the code. In
his example, a specific syntactic structure
vas selected, removing other alternatives
iom consideration.

Backtracking, which corresponds to
itub expansion and code reduction (sec-
md row, third column) is also an impor-
ant activity in problem-solving systems.
decomposition can lead to an inadequate
solution, so designers backtrack to an ear-
ier point in the design by removing por-
ions of existing code and replacing the
associated stubs with more complex ones.

82 SEPTEMBER 1992

Backtracking activities will always be a ne-
cessity in the generation of novel designs.

SELECTING METRICS

Designers use two types of metrics to de-
scribe changes in the pseudocode. Refine-
ment metrics are used to track changes in the
stub componen$ partial metrics are used to
track changes in the code component’

Refinement metrics. Refinement metrics
characterize the difficulty of the imple-
mentation taskassociated with the decom-
position of a stub into target code. The
difficulty is expressed in terms of the
grammar for the target language. The es-
timated complexity of the task is com-
puted relative to the nonrecursive directed
acyclic graph for the grammar. That is, all
indirect and direct recursion is eliminated
from the productions that constitute the
grammar. Figure 1 shows part of the
constrained graph for the Backus Naur f
orm grammar of a simple language.
Each nonterminal node represents a
syntactic class or category and has an as-
sociated support subtree consisting of
the set of all possible nodes and arcs
reachable from the nonterminal node.

Retinementdepth represents the num-
ber of decisions necessary in the worst case
to turn a stub associated with a syntactic
class into complete code. Depth is deter-
mined by counting each arc in the longest
path in a syntactic class’s support subtree
from a root to a leaf. In Figure 1, the sup-
port subtree for the syntactic class is out-
lined in a triangle-like shape. The longest
path is delineated by bold arcs. It takes a
maximum ofeight productions to transform
the expression into complete target code.

Refinement breadth corresponds to
the diameter for the subtree associated
with a syntactic class. It is measured by
counting the number of unique produc-
tions in the class’s support subtree. In the
same figure, the 22 unique productions are
shown in dashed lines.

Refinement volume reflects the worst-
case number of bits needed to encode (de-
scribe) the sequence of productions used
in implementing a syntactic class associ-
ated with a nonterminal node, nt. It is cal-

culated by combining refinement depth
and breadth:

volume(nt) = depth(lzt) x l@(breadth(nt))

where log2(breadth) is the number of bits
required to uniquely encode any of the
nonterminal nodes reachable from nt at
each step and depth is the worst-case num-
ber of steps needed to implement the class.

Refinement volume measures changes
in the structural complexity of a stub pro-
duced during elaboration.6 It measures the
binary encoding of the production se-
quences (from the target language’s gram-
mar) needed to transform the syntactic
category associated with the stub into tar-
get code. As such it measures how difficult
in terms of language, the stub is to imple-
ment. Stub reduction occurs when the re-
finement volume associated with each new
stub is less than the size of the implemen-
tation task associated with its parent. Stub
expansion occurs when the refinement
volume for at least one of the new stubs is
greater than that of its

currences in the program and n is the
number of unique occurrences of both
operators and operands.

Changes in the target code’s structural
complexity produced during the elabora-
tion of a stub are expressed as changes in
prescribed volume. Code expands when
the prescribedvolume for the pseudocode
program increases after elaboration. Code
reduces when the prescribed volume de-
creases after elaboration.

ANALYZING RESULTS

The last step in relating stepwise re-
finement to problem solving is to translate
the elaboration classifications into the
problem solving activity they represent. In
all 26 problems, we computed the change
in refinement volume and prescribed vol-
ume for each elaboration. We then used
this data to encode stepwise rehnement in
terms of the problem-solving activities

using the classification
scheme in Table 1.

Refinement metrics
characterize the
difficulty of the

Table 2 gives the num-
ber of elaborations in the
sample that correspond to
each problem-solving op-
eration. All problem-
solving categories are rep-

parent.

