
STEPWISE REFINEMENT 
AND PROBLEM SOLVING 

Experiments in the 
stepwise refinement of 
pseudocode show that 

you can express this 
technique as a 
combination of 
problem-solving 

paradigms. 

ROBERT G. REYNOlDS 
JONATHAN I. MALETIC 

STEPHEN E. PORVIN 
Wayne State University 

S tepwise refinement remains a popular 
approach to program-design imple- 

mentation, primarily because of its flexi- 
bility. As originally proposed by Niklaus 
Wirth, the technique involves successively 
decomposing design decisions into target 
code. With each re6nement step, the de- 
signer must 

+ note the interdependence of sub- 
problems, 

+ attempt to preserve the design’s 
functional correctness, and 

+ defer decisions about representation 
details as long as possible.’ 

A more specific goal, stated by Harlan 
Mills, is to “divide, connect, and check an 
intended function by reexpressing it as an 

equivalent structure of properly con- 
nected subfunctions, each solving part of 
the problem, a n each simpler than the d 
original to further divide, connect and 
check.... . ..each refinement is taken as a 
working hypotheses for further investiga- 
tion to be judged either sound or amended 
as its implication becomes clear.“’ 

In this article, we are interested in ex- 
ploring whether or not the traditional no- 
tion of stepwise refinement can be 
reexpressed as a combination of general 
problem-solving activities that are based 
on paradigms taken from artificial intelli- 
gence research. This reexpression can 
form the basis for a more explicit view of 
programming as a problem-solving activ- 
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ity. For intelligent programming environ- 
ments to become a forceful presence in 
software development, they must be able 
to explicitly support the basic problem- 
solving activities programmers perform. 

The examples of stepwise re6nement 
given in the literature seldom refer to 
these generic problem-solving activities 
explicitly. We believe it is 

volve a different problem-solving activity. 
Therefore, to characterize a rehement 
step precisely, the designer must know 
how individual stubs are modified. The 
refinement activity associated with a single 
stub is called an elaboration. 

Changes made in an elaboration are 
expressed in terms of modifications to the 

target-code and stub 
possible to extract evidence components. A stub can 
from the stepwise refine- - 
ment process that will Examples of stepwise !CZfZE~~e~~~Z 
show developers use these 
activities unknowingly. refinement in the more complex or sim- 

In our experiments, we 
encoded each step of the 

literature seldom refer 
pler than the parent 

refinement process into 
problem-solving activities. 
We analyzed 26 examples 
of code implementation 
using the stepwise reline- 

to generic 
problem-solving 

activities explicitly. 

complex structure, the 
stub has expanded rela- 
tive to some metric. 
Similarly, an elaboration 
can either add new target 

ment of pseudocode. The 
box on p. 8 1 lists these examples and gives 
the author of the problem. 

We also developed a model that relates 
changes in pseudocode structures with ge- 
neric problem-solving activities.3 We im- 
plemented the model using both refine- 
ment and partial metrics to measure 
changes in pseudocode structure. This 
technique lets us encode each refinement 
step in terms of the basic problem-solving 
activities that it supports. 

RELATING METRICS AND PARADIGMS 

A pseudocode program has two com- 
ponents, stub and code. Each refinement 
step is described in terms of the changes 
made to each component. Designers use 
two types of metrics, corresponding to 
stub and code refinement, to quantita- 
tively describe the changes made in each 
refinement step. Each metric is based on 
changes in the size of a binary encoded 
description of its respective component 
made by a design decision. These encoded 
descriptions taken together characterize a 
problem-solving activity. 

Each stub can be viewed as a problem 
to be solved. If more than one stub is dealt 
with in a rehnement step, more than one 
problem-solving paradigm might be in- 
volved because each stub’s solution can in- 

or remove it. If the target code’s structure 
code to the pseudocode 

is more complex after the elaboration, the 
code has expanded relative to that metric. 
If it is less complex, it has reduced. 

Thus, stepwise refinement can be 
viewed as a sequence of elaborations that 
result in the formation of a program in a 
target language horn an initial function 
specification. The task of generating a 
program module given a functional speci- 
fication is an example of a formation prob- 
lem. In a formation problem, the problem 
conditions are given in the form of prop- 
erties that the solution as a wholk’must 
satisfy, and the problem solver has to gen- 
erate a solution description within a lan- 
guage of solution structures that satisfies 
the required properties.4 Here, the prob- 
lem conditions correspond to the genera- 
tion of a software system that satisfies a 
given I/O specification and can be synthe- 
sized using a pseudocode language and a 
target language with a specified grammar. 

