Software
Visualization in
the Large

Thomas Ball tis well known that large computer programs are complex and diffi-

Stephen G. Eick I cult to maintain. Production-sized systems, particularly legacy soft-

Bell Laboratories ware, can contain millions of lines of code. Even a seemingly simple,
small-team project, such as a spreadsheet, is quite complicated.! Under-
standing, changing, and repairing code in large systems is especially time-
consuming and costly.

Knowledge of code decays as the software ages and the original pro-
grammersand design team move on to new assignments: The design doc-
uments are also usually out of date, leaving the code as the only guide to
system behavior. It is tedious to reconstruct complex system behavior by
analyzing code.

Perhaps the most difficult software engineering projects involve “pro-
gramming in the large.” These large-team projects, often in maintenance
mode, require enhancements involving subtle changes to complex legacy
code written over many years. Under these circumstances, programmer
productivity is low, changes are more likely to introduce errors, and soft-
ware projects are often late.

Software visualization can help software engineers cope with this com-
plexity while increasing programmer productivity. Software is intangi-
ble, having no physical shape or size. After it is written, code “disappears”
into files kept on disks. Software visualization tools use graphical tech-
niques to make software visible by displaying programs, program arti-
facts, and program behavior. The essential idea is that visual
representations can help make understanding software easier. Pictures
of the software can help slow knowledge decay by helping project mem-
bers remember—and new members discover—how the code works.

Three basic properties of software can be visualized:

* Software structure. Directed graphs, the foundation of many CASE
and program analysis tools, are perhaps the most common method
for showing the relationships among software entities. For example;

_ anode can represent a procedure, and an edge can represent a call-

ing relationship between two procedures.?

Runtime behavior. Algorithm animation uses graphical representa-
tions of data structures and motion to illustrate the higher level
software hides system behavior of algorithms.? Lower level views based on program pro-
files or traces can reveal bugs and performance anomalies.*

The code itself. Pretty printers, which usually indent the code and use
special fonts or colors to distinguish keywords and so forth, are a

The invisible nature of

complexity, particularly for

large team-oriented projects. basic, widely used form of visualization.’ !
1
|
The authors have evolved Previous approaches to software visualization, although useful for small
projects, donot scale to the production-sized systems currently being mab—
four innovative visual ufactured. The graphical techniques found in programming, program-
visualization, and algorithm-animation environments target small systerris.
representations of code to Algorithm visualizations are usually hand-crafted and require the designer
to understand the code before visualizing it, making this technique infea-
help solve this problem. sible for large systems or tasks involving programmer discovery. The

0018-9162/96/$5.00 © 1996 |EEE April 1996 m

T - N
Figure 1. Line representation. Three scaled views of color-coded

program text. The left pane shows readable text. The middle pane
provides a longer view. The right pane reduces each line of text to
| a single row of pixels with row length and indentation tracking
the original code. The entire file is visible in the line represen-
tation, spanning ene-and-one-half columns. The color-coded lines
| show code age; green represents the old code and red the new,
with yellow code spanning the age difference.

03 3 Gy KN s (3 N B4

{a

—
——
Lo
——
——
.
i
——
)

Y B
Y B RN
- e
S B A

o NN+
o B w
s X B3
~ N>

Figure 2. Line and pixel representation comparisons. The left.
columns in (a) and (b) show the line representation; the right
columns depict two possible pixel representations in which each
‘line of code corresponds to one (or a small number of) pixel(s)
ordered left to right in rows within a column. In the upper pixel
representation, the pixels within a graphical line respect the
order of their corresponding lines in the text. In the lower one,
the pixels within a line are ordered by their color in the rainbow
spectrum, which provides a mapping from statistics (such as code
age) to colors. k

Computer

general strategy for large projects is to
decompose the project into modules, usually
hierarchically, and display each module in-
dividually. In practice, this decomposition
is often the most difficult aspect of the visu-
alization. When software is decomposed,
the “big picture”is lost, often defeating the
purpose of the visualization.

To address these shortcomings, we
developed scalable techniques for visual-
izing program text, text properties,-and
relationships involving program text. We
focus on text because it is the dominant
medium for implementing large software
systems. Although visual languages have
made great strides, particularly in
restricted domains,® they are not often
used for general-purpose, large-scale pro-
gram development. Virtually all coding of
large systems takes place in text, which will
likely continue in the foreseeable future. -
Programs are embodied in text, and pro-
grams are modified by changing it. -

The novel aspects of our research involve
how we represent the code and apply these
representations to visualizing production
software. Our research was motivated by
the examination of several multimillion-
line legacy software systems in Bell Labor-
atories and the issues associated with
maintaining and enhancing them. In one
example, the code evolved over decades
and was written and maintained by thou-
sands of programmers.