Partial metrics. Partial
metrics, which describe
code complexity, are
based on the idea that
nseudocode has two com-
ponent classes: projected
and prescribed.’ The

implementation task resem$;b~s;;~~$sat

associated with the e
projected component elaborations performing
consists of the current set decomposition of a problem decomposition
of stubs in the program.
The information associ- stub into target code.

are by far the most k-e-
rre;:s E t;Eern;“:f an ated with these stubs is

used to make projections all elaborations. The next
about their contributions to the overall
structural complexity of the completed
code. The prescribed component consists
of all the target code currently in the pseu-
docode program.

For example, Halstead’sVolume’ mea-
sures the size of a program in a target lan-
guage in terms of the number of bits
needed to encode it. For a pseudocode
program, you can compute Halstead’s
Volume by ignoring the contribution of
the projected or stub component. This is
called the prescribed volwne. Its precise
formulation is NlogZn, where N is the
total number of operator and operand oc-

most frequently occurring activity is back-
tracking. The 23 observed instances oc-
curred in 10 of the 26 refinement exam-
ples, which indicates that some problems
seem to require more rethinking of the
solution than others. Problem decompo-
sition and backtracking together consti-
tute approximately 92 percent of the elab-
orations.

The next most frequently observed ac-
tivity, relaxed reduction, occurs when ex-
isting code is reduced in conjunction with
a stub-reduction decision. These transfor-
mations represent code-optimization de-
cisions for the most part. Relaxed-reduc-

IEEE SOFTWARE 83

don activities that produce more complex
target code in conjunction with stub re-
duction are counted in the problem-re-
duction class.

The final category is pruning. Only six
elaborations, horn four refinement exam-
ples, are of this type. Although the num-
bers for this activity are rather small, it is
still important in the overall process. The
problems that use pruning are some of the
more complex among the 26. These ex-
amples may actually be more representa-
tive of the real-world problems designers
face. That these operations are present, even
as part of a solution for a relatively simple
problem, indicates their importance.

SAMPLE SEQUENCES

To illustrate the variety of paradigms
we actually observed in the 26 examples,
we present three encoded sample refine-
ment sequences. (We modified the prob-
lems slightly to help standardize data col-
lection and presentation.) Each example is
described as an indexed sequence of re-
finement steps. A refinement step can
consist of multiple elaborations, and each
elaboration is encoded to represent one of
the four categories in Table 1. Each refine-
ment step is described as a collection of
symbols, in which each symbol corre-
sponds to an elaboration class.

Changes in stub complexity
Change in code complexity

Code expansion Code reduction

Stub reduction 292 11 /
Problem reduction Relaxed reduction 1

Stub expansion 6
Pnutirg

23
BacktrackiZrg

Eight Queens. The example in Figure 2 is
the solution to the Eight Queens problem
(described in the box on p. 8 1) as described
by Wirth in his ground-breaking paper on
stepwise refinement’ The encoded se-
quence demonstrates a consistent problem-
reduction approach over the first 13 rehne-
ment steps, as Table 3 shows.

The final refinement consists of two
major activities. One is performed by an
elaboration that supports a relaxed-reduc-
tion approach, which led to a more effi-
cient code structure. The other is the se-
lection of an approach for handling a
termination process that emerged during
the finishing touches of the design. The
new stub is more complex than its parent
because it contains a more specific solu-
tion structure.

Because the design in the Eight
Queens example focuses onimplementing
a particular approach (algorithm or heu-
ristic), problem reduction is the dominant
activity followed by a set of activities that
tie up loose ends in the design. Tying up
loose ends is similar to making design de-
cisions that depend on decisions about
other tasks. Examples of tasks that often
exhibit such interdependence are code op-
timization and exception handling, both
ofwhich are in the Eight Queens example.

Refinement number 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Wirth PR PR PR PR PR PR PR PR PR PR PR PR PR RR
Eight Queew PK PR

drill
P “,

PR
Starkey and Ross PR PR RR PR PR B RR PR

1 Maximumof I

PR ir problem reduction, RR is relaxed reduction, P is pruning, and B ti backtracking.