The steps taken to translate stepwise 
refinement into a sequence of elabora- 
tions, each associated with an activity that 
supports a paradigm for solving formation 
problems, are 

1. Describe the problem-solving para- 
digms used to solve formation problems. 

2. Predict the changes to pseudocode 
program structure expected when a prob- 

lem-solving activity based on a paradigm is 
performed. 

3. Select the metrics that can measure 
those expected changes. 

4. Analyze the results. 

DESCRIBING PARADIGMS 

The most popular paradigms used to 
solve formation problems are production 
system, reduction system, and relaxed re- 
duction. 

Pdudi~~~ sptm. This paradigm uses 
the notion of state-space search. Given the 
space of all possible pseudocode programs 
for a pseudocode language and a target 
language, the problem is to find a se- 
quence of design decisions that produce a 
path through the state space that term- 
nates with a program in the target lan- 
guage satisfying the required VO behav- 
ior. Herbert Simon describes 
programming in this way, as a heuristic 
search through a program space.’ ‘To ex- 
press a problem in terms of state-space 
search, you must define the set of allow- 
able states, the possible moves to go horn 
one state to another, an evaluation func- 
tion for states, and a state-selection fimc- 
tion. There are, in principle, no con- 
straints on allowable moves within the 
space, so there are no restrictions on the 
way in which stubs can be elaborated. 
Problem-solving activities like unre- 
stricted stub decomposition, pruning of 
the problem space, and backtracking are 
supported here. 

Red~cth +m. This paradigm is sim- 
ilar to the production-system paradigm, 
except in the type of allowable moves. The 
reduction-system paradigm allows only 
the moves that transform the current state 
into one closer to completion. In the for- 
mation problem described earlier, each 
stub can be viewed as corresponding to a 
jubproblem to be solved. A problem-re- 
luction move corresponds to the replace- 
ment of stubs with new stubs. Each stub is 
associated with one or more independent 
;ubproblems that are easier to solve. Are- 
luction move is said to be terminal if a stub 
IS replaced completely with target code. 
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The result of any reduction move is to 
increase the amount of completed code in 
the program. 

Relaxed rdh~~~. This paradigm is used 
when the subproblems produced by a 
stub’s decomposition are not indepen- 
dent. Relaxed reduction treats each sub- 
problem as independent, solves each sepa- 
rately, and then adjusts the partial 
solutions to be consistent with each other. 
Adjustment is either done as soon as in- 

consistencies arise or deferred until all the 
subproblems are solved. 

PREDICTING CHANGES 

The first task in predicting the pseudo- 
code changes expected with each para- 
digm is to characterize individual elabom- 
tions according to how they support the 
problem-solving activities associated with 
the paradigms. Table 1 shows a possible 
classification scheme to associate each 

problem-solving activity with the changes 
it is likely to produce. Each category en- 
forces a particular set of constraints on the 
strucmral changes made by elaborations 
that support it. A category may describe an 
activity associated with more than one 
paradigm. 

Stub reduction. The first row in the table 
describes activities associated with the two 
reduction paradigms (reduction system 
and relaxed reduction). The principle ac- 

PRURNMS USED FUR JtEfJNEMEJJl SEQUEJKES 
l A+p G&r usii-zg ere@&h@. conslrua a greedy to in each groupof experimented animals as well as the average over 

solve a traf&-light design problem as a graph-c&ring problem. groups. - G.Jones and M. Headon 
-A. Aho, J. Hopcroft, andJ. Ullmann * C&se Jihphyee Hzges. Compute the take-home pay for 

4 P~~~a~. Compute the federal and state taxes for an employee in&dingovertime and various deductions, such as 
each employee from tax tabl* compute their net incom% and medical insurance and taxes. 
generate corporate statis& for ail employees. -M. Augenstein * &zig& lfiizw. Write a program that allows a knight to pass 
and A. T~enbaum through every square on a chess board only once. -A. Koenig 

* CmnplaeeXm Pomer K eompnte the funcrion of two ime- * MSyimbd Tabk. Design the matching function for a 
gem,xy,wherex> 1 and y20.-RJ.RBack compiler thatsea&es an external symbol table to see if the name 