‘We have applied our tools to visualize

code version history,

differences between releases,

static properties of code,

code profiling and execution hot spots,
and ‘

* dynamic program slices.

.

The remainder of this article illustrates
and details our techniques.

VISUAL REPRESENMTATIONS
AND INTERACTIONS :
We first describe four visual code repre-
sentations and then discuss the interaction
techniques for manipulating them.

Line representation

Figure 1illustrates the line representation
approach by providing three color-coded
views of text at varying scales. The left pane
shows a screen of code from the middle of a
file using a text representation in réadable
form. The middle pane shows the same text,
this time on a smaller scale, but with the
same coloring. Although the smaller code is
barely recognizable, the same screen real

Figure 3. Code age. Fifty-two files comprising 15,255 lines of code are represented. The newest lines are
shown in red and the oldest in blue, with a rainbow color scale in between. The browser (smaller window)
incorporates text, line, and pixel representations.

estate can show more text. Finally, the right pane shows
each line reduced to a single row of pixels, preserving the
indentation, length, and coloring of the original code. This
reduced line representation makes the entire file visible,
spanning one-and-one-half columns. The red box in each
pane shows the same text at three different scales.

Aline’s color may also code a categorical or continuous
statistic such as each line’s age or the number of times it
executed in a regression test (see later examples). Each
representation in Figure 1 shows code-age distribution in
the file through color-coding, an effective technique for
layering information. Users can manipulate the color map-
ping through a highly interactive user interface.

Loops and conditional control structures are usuaily
indented in standard programming practice. By preserv-
ing indentation, the line representation makes these struc-
tures visible while simultaneously displaying a large
volume of code. It is also sometimes useful to turn off the
indentation and fill each line to both margins to empha-
size the row colors (as shown later in Figure 10).

Pixel representation
The pixel representation, illustrated in Figure 2, shows
each line of code by using a small number of color-coded

pixels, thereby achieving a higher information density
than the line representation. The pixels are ordered left
to right in rows within the columns, each column corre-
sponding to a single file. This representation can show
over a million lines of code on a standard high-resolution
monitor (a 1,280 x 1,024 monitor contains 1,310,720
pixels).

A pleasing aspect of this representation, as shown in
Figure 3, is that the rectangle sizes corresponding to files
are tied to file sizes, making it easy to find and compare
the sizes of large and small files. It is also easier to relate
the vertical pixel positions in a rectangle to the actual line
numbers in the pixel representation than it is to relate the
row positions in the line representation, especially when
the file spans multiple columns.

The pixel representation can function as a scrollbar, as
shown in the browser window in the lower left of Figure 3.
This browser contains three views of the text:

* the pixel representation on the left,

« the line representation in the middle showing the
area of code selected in the pixel representation, and

* the text area on the right showing the text selected in
the line representation.

April 1996

(a)

Figure 4. Summary representation. Each file is represented as a colored rectangle with a small plot inside.
For each file, (a) shows the code age (blue represents the old code and red the new), while (b) shows the
amount of bug-fixing code relative to new feature development.

One surprising aspect of the pixel representation is the
visual effectiveness of color-coding pixels. Even though
individual pixels are small, their color is perceivable and
often follows a regular pattern. Sorting the pixels by color

within each row helps to emphasize the dominant color
m an area of code.

File summary representation

In this representation, which presents file-level statis-
tics, each file is represented by a rectangle. There are four
possible rectangle heights, corresponding to the four quar-
tiles of file size (as measured by the number of lines).
Because file sizes may vary from a few to tens of thousands
of lines, grouping the sizes by quartiles ensures that all
files are always visible.

Figure 4 shows summary representations of the same
files in two different panes, corresponding to two different
statistics. In this case, only three of the four file size quar-
tiles are represented in the data set. Figure 4a shows the
code age as a miniature time series within each rectangle,
while Figure 4b shows the amount of code added for bug
fixing and new functionality. Other possibilities for color-
coding include Halstead’s program volume measure or
McCabe’s cyclomatic complexity software metrics.