84 SEPTEMBER 1992

1

j :

Refinement 0: Stub: EightQueens
BOARD;
POINTER;
SAFE;
CONSIDERFIRSTCOLUMN;
loop

TRYCOLUMN;
if SAFE then

SETQUEEN;
CONSIDERNEXTCOLUMN;

else
REGRESS ;

end if;
exit when LASTCOLDONE

or REGRESOUTlSTCOL;
end loop;

Refinement la: Stub: TRYCOLUMN
procedure TRYCOLUMN is

begin
loop

ADVANCEPOINTER;
TESTSQUARE;

exit when SAFE or LASTSQUARE ;
end loop ;

end ;
Refinement lb: Stub: REGRESS

procedure REGRESS is
begin

RECONSPRIORCOLUMN ;
if not REGRESOUTlSTCOL then

REMOVEQUEEN ;
if LASTSQUARE then

RECONSPRIORCOLUMN ;
if not REG~OUTlSTCOL
then
REMOVEQUEEN ;

end if;
end if ;

end if;
end ;

Refinement 2a: Stub: BOARD
BOARD : array (1.. 8) of INTEGER

Refinement 2b: Stub: POINTER
POINTER : INTEGER ;

Refinement 2c: Stub&WE
SAFE : BOOLEAN;

Refinement 3: Stub:CONSIDERFJRSTCOLUMN
procedure CONSIDER-IST-COLUMN is

kin
J:=l;
x(J):=o;

end ;
Refinement 4: Stub: CONSIDERNEXTCOLUMN

procedure CONSIDERNEXTCOLUMN is
begin
&Jr; ;

: ;

end ;
Refinement 5: Stub: RECONSPRIORCOLUMN

procedure RECONSPRIORCOLUMN is
beti
j,z:J- 1;

Refineknt 6: Stub: ADVANCEPOINTER
procedure ADVANCEPOINTER is

begin
Xa,:=xg)+l;

end ;
Refinement 7: Stub: LASTSQUARE

function LASTSQUARE return BOOLEAN is
hi@

LASTSQWARE := Xa> = 8 ;
end;

Refinement 8: Stub: LASTCOLDONE
function LASTCOLDONE return BOOLEAN is

begin
LAsTCOLDONE:=J>8;

end;
Refinement 9: Stub: REGRESOUTISTCOL

&nction REGRFSOUTlSTCOL return
BOOLEANis
h+

REGRESOUTlSTCOL := J 1;
end ;

Refinement lo: Stub: TESTSQUARJZ
A :a.rray(1.. 8) ofBOOLEAN;
B :array(2 . . 16)ofBOOLIZAN;
C :array(-7.. 7)ofBOOLEAN;

procedureTESTSQUARE is
h-in
S~~~~~~) K7 + x0))

,
end ;

Refmement 11: St&: SETQUEEN
procedure SETQUEEN is

fJ%+
A(X(J)) :=false;
B(J+X@)z=f&e;
X(J-X@):=false;

end;
Refinement 12: Stub: REMOVEQUEEN

procedure REMOVEQUEEN is
begin

A(X(J)) ptrue;
B(J+X@):=true;
C(J-X(I)):=true;

ReziAent Ik: Stub: OUTPUT&ESULTS;
ifJ>8therlPUT(x);

else FAIL-

Refinements 13b &rough 13h: In ConsiderNextCohmm, add
code X(J) := I; in all procedures make the following refinement:
replace Xa> by I

L

Figure 2. Refinement sequence for Wirth ‘s Eight Queens problem

IEEE SOFTWARE 85

n

I
I :

L

Refinement 0: Stub: MAX-OF-3
procedure MAX-OF-3 is

A,B,C:INTEGER;
begin

GET(A,B,C);
PWOWAX (4&C));

end ;