+ CalulateFintl,ooO~.compUte~etirst1,ooOprime for a token is &e&y present. - G. Myers 
numbers in incmasing order, starting with 2, and place the 8% + Redand Cartcpllb Days. Write a program that reads any date 
prjme into the ith position of a l,OOO-~lemen&&ger array. fi-om the tw&ti& century and prints out the corresponding day 
- E. Dijkstra ofthe week --V. Rajlich 

4 CbteFintNh. Genme a program to compute the * w me N&. Compute the maximum of 
first Nprime numbers. - R Fairley three integers a, b, and c. -J. Denbign Starkey and R Ross 

* Tr& Srwvgr SW. Generate statistics concerning the + Solve Quadratk Equation Roots. Develop a program to find a 
number of &ides passing by a vehicle detector over a given pe- ~ue~rxintheqnadraticequation,~+Bx+C=O,whereA,B, 
riodof time. - W Findlay and D. Watt and Care given as integer values. - D. Watt, B. Wichmann, and 

4 S&&8e a Ptmn’sL$. Generate a computer program that W Fiixllay 
Siuks a week in the life of an individuak - N. Gehani * Sort Nma. Develop a program that reads up to 100 individ- 

* Sum the Fimt NhhudN~m. For each element in a list ual names of no more than 20 characters each, and sorts them into 
of Npositive numbers, compute the sum of ail natural numbers lexicographic&. 
up to and including that element. i Qzakti. Genemte a program that uses the quick-sort algo- 

+ B&&k Sort. Deveiop a procedure to sort a onedimensiottal rithin ti sort an integer array in ascending order. -J. Welsh, J. 
array of arbitrary size using the bubble-sort algorithm. Elder, and D, Bustard 
-I? Gilbert ‘t E&=&h. Find a position for each of eight queens so that 

+ Air PO&&~ StiW. Genemte average polh~tionvalues and no queen m”y be taken by another. - N. Wirth 
re~~ge~~~rh~f~adet~on~~~~~ the * TtiLG&w. Generate a program that supports a set of gen- 
aireverymin;lteover~4hours,-J.H~~sandJ.~~~ erai rx+&i&ng tasks such as the insertion, deletion, and replace- 

+ Air Pobtiun Stlzbirtjcs. (same as above) - R Jensen and mentoflines. 
C. %nies + Redad C&E Date I. Write a program that, given the 

+ Air Pa&&n S&L&. (same as above) - R L,inger, H. Mills, year, month, and day of the month, will produce the year, month, 
and B. witt. and day of the following day, a!muning the date lies between Janu- 

t IZx&mg~ smt. Read in Nintegers and arrange them in order ary 1,19iIO, and December 3 1,2099, for the Gregorian calendar 
from smallest to largest - D. Ince -D.W& 

+ PmescAnimulStat Calculate the average weight of pigs * Reada& tTibh&e Date@ (same as above). - D. Wood 
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Changes in stub complexity Change in code complexity 
Code expansion Code reduction 

Stub reduction Problem decomposition 
(reduction) 

Problem interation 
(relaxed reduction) 

tivity in both paradigms is the decomposi- 
tion of a stub into less complex stubs along 
with the addition of the target code 
needed to embed those stubs. This corre- 
sponds to a combination of stub reduction 
and code expansion. Problem decomposi- 
tion falls in the first row, second column of 
the table. All the paradigms can support 
this activity to different degrees. 

If the subproblems generated by de- 
composition are not independent, the de- 
signer may have to adjust the partial solu- 
tions to reflect these dependencies. When 
the adjustments made during stub decom- 
position allow for the consolidation or re- 
duction of existing code structures, stub 
reduction and code expansion are exhib- 
ited together. This resolution activity falls 
in the first row, third column. The strat- 
egy behind relaxed reduction is to solve 
each subproblem separately. Thus, adjust- 
ment often removes redundant code in the 
solution of each subproblem rather than 
adding new code. 

Stub expathn The second row of the 
table shows stub-expansion activities. 
These are the general activities that sup- 
port problem solving. The second column 
describes elaborations that produce both 
stub and code expansion. Pruning of 
XlIlChld solutions falls into this category. 
ln pruning, a stub of a given syntax class is 
replaced with a stub of an equal or more 
complex class. The new stub is embedded 
n new target code that reflects a more 
3recise interpretation of a stub’s charac- 
:erization, pruning away old alternatives. 