Hierarchical representations
Source code is often stored hierarchically, organized
into directories corresponding to subsystems, subdirecto-
ries corresponding to modules, and then files within the
subdirectories. The source code tree may contain many
' layers, depending on the system’s complexity and size.
Furthermore, many other hierarchies are naturally in-

Computer

(b)

duced by various programming language constructs, such
as “namespace” encapsulation, single-inheritance class
hierarchies, and syntactic block structure. All this suggests
using techniques for visualizing hierarchical data:

A method developed by Johnson and Shneiderman’
shows hierarchies by using a generalization of the piechart
called a treemap. Figure 5 illustrates an extension of their
technique modified to show source code organized into’
three subsystems, each containing directories, which in
turn contain files. Figure 5a represents the entire software
system, and X, Y, and Z represent its three subsystems.
Each subsystem’s area.is based on an additive statistic,
such as the number of noncommentary source lines
(NCSL). The subsystems are each partitioned vertically to
show their internal directories. In Figure 5a, the rectan-
gles labeled 1, 2, 3, 4, and 5 represent the directories in
subsystem X. Because each vertical rectangle’s area is pro-
portional to the directory’s NCSL, the sum of the areas over
the directories equals the subsystem’s area. This technique
allows a straightforward visual comparison of directories
within a subsystem, since'the area of each visual compo-
nent is always proportional to the statistic for the corre-
sponding software component. k

Figure 5b shows how a bar chart encoding an additional
statistic (such as the amount of new code development)
can be easily accommodated in the hierarchical repre-
sentation. Figure 5¢ shows a'zoomed v1ew on'subsystem
Y that reveals file-level statistics.

Discussion :
The visual encodmgs show code at five levels of detaﬂ
text, line, pixel, summary, and hierarchical representations.

In the first three views, a line of text is represented by itself,
a row, and a pixel, respectively. In the summary and hier-
archical representations, aggregation takes place when
there are more lines of text than pixels. This aggregation
occurs within files for the summary representation, and
across files for the hierarchical representation.

These representations pack detailed information into a
small fraction of the screen. The line and pixel represen-
tations show the respective file sizes and positional infor-
mation about the statistics. Showing the whole system
provides the “big-picture” perspective that is often lost.
This global overview shows code in context, coordinates
other views showing more detail (as in the browser win-
dow in Figure 3), and serves as a navigation framework.

The line, pixel, and hierarchical representations can
become “busy” when applied to large systems, making it
hard to see specific patterns. To address this problem, our
code representations and color scales are interactive
(through means of direct-manipulation interfaces), let-
ting users modify the representations to answer particular
questions and gain insight. Two popular interactive meth-
ods we use are filtering and focusing.

Filtering by elision (that is, turning off selected color
ranges) effectively reduces display clutter. Users may deac-
tivate (and reactivate) individual colors, regions, or remap
the colors to emphasize differences. For example, to high-
light code at different time periods, the user can “brush”
the mouse over the color scale in the system shown in
Figure 3.

Focusing often involves conditioning, an intersection
operation in which the user selects a range or subset of a
variable and changes the color scale to another variable.
The visualization system filters the display to show only
those lines in the intersection. For example, in the system
shown in Figure 3, a user can show the bug-fixing code
written by a particular programmer by selecting the per-
son’s name in a menu and switching the color scale to the
bug-fixing variable.

SOFTWARE ENGINEERING

Here we illustrate our software visualization techniques
through five case studies. The first three focus on software
history and static software characteristics; the last two dis-
cuss execution behavior.

Code version history

Version-control systems are widely used for managing
code and maintaining a complete history of code changes.
These databases contain line-level information, including

* when each line was last modified,

» which programmer wrote particular sections of the
code, and

* where bugs and bug fixes are located.

Figures 3, 4, and 6 show views of code age, age and bug
fix, and fix-on-fix information, respectively. This infor-
mation was extracted automatically from a version-con-
trol system.