Refinement 1: Stub: MAX
functionMAX(A,B,C:inlNTEGER)

return INTEGER is
begin

ifA>Bthen
ifB>Cthen

MAX:=&
else

MAX := c;
end if;

else
ifB>Cthen

MAX := B;
else

MAX := c;
end 8,

end if;
end;

Refinement 2: All prescribed code in function MAX is
changed to

LARGE : INTEGER;
ifA>B then

LARGE := A;
else

LARGE := B;
end if,
ifLARGE>C then

MAX := LARGE ;
else

MAx:=c;
end if;

Refinement 3: All prescribed code in rei?nement 2 is changed to
if (A z B) and (A > C) then

MAX:=&
end if,
if(B>C)and(B>A)then

MAX := B;
end if
if(C>B)and(C>A)then

MAx:=c;
end if,

Refinement 4: In function MAX change > into a >=.

Refinement 5: All prescribed code in refinement 3,4 is changed
to

LARGE : INTEGER

LARGE := MAXIMUM (A, B);
LARGE := MAXIMUM (LARGE, C);
MAX:=LARGE;

Refinement 6: All prescribed code in refinement 5 is changed to
MAX := - WAXIMUM (4 BK);

Refinement 7: Stub-
~e~~-~~ (A, B : in INTEGER)

begin
ifAr B then

M := A;
else

MAXIMUM := B;
end if

end;

Figure 3. Re+nmt sequence fm Starkq and ROJJ’J Maximum of Three Numbers problem.

This sequence of problem-reduction op-
erations followed by the solution of sub-
problems requiring global information is
certainly the norm among the 26 exam-
ples. Designers can use this approach
when the problem is well-defined and they
know the algorithmic structure of its solu-
tion for the most part.

initial unsophisticated prototype is pro-
duced, and then incrementally trans-
formed into a more complex version that
satisfies given constraints. Some of these
transformations may not preserve correct-
ness and may require backtracking

quence of each is given in Table 3 along
withtheEightQueensproblem.

Some refinement sequences in other
examples differed markedly from this
approach primarily because the nature
of the problems to be solved was differ-
ent. Two possible alternative problem
classes are

2. Problems whose solution (algo-
rithm/heuristic) cannot be completely
known in advance and must be modified
during design. The solution may be a collec-
tion of special cases or rules, in which not all
the relevant rules are known ahead of time.

Maximum of Three Numbers. Figure 3
shows this example, which reflects the
transformational approach. The task is tc
compute the maximum of three numbers
The initial approach is a simple extension
of a solution that works for two numbers.
This is implemented as two prob-
lem-reduction steps and a third relaxed-
reduction step.

1. Problems that can be solved in a
transformational manner. That is, an

The problem- so vmg activities used 1
to solve these alternative problem
classes may also differ significantly from
the norm. An encoded refinement se-
/

In step 3, the conditional control is re-
worked. This function did not produce
the desired I/O behavior and was modified
by the transformation in step 4.

I I
-

66 SEPTEMBER 1992

Refinement 5c: Replace prescribed code ftom within procedure
in reference with the following prescribed code and stubs:

DISTANCE := (DISTANCEJWvl + (YY - 1900)
+(YY-19Ol)DIV4)MOD7;

if(YYMOD4=O)ANDYY/=1900
AND LATE-MONTH then
DISTANCE := DISTANCE + 1;

end if;

Refinement 6: Stub: DISTANCE_MM
function DISTANCE_MM return INTEGER is

begin
DISTANCE := 0;
m-MONTH;
while NOT-OVER loop

DISTANCE-MM := DISTKNCEJvlM +
MONTH~INCREMENT;

NEXT-MONTH;
end loop;

end DISTANcE_MM;
(Also change DISTANCE-MM to prescribed function call.)