For example, a stub ofclass statement is 
-eplaced by target code representing a 
:onditional branch and a new stub of class 
;tatement, embedded within the code. In 
his example, a specific syntactic structure 
vas selected, removing other alternatives 
iom consideration. 

Backtracking, which corresponds to 
itub expansion and code reduction (sec- 
md row, third column) is also an impor- 
ant activity in problem-solving systems. 
decomposition can lead to an inadequate 
solution, so designers backtrack to an ear- 
ier point in the design by removing por- 
ions of existing code and replacing the 
associated stubs with more complex ones. 
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Backtracking activities will always be a ne- 
cessity in the generation of novel designs. 

SELECTING METRICS 

Designers use two types of metrics to de- 
scribe changes in the pseudocode. Refine- 
ment metrics are used to track changes in the 
stub componen$ partial metrics are used to 
track changes in the code component’ 

Refinement metrics. Refinement metrics 
characterize the difficulty of the imple- 
mentation taskassociated with the decom- 
position of a stub into target code. The 
difficulty is expressed in terms of the 
grammar for the target language. The es- 
timated complexity of the task is com- 
puted relative to the nonrecursive directed 
acyclic graph for the grammar. That is, all 
indirect and direct recursion is eliminated 
from the productions that constitute the 
grammar. Figure 1 shows part of the 
constrained graph for the Backus Naur f 
orm grammar of a simple language. 
Each nonterminal node represents a 
syntactic class or category and has an as- 
sociated support subtree consisting of 
the set of all possible nodes and arcs 
reachable from the nonterminal node. 

Retinementdepth represents the num- 
ber of decisions necessary in the worst case 
to turn a stub associated with a syntactic 
class into complete code. Depth is deter- 
mined by counting each arc in the longest 
path in a syntactic class’s support subtree 
from a root to a leaf. In Figure 1, the sup- 
port subtree for the syntactic class is out- 
lined in a triangle-like shape. The longest 
path is delineated by bold arcs. It takes a 
maximum ofeight productions to transform 
the expression into complete target code. 

Refinement breadth corresponds to 
the diameter for the subtree associated 
with a syntactic class. It is measured by 
counting the number of unique produc- 
tions in the class’s support subtree. In the 
same figure, the 22 unique productions are 
shown in dashed lines. 

Refinement volume reflects the worst- 
case number of bits needed to encode (de- 
scribe) the sequence of productions used 
in implementing a syntactic class associ- 
ated with a nonterminal node, nt. It is cal- 

culated by combining refinement depth 
and breadth: 

volume(nt) = depth(lzt) x l@(breadth(nt)) 

where log2(breadth) is the number of bits 
required to uniquely encode any of the 
nonterminal nodes reachable from nt at 
each step and depth is the worst-case num- 
ber of steps needed to implement the class. 

Refinement volume measures changes 
in the structural complexity of a stub pro- 
duced during elaboration.6 It measures the 
binary encoding of the production se- 
quences (from the target language’s gram- 
mar) needed to transform the syntactic 
category associated with the stub into tar- 
get code. As such it measures how difficult 
in terms of language, the stub is to imple- 
ment. Stub reduction occurs when the re- 
finement volume associated with each new 
stub is less than the size of the implemen- 
tation task associated with its parent. Stub 
expansion occurs when the refinement 
volume for at least one of the new stubs is 
greater than that of its 

currences in the program and n is the 
number of unique occurrences of both 
operators and operands. 

Changes in the target code’s structural 
complexity produced during the elabora- 
tion of a stub are expressed as changes in 
prescribed volume. Code expands when 
the prescribedvolume for the pseudocode 
program increases after elaboration. Code 
reduces when the prescribed volume de- 
creases after elaboration. 

ANALYZING RESULTS 

The last step in relating stepwise re- 
finement to problem solving is to translate 
the elaboration classifications into the 
problem solving activity they represent. In 
all 26 problems, we computed the change 
in refinement volume and prescribed vol- 
ume for each elaboration. We then used 
this data to encode stepwise rehnement in 
terms of the problem-solving activities 

using the classification 
scheme in Table 1. 

Refinement metrics 
characterize the 
difficulty of the 

Table 2 gives the num- 
ber of elaborations in the 
sample that correspond to 
each problem-solving op- 
eration. All problem- 
solving categories are rep- 

parent. 