Software tools for exploring version data can increase
productivity in three ways. First, new programmers can
use the tool for code discovery. For example, color coding

(<)

Figure 5. Hierarchical representation. Three views
show a statistic for three subsystems (a), a fill statis-
tic for directories (b), and a zoomed view on subsys-
tem Y showing file-level statistics (c).

by programmer name identifies who last modified the
code and might be a source of information about how it
works. Second, visualizations can highlight regions in the
software that exhibit code decay. Rainbow files that have
been changed by many programmers frequently contain
errors, suggesting that the code would benefit from re-
engineering. The third file in Figure 4, a large, frequently
changed file containing many bug fixes, is an example.
Finally, in alarge project being concurrently developed,
it becomes difficult for subsystem owners to track changes.
By omitting all but the most recently modified lines, a sub-
system owner can identify the current development activ-
ity and inspect this code to ensure that it meets coding
standards. Figure 3 shows clear patterns of recent modifi-
cations. File14.c and file17.c, which are predominantly red
and yellow, have been recently changed; several other blue
and green files on the far right represent more stable code.
Figure 6 on the next page shows fix-on-fix rates using
the line representation in a “split-column” mode. Each col-
umn is split lengthwise to show two statistic values per
line. In this example, only lines representing bug fixes are
colored. A fix-on-fix occurs when an error is repaired in
the code and subsequently fixed again because the origi-
nal repair was faulty as well. Fixes themselves indicate
rework that directly translates into lost productivity; fixes-
on-fixes indicate greater amounts of rework. In Figure 6,
each column is split in two, with the left side showing all
lines added to fix bugs and the right side showing any sub-

sequent fixes. (No line defines the split; some files do not:

have bug-fixing code and are subsequently blank.) Only
the lines fixing bugs are colored. Half-lines mean that the
original bug fix worked (so far), and whole lines indicate
afix-on-fix. The color of the left half-line encodes the age

April 1996

of the first bug fix, and the color of the right half-line
encodes the age of the latest bug fix (if there has been one).
If the hues of the respective half-lines are different, the
original fix and subsequent fix-on-fix occurred far apart
in time, requiring duplicate programmer discovery. '

Differences between releases

In the Unix environment, diff is the standard tool for
comparing two files. There are versions of diff for per-
forming three-way comparisons of files (diff3), side-by-
side comparisons (sdiff), and graphical interfaces for
showing diff output.

Although there has been extensive work on differenc-
ing algorithms, scant attention has been paid to under-
standing diff output. It is difficult, for example, to
understand more than a few lines of diff output, and
impossible to understand the output when diff compares
entire directory structures (which can be done with the
-r option). The differences between two versions fre-
quently span many lines in many files. Merely identifying
and examining the differences is time-consuming.

Figure 7 shows a graphical tool that displays differences
between entire directories and between file pairs simul-

-taneously. Four colors code the text: Deleted lines are red;

added lines are green; changed lines are yellow, and
unchanged text is gray. Figure 7a shows a browser dis-
playing side-by-side differences between two files, so that

common text is vertically synchronized. A line represen-
tation in the center of the browser globally summarizes
the differences. The yellow rectangle acts as a scrollbar.

Figure 7b contains two hierarchical views and a line
representation that show differences by directory (top),
all files within one level of the directory (middle), and
side-by-side comparisons of each file (bottom right). In
the top and middle views, a stacked bar chart shows the
percentage of each type of text in a directory orfile. A
selector on the left lets users focus solely on deleted,
added, or changed code. The views are linked so that
clicking on any file in the hierarchical view points the
browser to that file.

Code characteristics and software complexity
Here we show two static properties of code: preproces-
sor directives and nesting complexity.

PREPROCESSOR DIRECTIVES. Using preprocessor direc-
tives such as #i fdef and ffendif, which control condi-
tional compilation, is a common approach to maintaining
platform-specific code. These directives break the code

into fragments, making it hard to understand. Figure 8.

shows 39 of the 119 files in Bell Laboratories’ Vz visual-
ization library that contain platform-specific preproces-
sor directives. Code specific to MS-Windows is red, X-Motif
green, common code blue, and all others gray. This visu-

Figure 6. Fix-on-fix rates. Each column is split in two with half-lines on the left indicating initial bug fixes and
half-lines on the right showing subsequent fixes to the original changes. Whole lines indicate a fix-on-fix.

Computer

alization shows that the amount of code required for each
platform is roughly the same. The one exception is a large
chunk of MS-Windows-specific code that defines an array
mapping the X-Motif color names to red-green-blue (RGB)
color values. .

CONDITIONAL NESTING COMPLEXITY. The conditional

nesting level of a statement is the number of loops and
conditionals surrounding it. In general, the greater the
nesting level of a statement, the more difficult it is to deter-

(a)

mine the conditions under which it will execute. Figure 9
on the next page shows 48,913 lines of C code spread
across 68 files, using the pixel representation, with color
indicating the nesting level. The lines four or more levels
deep have been highlighted (see the numbered color bar
on screen left). As the figure shows, this code has a high
degree of nesting; more than one-fifth of it is nested four
levels or deeper. One file contains code 13 levels deep.
Such a visualization can be used to target pieces of code
that might benefit from restructuring.