Refinement 7a: Stub: READjMM;
MM : INTEGER;

procedure W-MM is
begin

PUT (” ENTER THE MONTH : ‘9;
GET (MM);
while (MM > 12 ORMM 1) loop

PUT (“INCORRECT!
ENTER DIFFERENT MONTH “);

GET 0,
end loop;

end READ-M
$Also change READ-MM to prescribed procedure call.)

Refinement 7b: Stub: MONTH-LENGTH
fimction MOhJTH-LENGTH return INTEGER is

kin
case MM is
when 1 3 5 7 8 lo,12 7 7 3 f 1

=> Mom-LENGTH := 3 1;
when4,6,9,11

=> MONTH-LENGTH := 30;
when 2 => MONTH-LENGTH := 29;
end case;

end MONTH-LENGTH;
‘Also change MONTH-LENGTH to prescribed fimction call.)

Vehement 7c Stub: FEBRUARY
imction FEBRUARY return BOOLEAN is

begin

ifMM=2 then
FEBRUARY := FALSE;

eke
FEBRUARY := TRUE;

end if;
end FEBRUARY;

(Also change FEBRUARY to prescribed function call.)

Refinement 7d: Stub: LATE-MONTH
function LATE-MONTH return BOOLEAN is

begin
ifMM>2tht?tl

LATE~MONTH :- TRUE;
else

LATE_MoNTH := FALSE;
end if;

end LKIX~MO~
(Also change I.&II-MONTH to prescribed function call.)

Refinement 7e: Stub: W-MONTH
procedure INIT-MONTH is

hgin
MONTH :t 0;

end INIT-MONTH;
(Also change INIT~MONI’H; to prescribed procedure call.)

Refinement 7f: Stub: NOT-OVER
function NOT-OVER return BOOLEAN is

begin
NOT~OVER := MONTH MM;

end N&-OVER;
(Also change NUT-OVER to prescribed function call.)

Refinement 7g: Stub: MONTHJNCmNT
function MONTHJNCRJZMFNT return BOOLEAN is

~~
case MONTH is
when135781OJ2 3 f f 9 7

=> MONTHJNCREMENT := 3 1;
when 4,6,9,11

=> MONTHJNCREMENT := 30;
when 2 => MONTH~INCREMENT := 28;
end ca.q

end MONTH JNCREMENX
(Also change M&THJNC&NT to prescribed function
call.)

Refinement 7h: Stub: NEXT-MOiVTH
proccdc NEXT-MONTH is

MONTH:=MONTH+ 1;
end NEXT-MONIX;

Figure 4. Rejzement sequence foT Rajlicb ‘s Read and Cahkzte Day problpm.

IEEE SOFTWARE 87

Still the control complexity was too
high, so the designer backtracks by re-
moving the detailed code and replacing it
with a simple function call in step 5. Step 6
corresponds to reducing the two calls into
one and is an example of relaxed reduc-
tion. The linal problem-reduction step
completes the process.

In this example, the problem-solving
activities combine to produce a simple
rapid-prototyping solution within the
context of stepwise refinement.

Read ad Cakulate Day. Figure 4 shows
this program, which reads any date in the
twentieth century and prints out the day of
the week. The solution is effectively a col-
lection of transformation rules. Initially,
some of the more tiequently applied rules
are known but new situations develop as
the design proceeds. These situations
often relate to exception handling. As a
result, backtracking takes place frequently
as new situations are discovered and added
to the design. This situation is particularly
relevant with somewhat fuzzy problems
like interface design.

In problems such as this one, the goal is
to satisfy the user, so the initial functional
specitication doesn’t have enough informa-
tion for the designer to structure a solution
directly. Thus, the designer uses a combina-
tion of problem-solving strategies that in-
crementally augment the current solution.

T o develop a useful, intelligent prognun-
ming environment, designers must un-

derstand the nature of the problem-solving
activities to be performed in that environ-
ment, Our experiments with a variety of
problems show that designers can perform
several problem-solving activities within the
stepwise-refinement fiznework. The pres-
ence of certain combinations of activities
suggests that programmers are implicitly
emulating certain paradigms that have
proved useful in solving complex problems.
Also, as the Wrth example suggests, a par-
ticular paradigm and its associated activities
seem to be applied often throughout the re-
finement sequence for a given problem. It is
also clear that the nature of the problem to
be solved influences the type of activities
performed to achieve a solution, as well as
the problem-solving paradigm that they im-
plicitly support.