Partial metrics. Partial 
metrics, which describe 
code complexity, are 
based on the idea that 
nseudocode has two com- 
ponent classes: projected 
and prescribed.’ The 

implementation task resem$;b~s;;~~$sat 

associated with the e 
projected component elaborations performing 
consists of the current set decomposition of a problem decomposition 
of stubs in the program. 
The information associ- stub into target code. 

are by far the most k-e- 
rre;:s E t;Eern;“:f an ated with these stubs is 

used to make projections all elaborations. The next 
about their contributions to the overall 
structural complexity of the completed 
code. The prescribed component consists 
of all the target code currently in the pseu- 
docode program. 

For example, Halstead’sVolume’ mea- 
sures the size of a program in a target lan- 
guage in terms of the number of bits 
needed to encode it. For a pseudocode 
program, you can compute Halstead’s 
Volume by ignoring the contribution of 
the projected or stub component. This is 
called the prescribed volwne. Its precise 
formulation is NlogZn, where N is the 
total number of operator and operand oc- 

most frequently occurring activity is back- 
tracking. The 23 observed instances oc- 
curred in 10 of the 26 refinement exam- 
ples, which indicates that some problems 
seem to require more rethinking of the 
solution than others. Problem decompo- 
sition and backtracking together consti- 
tute approximately 92 percent of the elab- 
orations. 

The next most frequently observed ac- 
tivity, relaxed reduction, occurs when ex- 
isting code is reduced in conjunction with 
a stub-reduction decision. These transfor- 
mations represent code-optimization de- 
cisions for the most part. Relaxed-reduc- 
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don activities that produce more complex 
target code in conjunction with stub re- 
duction are counted in the problem-re- 
duction class. 

The final category is pruning. Only six 
elaborations, horn four refinement exam- 
ples, are of this type. Although the num- 
bers for this activity are rather small, it is 
still important in the overall process. The 
problems that use pruning are some of the 
more complex among the 26. These ex- 
amples may actually be more representa- 
tive of the real-world problems designers 
face. That these operations are present, even 
as part of a solution for a relatively simple 
problem, indicates their importance. 

SAMPLE SEQUENCES 

To illustrate the variety of paradigms 
we actually observed in the 26 examples, 
we present three encoded sample refine- 
ment sequences. (We modified the prob- 
lems slightly to help standardize data col- 
lection and presentation.) Each example is 
described as an indexed sequence of re- 
finement steps. A refinement step can 
consist of multiple elaborations, and each 
elaboration is encoded to represent one of 
the four categories in Table 1. Each refine- 
ment step is described as a collection of 
symbols, in which each symbol corre- 
sponds to an elaboration class. 

Changes in stub complexity 
Change in code complexity 

Code expansion Code reduction 

Stub reduction 292 11 / 
Problem reduction Relaxed reduction 1 

Stub expansion 6 
Pnutirg 

23 
BacktrackiZrg 

Eight Queens. The example in Figure 2 is 
the solution to the Eight Queens problem 
(described in the box on p. 8 1) as described 
by Wirth in his ground-breaking paper on 
stepwise refinement’ The encoded se- 
quence demonstrates a consistent problem- 
reduction approach over the first 13 rehne- 
ment steps, as Table 3 shows. 

The final refinement consists of two 
major activities. One is performed by an 
elaboration that supports a relaxed-reduc- 
tion approach, which led to a more effi- 
cient code structure. The other is the se- 
lection of an approach for handling a 
termination process that emerged during 
the finishing touches of the design. The 
new stub is more complex than its parent 
because it contains a more specific solu- 
tion structure. 

Because the design in the Eight 
Queens example focuses onimplementing 
a particular approach (algorithm or heu- 
ristic), problem reduction is the dominant 
activity followed by a set of activities that 
tie up loose ends in the design. Tying up 
loose ends is similar to making design de- 
cisions that depend on decisions about 
other tasks. Examples of tasks that often 
exhibit such interdependence are code op- 
timization and exception handling, both 
ofwhich are in the Eight Queens example. 

Refinement number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Wirth PR PR PR PR PR PR PR PR PR PR PR PR PR RR 
Eight Queew PK PR 

drill 
P “, 

PR 
Starkey and Ross PR PR RR PR PR B RR PR 

1 Maximumof I 

PR ir problem reduction, RR is relaxed reduction, P is pruning, and B ti backtracking. 