(b)

Figure 7. Two views of program differences hetween versions: between file pairs using synchronized text
areas anf:l a line representation for a global overview (a), and at the directory level with several hierarchi-
cal views (b). Added lines are green, deleted lines red, and changed lines yellow. Unchanged lines are gray.

Figure 8. Preprocessor versioning within Vz graphics library comparing X-Motif with Windows-specific
code. Windows is red; X-Motif green, and common blue. The latter represents code not contained in ifdefs
(no ifdef’ing). Other ifdef’ing, like Irix, Sun, and Borland, is gray. Only the files with Motif- or Windows-
specific code are shown (39 out of 119).

April 1996

Figure 9. Nesting level of 48,913 lines of C source code. Each line is colored to
reflect the number of surrounding loops and conditionals. Levels 0-3 have been
filtered out. Over 20 percent (10,803 lines) of code is nested within four or more

conditionals.

Code profiling and execution hot spots

Optimizing the runtime performance of software is an
important problem in systems development. To find the
code inefficiencies, programmers often use profiles to deter-
mine where the most CPU time is spent and then make
changes to reduce it. This process, called code tuning, can
result instunning increases in runtime performance. Most
compilers support line-level profiling. However, under-
standing line-execution counts and relating them to the pro-
gram’s structure is tricky, even with small programs. It is
hard to get an overview of the code that helps you under-
stand which lines are being executed, much less gain insight
into the specific pattern of code execution.

Figure 10 shows “hot spots” in a source-code brower’s
code that was run through a user test. The display employs
line representation without line indentation to make the
color patterns more visible. The color of each line encodes
the number of times the line executed. Red denotes high
execution frequency and blue denotes the opposite. Gray
lines denote the nonexecuted lines—those missed by the
test—while blank spaces indicate nonexecutable lines,
such as declarations, comments, and static arrays.

Several conclusions can be drawn from Figure 10. This
program contains a comment block at the top of each file
(the blank regions at the top of each rectangle). The right-
most file, scanner.c, is the largest, spanning five and one-
third columns. It was generated by the lex tool. The huge
block of nonexecutable code is a static table that imple-
ments lex’s finite-state machine. For this program, the
large number of dark gray lines indicates that code cover-

Computer

age was low. No code in file
help.c orinvlib.c executed.

. The “hot spots,” or the most
frequently executed lines,
are concentrated in a few
lines within three files:
scanner.c, find.c, and cross-
ref.c. These areas are can-
didates for optimization.

"The-lex parsing code in
scanner.c could be hand-
optimized: Investigation
shows that the hot lines in
find.c and crossref.c are key
loops, and comments
around these loops (not
shown) indicate that the
programimer is aware that
this code is critical.

Dynamic program
slices ;

To understand, modify,
or debug code, program-
mers must determine which
parts are relevant to the
task at hand. They fre-
quently spend time explor-

‘ing code only to find it
irrelevant to the question
that they are trying to
answer. An automated tech-

nique called dynamic program slicing can determine the
code that impacts the computation of a statement or pro-
cedure in a particular program execution, relieving the
programmer of burdensome discovery work. Although
slices are typically smaller than the original program, they
may still be quite large and complex, crossing many pro-
cedure, file, and module boundaries. Code visualization
via reduced textual representations is well suited for dis-
playing and exploring program slices.

Figure 11a shows a dynamic slice from a C-program file.

It contains many procedures, each delineated by 4 rec-
tangle. Within each rectangle appears a line representa-’
tion of the procedure’s code. Executed code is light gray
and unexecuted code dark gray; code in the slice appears
in color. The point of the slice at the mouse is red. In this
example, yellow statements directly affect the slice point,
while green statements directly affect the yellow (butnot
the red), and so on. Figure 11b displays a forward slice.
The four red statements shown in the browser window
comprise the slice point. These statements correspond to

- the red lines in the red rectanglé in the overview. The

overview shows that three other procedures contain code
immediately affected by the slice point. This slice contains
most of the routespl.c file’s procedures, but only half of
the splines.c file’s procedures.)