Whether the nature and the frequency
of these problem-solving activities for
textbook examples carries directly over to
real-world activities remains to be seen.
For example, backtracking and pruning
will occur more often when a designer is
faced with more sophisticated problems.

We hope to see problem-solving para-
digms and their supporting activities more
explicitly integrated into stepwise refine-
ment. We also expect to see new problem-
solving paradigms emerge that are unique
to software development. +

REFERENCES
1. N. Wirth, “Program Development By Stepwise Relinemax,” C&m. AC&f, Apr. 197 1, pp. 22 l-227.
2. R. Linger, H. Mills, and B. Witt, Shllctuwd Progmmmrng Tneoy arzd Pmctie, Addison-V’&)-, Reading,

Mass., 1979.
3. S. Porvin, R. Reynolds, and J. Maletic, “An Empirical Study of the Use ofProblem Reduction as a Para-

digm for Problem Solving in Software Engineering,” Pm. A01 Ccm~putrr.%wnce Co$, AC&T Press, New
York 1991, pp. 618-629.

4. S. Anwel, “Problem Solving” in Eyyclapedia 4fA~~~alI~~t~llig~ue~ Volume 2, S. Shapiro, cd., John Wley
& Sons, New Ybrk, 1990, pp.767.779.

5. H. Simon, “Whether Software Enginrwing Needs to be Art&ally Intelligent,” I&%% 7i-au. 017 .So$wzre
Eng., July 1986, pp. 726.732.

6. R. Reynolds and J. M&tic, “An Introduction to Refinement Metrics: Aassinga Progxnm~ng
Language’s Support of the Stcpwisc Refinement Process,” Pm. .4CM Cmputw Sneme Cof, KM Press,
New York, 1990., pp. 82-88.

7. R. Reynolds, “The Partial AMetrics System: 1 Vodeling the Step&e Refinement Process Using Pxtial Met-
tin,” C~mm. ACM, NOV. 1987, pp. 956.963.

8. M. Halstead, Elmwm $Sofiware &we, Elsevier North Holland, New York, 19;i.

terns. He is also head ofthe university’s PM project,
which deals with the use of machine learning tools in
the acquisition of software-engineering knowledge. He
has authored oi- coauthored more than 60 papers and a
book.

Reynolds holds a PhD in computer science from
the University of,Michigan with a specialization in arti-
ficial intelligence (machine learning). He is a member
of the IEEE Computer Society, ACM, and AAAI.

Jonathan I. M&tic is a
PhD candidate in computer
science at Wayne State Uni-
versity and a doctoral SN-
dent working in artificial in-
telligence. His particular
interests are automated soft-
ware design, machine leam-
ing, sohare reuse, and re-
“ax engineering.

Maletic holds a BS in computer science from the
University of Michigan at Flint and an MS in com-
puter science from Wayne State University He is a stw
dent member of the IEEE Computer Society, ACM,
and AAX

Stephen E. Porvin is a se-
nior knowledge engineer at
Inference Corp., where his
interests include knowledge
engineering, expert systems,
and the application of artifi-
cial intelligence to software
engineering.

Powin holds a BAin an-
thropology from the Univer-

sity ofMichigan and a BS and an MS in computer sci-
ence from Wayne State University. He is a member of
the IEEE Computer Society, ACM, ACM’s SIGArt
and AAAI.

Address questions about this article to Reynolds or
Maletic at Wayne State University, CS Dept., 43 1
&ate Hall, Detroit, Ml 48202; Internet
rgr@cs.wayne.edu and jlmQcs.wayne.edu.

88 SEPTEMBER 1992