84 SEPTEMBER 1992 



1 

j : 

Refinement 0: Stub: EightQueens 
BOARD; 
POINTER; 
SAFE; 
CONSIDERFIRSTCOLUMN; 
loop 

TRYCOLUMN; 
if SAFE then 

SETQUEEN; 
CONSIDERNEXTCOLUMN; 

else 
REGRESS ; 

end if; 
exit when LASTCOLDONE 

or REGRESOUTlSTCOL; 
end loop; 

Refinement la: Stub: TRYCOLUMN 
procedure TRYCOLUMN is 

begin 
loop 

ADVANCEPOINTER; 
TESTSQUARE; 

exit when SAFE or LASTSQUARE ; 
end loop ; 

end ; 
Refinement lb: Stub: REGRESS 

procedure REGRESS is 
begin 

RECONSPRIORCOLUMN ; 
if not REGRESOUTlSTCOL then 

REMOVEQUEEN ; 
if LASTSQUARE then 

RECONSPRIORCOLUMN ; 
if not REG~OUTlSTCOL 
then 
REMOVEQUEEN ; 

end if; 
end if ; 

end if; 
end ; 

Refinement 2a: Stub: BOARD 
BOARD : array ( 1.. 8 ) of INTEGER 

Refinement 2b: Stub: POINTER 
POINTER : INTEGER ; 

Refinement 2c: Stub&WE 
SAFE : BOOLEAN; 

Refinement 3: Stub:CONSIDERFJRSTCOLUMN 
procedure CONSIDER-IST-COLUMN is 

kin 
J:=l; 
x(J):=o; 

end ; 
Refinement 4: Stub: CONSIDERNEXTCOLUMN 

procedure CONSIDERNEXTCOLUMN is 
begin 
&Jr; ; 

: ; 

end ; 
Refinement 5: Stub: RECONSPRIORCOLUMN 

procedure RECONSPRIORCOLUMN is 
beti 
j,z:J- 1; 

Refineknt 6: Stub: ADVANCEPOINTER 
procedure ADVANCEPOINTER is 

begin 
Xa,:=xg)+l; 

end ; 
Refinement 7: Stub: LASTSQUARE 

function LASTSQUARE return BOOLEAN is 
hi@ 

LASTSQWARE := Xa> = 8 ; 
end; 

Refinement 8: Stub: LASTCOLDONE 
function LASTCOLDONE return BOOLEAN is 

begin 
LAsTCOLDONE:=J>8; 

end; 
Refinement 9: Stub: REGRESOUTISTCOL 

&nction REGRFSOUTlSTCOL return 
BOOLEANis 
h+ 

REGRESOUTlSTCOL := J 1; 
end ; 

Refinement lo: Stub: TESTSQUARJZ 
A :a.rray( 1.. 8) ofBOOLEAN; 
B :array( 2 . . 16)ofBOOLIZAN; 
C :array(-7.. 7)ofBOOLEAN; 

procedureTESTSQUARE is 
h-in 
S~~~~~~) K7 + x0)) 

, 
end ; 

Refmement 11: St&: SETQUEEN 
procedure SETQUEEN is 

fJ%+ 
A(X(J)) :=false; 
B(J+X@)z=f&e; 
X(J-X@):=false; 

end; 
Refinement 12: Stub: REMOVEQUEEN 

procedure REMOVEQUEEN is 
begin 

A(X(J)) ptrue; 
B(J+X@):=true; 
C(J-X(I)):=true; 

ReziAent Ik: Stub: OUTPUT&ESULTS; 
ifJ>8therlPUT(x); 

else FAIL- 

Refinements 13b &rough 13h: In ConsiderNextCohmm, add 
code X(J) := I; in all procedures make the following refinement: 
replace Xa> by I 

L 

Figure 2. Refinement sequence for Wirth ‘s Eight Queens problem 
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Refinement 0: Stub: MAX-OF-3 
procedure MAX-OF-3 is 

A,B,C:INTEGER; 
begin 

GET(A,B,C); 
PWOWAX (4&C)); 

end ; 

Refinement 1: Stub: MAX 
functionMAX(A,B,C:inlNTEGER) 

return INTEGER is 
begin 

ifA>Bthen 
ifB>Cthen 

MAX:=& 
else 

MAX := c; 
end if; 

else 
ifB>Cthen 

MAX := B; 
else 

MAX := c; 
end 8, 

end if; 
end; 

Refinement 2: All prescribed code in function MAX is 
changed to 

LARGE : INTEGER; 
ifA>B then 

LARGE := A; 
else 

LARGE := B; 
end if, 
ifLARGE>C then 

MAX := LARGE ; 
else 

MAx:=c; 
end if; 

Refinement 3: All prescribed code in rei?nement 2 is changed to 
if (A z B) and (A > C) then 

MAX:=& 
end if, 
if(B>C)and(B>A)then 

MAX := B; 
end if 
if(C>B)and(C>A)then 

MAx:=c; 
end if, 

Refinement 4: In function MAX change > into a >=. 