The slicing interface lets users quickly examine many
slices. In brushing mode, a slice is computed and dis-
played for each statement or procedure thatusers touch
with the mouse. This lets users find patterns. Once a slice

“is “fixed,” users can eliminate and sort procedures and

files based on whether they are in the slice.
The slice visualization distinguishes
between “open” procedures that show the
line representation and “closed” proce-
dures that summarize a statistic (in this
case, the percentage of statements in the
procedure that are in the slice). Users can
interactively elide parts of the display to
reduce its complexity.

LIBRARY AND
IMPLEMENTATION

The figures in this article were produced
by a family of visualization systems, each
targeted to a particular application.
Underlying all systems is a common soft-
ware substrate embodied in an object-
oriented, cross-platform (MS-Windows,
OpenGL, and X-Motif) C+ + library. The
Vz library, shown in Figure 8, provides a
foundation for building highly interactive
graphic displays.

With our visualization framework, we
can produce applications easily; quickiter- Figure 10. Program-execution hot spots. Red and yellow indicate
ation supports the exploration of new “hot spots” in program execution based on line-level profile data
ideas. Each view takes between 500 and collected from a test run. Line indentation has been turned off to
1,000 lines of code. make color patterns more visible.

Bt Urdgets

Edit Vidgets Slise crion: o N Level: [Context

hwefits

Comptitineg sl

(@

(b)
Figure 11. Two views of dynamic program slices from the SeeSlice system: a slice in a C-program file (a)
and a forward slice spanning two files (the slice point is red) (b). Some procedures have been “closed” to
hide their line representations.

April 1996

The Vz C++ library

* hides platform and operating system differences;

* handles display rendering in a portable manner;

e provides a standard “look-and-feel”;

o facilitates view linking; and

« includes many utility classes for data management,
statistics, and mathematics.

As the foundation for data visualization, the library pro-
vides the core and common functions in our system and
tools.

DISCUSSION AND RELATED WORK

Now we briefly review some related work and compare
and contrast our different techniques for visualizing soft-
ware. For a good overview and taxonomy of software visu-
alization techniques, see Price, Small, and Baecker.?

Algorithm animation

Many people associate software visualization with algo-
rithm animation, that is, using pictures and computer
graphics to inderstand program execution. Brown’s dis-
sertation® established this technique as fundamental to
illustrating complicated algorithms.

Our work takes a complementary approach to algorithm
animation, focusing on static or dynamic program prop-
erties associated with lines of code rather than illustrat-
ing how algorithms operate.

Text views .

Fick, Steffen, and Sumner® originally introduced the
line representation (as in Figure 1) for showing software
change history. This line view looks somewhat like that of
Baecker and Marcus,® who focus on techniques for type-
setting C code. The biggest difference is that Baecker and
Marcus’s views are exact, scaled reductions of pretty-
printed code, whereas we focus on a variety of scalable
representations.

One of our visualization goals is to use every available
monitor pixel to show information. For line representa-
tions, the practical upper limit with currently available
monitor technology is about 100,000 lines on a single dis-
play. This limit and our desire to visualize multimillion
line systems motivated the pixel, summary, and hierar-
chical representations.

Graph drawing -
Acyclic graphs are a natural representation for many

software artifacts, particularly those involving abstrac- -

tion. These graphs, as previously discussed, usually consist

of node and link diagrams carefully arranged by sophisti- -

cated layout algorithms to show the underlying structure

of complicated systems. The'graphs may describe rela- -

tionships such as procedure or function calls and class
inheritance.? The function call graphs can be animated as
avisual representation of how a program executes and can
be color-coded to show “hot spots.”

Perhaps the most difficult aspect of showing software
through graphs involves the graph layout problem. The
nodes and edges of the graph must be positioned in a
pleasing and informative layout that clearly shows the

Computer

_underlying graph’s structure. Many techniques have been

proposed for laying out arbitrary graphs.”

Unfortunately, in practice, drawing informative graphs
is exceedingly difficult, particularly forlarge systems. The
function call graph for even atiny single-person project
can contain thousand of links and hundreds of nodes. The
resulting graphs, even when drawn carefully, are often too
busy and cluttered to interpret.

WE HAVE DEVELOPED A SUITE of scalable representatfbns for
code and applied them to several real software-engineer-
ing problems by using software visualization tools. Our
most successful visualization systems were designed to
solve specific problems. The tasks motivating.our research
have led to many special-purpose views that we general-
izexl and incorporated into the visualization tools.