Refinement 5: All prescribed code in refinement 3,4 is changed 
to 

LARGE : INTEGER 

LARGE := MAXIMUM (A, B); 
LARGE := MAXIMUM (LARGE, C); 
MAX:=LARGE; 

Refinement 6: All prescribed code in refinement 5 is changed to 
MAX := - WAXIMUM (4 BK); 

Refinement 7: Stub- 
~e~~-~~ ( A, B : in INTEGER ) 

begin 
ifAr B then 

M := A; 
else 

MAXIMUM := B; 
end if 

end; 

Figure 3. Re+nmt sequence fm Starkq and ROJJ’J Maximum of Three Numbers problem. 

This sequence of problem-reduction op- 
erations followed by the solution of sub- 
problems requiring global information is 
certainly the norm among the 26 exam- 
ples. Designers can use this approach 
when the problem is well-defined and they 
know the algorithmic structure of its solu- 
tion for the most part. 

initial unsophisticated prototype is pro- 
duced, and then incrementally trans- 
formed into a more complex version that 
satisfies given constraints. Some of these 
transformations may not preserve correct- 
ness and may require backtracking 

quence of each is given in Table 3 along 
withtheEightQueensproblem. 

Some refinement sequences in other 
examples differed markedly from this 
approach primarily because the nature 
of the problems to be solved was differ- 
ent. Two possible alternative problem 
classes are 

2. Problems whose solution (algo- 
rithm/heuristic) cannot be completely 
known in advance and must be modified 
during design. The solution may be a collec- 
tion of special cases or rules, in which not all 
the relevant rules are known ahead of time. 

Maximum of Three Numbers. Figure 3 
shows this example, which reflects the 
transformational approach. The task is tc 
compute the maximum of three numbers 
The initial approach is a simple extension 
of a solution that works for two numbers. 
This is implemented as two prob- 
lem-reduction steps and a third relaxed- 
reduction step. 

1. Problems that can be solved in a 
transformational manner. That is, an 

The problem- so vmg activities used 1 
to solve these alternative problem 
classes may also differ significantly from 
the norm. An encoded refinement se- 
/ 

In step 3, the conditional control is re- 
worked. This function did not produce 
the desired I/O behavior and was modified 
by the transformation in step 4. 

I I 
- 
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Refinement 5c: Replace prescribed code ftom within procedure 
in reference with the following prescribed code and stubs: 

DISTANCE := (DISTANCEJWvl + (YY - 1900) 
+(YY-19Ol)DIV4)MOD7; 

if(YYMOD4=O)ANDYY/=1900 
AND LATE-MONTH then 
DISTANCE := DISTANCE + 1; 

end if; 

Refinement 6: Stub: DISTANCE_MM 
function DISTANCE_MM return INTEGER is 

begin 
DISTANCE := 0; 
m-MONTH; 
while NOT-OVER loop 

DISTANCE-MM := DISTKNCEJvlM + 
MONTH~INCREMENT; 

NEXT-MONTH; 
end loop; 

end DISTANcE_MM; 
(Also change DISTANCE-MM to prescribed function call.) 

Refinement 7a: Stub: READjMM; 
MM : INTEGER; 

procedure W-MM is 
begin 

PUT (” ENTER THE MONTH : ‘9; 
GET (MM); 
while (MM > 12 ORMM 1) loop 

PUT (“INCORRECT! 
ENTER DIFFERENT MONTH “); 

GET 0, 
end loop; 

end READ-M 
$Also change READ-MM to prescribed procedure call.) 

Refinement 7b: Stub: MONTH-LENGTH 
fimction MOhJTH-LENGTH return INTEGER is 

kin 
case MM is 
when 1 3 5 7 8 lo,12 7 7 3 f 1 

=> Mom-LENGTH := 3 1; 
when4,6,9,11 

=> MONTH-LENGTH := 30; 
when 2 => MONTH-LENGTH := 29; 
end case; 

end MONTH-LENGTH; 
‘Also change MONTH-LENGTH to prescribed fimction call.) 

Vehement 7c Stub: FEBRUARY 
imction FEBRUARY return BOOLEAN is 

begin 

ifMM=2 then 
FEBRUARY := FALSE; 

eke 
FEBRUARY := TRUE; 

end if; 
end FEBRUARY; 

(Also change FEBRUARY to prescribed function call.) 

Refinement 7d: Stub: LATE-MONTH 
function LATE-MONTH return BOOLEAN is 

begin 
ifMM>2tht?tl 

LATE~MONTH :- TRUE; 
else 

LATE_MoNTH := FALSE; 
end if; 

end LKIX~MO~ 
(Also change I.&II-MONTH to prescribed function call.) 

Refinement 7e: Stub: W-MONTH 
procedure INIT-MONTH is 

hgin 
MONTH :t 0; 

end INIT-MONTH; 
(Also change INIT~MONI’H; to prescribed procedure call.) 

Refinement 7f: Stub: NOT-OVER 
function NOT-OVER return BOOLEAN is 

begin 
NOT~OVER := MONTH MM; 

end N&-OVER; 
(Also change NUT-OVER to prescribed function call.) 

Refinement 7g: Stub: MONTHJNCmNT 
function MONTHJNCRJZMFNT return BOOLEAN is 

~~ 
case MONTH is 
when135781OJ2 3 f f 9 7 

=> MONTHJNCREMENT := 3 1; 
when 4,6,9,11 

=> MONTHJNCREMENT := 30; 
when 2 => MONTH~INCREMENT := 28; 
end ca.q 

end MONTH JNCREMENX 
(Also change M&THJNC&NT to prescribed function 
call.) 

Refinement 7h: Stub: NEXT-MOiVTH 
proccdc NEXT-MONTH is 

MONTH:=MONTH+ 1; 
end NEXT-MONIX; 

Figure 4. Rejzement sequence foT Rajlicb ‘s Read and Cahkzte Day problpm. 
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Still the control complexity was too 
high, so the designer backtracks by re- 
moving the detailed code and replacing it 
with a simple function call in step 5. Step 6 
corresponds to reducing the two calls into 
one and is an example of relaxed reduc- 
tion. The linal problem-reduction step 
completes the process. 

In this example, the problem-solving 
activities combine to produce a simple 
rapid-prototyping solution within the 
context of stepwise refinement. 

Read ad Cakulate Day. Figure 4 shows 
this program, which reads any date in the 
twentieth century and prints out the day of 
the week. The solution is effectively a col- 
lection of transformation rules. Initially, 
some of the more tiequently applied rules 
are known but new situations develop as 
the design proceeds. These situations 
often relate to exception handling. As a 
result, backtracking takes place frequently 
as new situations are discovered and added 
to the design. This situation is particularly 
relevant with somewhat fuzzy problems 
like interface design. 

In problems such as this one, the goal is 
to satisfy the user, so the initial functional 
specitication doesn’t have enough informa- 
tion for the designer to structure a solution 
directly. Thus, the designer uses a combina- 
tion of problem-solving strategies that in- 
crementally augment the current solution. 

T o develop a useful, intelligent prognun- 
ming environment, designers must un- 

derstand the nature of the problem-solving 
activities to be performed in that environ- 
ment, Our experiments with a variety of 
problems show that designers can perform 
several problem-solving activities within the 
stepwise-refinement fiznework. The pres- 
ence of certain combinations of activities 
suggests that programmers are implicitly 
emulating certain paradigms that have 
proved useful in solving complex problems. 
Also, as the Wrth example suggests, a par- 
ticular paradigm and its associated activities 
seem to be applied often throughout the re- 
finement sequence for a given problem. It is 
also clear that the nature of the problem to 
be solved influences the type of activities 
performed to achieve a solution, as well as 
the problem-solving paradigm that they im- 
plicitly support. 

Whether the nature and the frequency 
of these problem-solving activities for 
textbook examples carries directly over to 
real-world activities remains to be seen. 
For example, backtracking and pruning 
will occur more often when a designer is 
faced with more sophisticated problems. 

We hope to see problem-solving para- 
digms and their supporting activities more 
explicitly integrated into stepwise refine- 
ment. We also expect to see new problem- 
solving paradigms emerge that are unique 
to software development. + 
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