Our experience has been that the most interesting and
engaging views are highly detailed, providing both a
global overview and fine-grained detail. We are attempt-
ing to use all available screen real estate by having évery
pixel convey useful information. An interactive user inter-
face lets users quickly filter and focus the display on the .
areas of interest in the code, with “drill-down” views
tightly linked to the global overview.

The systems we presented are-used daily within Bell
Laboratories’ development community, helping software
developers work on the 5ESS product, a real-time switch-
ing system containing millions of lines of code developed
over the past two decades by thousands of software
engineers. The initial developer feedback has been very
positive. |

ACKNOWLEDGMENTS
‘We are grateful for the contributions of David Atkms,
Marla Baker, and Graham Wills.

References - .

1. J.O. Coplien and J. Ericksor, “Examining the Software Devel-
opment Process,” Dr. Dobb’s J., Vol. 19, No. 11 Oct. 1994, pp.
88-95.

2. Practical Reusable Unix Software, B. Knshnamurthy, ed:, John
Wiley & Sons, New York, 1995. ’

3. MLH. Brown, “Algorithm Animation,” in AGM Distinguished

. Dissertations, MIT Press; New York, 1988.)

4. T. Chilimbi et al., “StormWatch: A Tool forVisuafiiing Mem-
ory System Protocols,” SuperComputmg 95. IEEE.CS Press
Los Alamitos, Calif., CD-ROM No. 7435, 1995.

5. R.M. Baecker and A. Marcus, Human Factors.and Typography
for More Readable Programs, Addison-Wesley, Reading, Mass.,
1990, p. 235.

6. S.-K.Chang, Principles oszsualProgrammmg, Prennce Hall,
Englewood Cliffs, N.J., 1990.

7. B. Johnson and B. Shneiderman, “Tree-Maps: A Space-Fill-
ing Approach to the Visualization of Hierarchical Informa-
tion Structures, Proc. IEEE Visualization 91 Conf., IEEE CS
Press, Los Alamitos, Calif., 1991, pp. 284-291.

8. T.Ball and S.G. Eick, “Visualizing Program Slices,” in JEEE/CS
Symp. Visual Languages, IEEE CS Press, Los Alamitos, Calif,,
1994, pp. 288-295.

9. B.A.Price, 1.S. Small, and R.M. Baecker, “A Taxonomy of Soft-
ware Visualization,” J. Visual Languages and Computing, No.
3,Vol. 4, 1993.

10. S.G.Eick, J.L. Steffen, and E.E. Sumner Jr., “Seesoft—A Tool
for Visualizing Line-Oriented Software Statistics,” IEEE Trans.
Software Eng., Vol. 18, No. 11, Nov. 1992, pp. 957-968.

11. E.R.Gansner etal.,“A Technique for Drawing Directed Graphs,”
IEEE Trans. Software Eng., Vol. 19, No. 3, Mat. 1993, pp. 214-230.

Thomas Ball is a member of the technical staff in the Sys-
tems and Software Research Center of Bell Laboratories. His
research interests include programming languages, software
tools, the dynamic and static analysis of programs, tech-
niques for efficiently monitoring program behavior, and soft-
ware visualization.

Bali received a BA degree in computer science from Cor-
nell University in 1987 and MS and PhD degrees in the same
field from the University of Wisconsin at Madison in 1989
and 1993, respectively. He is a member of ACM.

Stephen G. Eick is the technical manager of the Data
Visualization Research Group at Bell Laboratories. His
research focuses on extracting the information latent in large
databases using novel interactive visualizations. Eick’s
research group has developed tools for visualizing geographic
and abstract networks, software source code, text corpora,
log files, program slices, and relational databases.

Eick received a BA degree from Kalamazoo College in 1980,
an MA degree from the University of Wisconsin at Madison
in 1981, and a PhD degree in statistics from the University of

Minnesota in 1985. He holds several software patents. Eick
is the program cochair of the Information Visualization 96
Symposium, statistical graphics program chair for the 1996
American Statistical Association Conference, and on the pro-
gram committees for Visualization 96, Visual Languages 96,
and the Fourth IEEE Symposium on Program Comprehen-
sion. He is a member of IEEE and ACM.

Readers can contact the authors at Bell Laboratories, Rm.
1G-359, 1000 East Warrenville Rd., Naperville, IL 60566;
e-mail {tjball,eick} @bell-labs.com.

 Marian
phone: (714) 821-83
©oY - e-mail: mutib

