
The Concept Assignment Problem in Program Understanding

Ted J. Biggerstaff

Microsoft Research

and
Bharat G. Mitbander and Dallas Webster

Microelectronics and Computer Technology Corporation (MCC)

ABSTRACT

A person understands a program because they are
able to relate the structures of the program and its
environment to their human oriented conceptual
knowledge about the world. The problem of
discovering individud human oriented concepts and
assigning them to their implementation oriented
counterparts for a given a program is the concept
assignment problem. We will argue that the solution
to this problem requires methods that have a strong
plausible reasoning component. We will illustrate
these ideas through example scenarios using an
existing design recovery system called DESIRE.
Finally, we will evaluate DESIRE based on its usage
on real-world problems over the years.

Keywords -- reverse engineering, slicing,

knowledge base, domain, connectionist, concept
recognition, plausible reasoning.

1. Human understanding and the concept

assignment problem

A person understands a program when they are able

to explain the program, its structure, its behavior, its

effects on its operational context, and its relationships

to its application domain in terms that are

qualitatively different from the tokens used to

construct the source code of the program. That is, it is

qualitatively different for me to claim that a program

“reserves an airline seat” than for me to assert that “if

(seat = request(flight)) && available(seat) then

reserve(seat,customer).” Apart from the obvious
differences of level of detail and formality, the fiist
case expresses computational intent in human oriented
terms, terms that live in a rich context of knowledge
about the world. In the second case, the vocabulary
and grammar are narrowly restricted, formally
controlled and do not inherently reference the human
oriented context of knowledge about the world. The

fwst expression of computational intent is designed for

succinct, intentionally ambiguous (i.e., informal),

human level communication whereas the second is

designed for automated treatment, e.g., program

verification or compilation. Both forms of the

information must be present for a human to

manipulate programs in any but the most trivial way.

That is, if one wants to create, maintain, explain, re-

engineer, reuse or document a program, one must

possess both forms of computational intent. What is

more, one must understand the association between

the formal and the informal expressions of

computational intent.

If a person starts to build an understanding of a

heretofore unknown program or portion of a program,

he or she must create or reconstruct the informal,

human oriented expression of computational intent

through a process of analysis, experimentation,

guessing and crossword puzzle-like assembly.

Importantly, as the informal concepts are discovered

and interrelated concept by concept, they are

simultaneously associated with or assigned to the

specific implementation structures within the program

(and its operational context) that are the concrete

instances of those concepts. The problem of
discovering these human oriented concepts and

assigning them to their implementation instances

within a program is the concept assignment problem

and this is the problem that we will address in this

paper.

2. Approaches to the concept assignment

problem

2.1. Recognizing Implied Concepts

Concept assignment is a process of recognizing

concepts within a computer program and building Up

482

0270-5257/93 $03.00 @ 1993 IEEE



an “understanding” of the program by relating the

recognized concepts to portions of the program, its

operational context and to one another. One of the

simplest operational models for the concept

recognition and understanding process is to view it as

a parsing process. In this view, any given concept
instance, such as the acquire-target concept in a fue

control program for a.tank, can be recognized from a

specific signature (i.e., some pattern of features)

within the target pro@un. The recognize program

uses a ftite set of pattern templates that recognize the

concept signatures by a parsing process, where the
simplest, most elemental concepts are recognized fwst
and then these concepts become features of larger-
grained, composite concepts. A degenerate case of
this recognition process is the familim process of
parsing programming languages for compilation.

These patterns typically rely ahnost completely on

the formal, structure-oriented patterns of features,

which is largely a result of the nature of the

technology (i.e., paining technology) that is

conveniently available to attack this problem. For

parsing technologies to be effective, they rely heavily

upon the premise that the concepts to be recognized

are completely and (mostly) unambiguously

determined by the formal, structural features of the

entity being parsed and these features are contextually

quite local (e.g., as in context free languages).

In contrast, our research makes a different

assumption about the concepts to be recognized. It

assumes that the formal, structural features play a

lesser role in the recognition of concepts that are

important for human understanding and further, that

the patterns defining these important concepts are far

more open to variation and ambiguity than can be

naturally accommodated by parsing technology. This

atters the model of concept recognition from one that

is characterized as a recursive, algorithmic,

deterministic and orderly building up of more abstract

components out of less abstract components, to one

that is characterized as a more opportunistic, non-

deterministic and chaotic piecing together of evidence

for a concept until some threshold of contldence is

reached about its identity.

2.1.1. Programming Oriented Concepts vs. Human

Oriented Concepts

The hypothesis of this paper is that a parsing-

oriented recognition model based on formal,

predominately structural patterns of programming

language features is necessary but insufficient for the

general concept assignment problem mainly because
the signatures of most human oriented concepts are
not constrained in ways that are convenient for
parsing technologies. This is not to say that parsing-
oriented recognition schemes play no role in program
understanding because they certainly do. We are
simply saying that there is more to it than that. There
is a part of the program understanding process (i.e.,
general concept assignment) that requires a different
approach.

To make the case for this assumption, we need

make the argument that a parsing model is not the

right approach for this part of the recognition problem

and to propose a substitute. We can make the case by

comparing the class of concepts that can be easily

recognized by a simple parsing model with the class

of concepts that we have referred to as human

oriented concepts. Let us call the fnxt class

programming oriented concepts and the second class

human oriented concepts. The question that we shall

examine in this section is whether these two classes

are the same class and if not, how they differ. Table 1

compares these two classes of concepts with respect to

a number of facets or dimensions and suggests that

these are indeed different classes. Let us consider the

nature of these two classes along these dimensions.

Domain Characterization: Programming oriented

concepts (e.g., numerical integration, searches, sorts,

structure transformations, etc.) are understood ahnost

completely in terms of the patterns of their algorithms

(i.e., numerical computation and data manipulation

steps). Clearly, this characteristic makes them

relatively easy to recognize by analyzing (i.e.,

parsing) these patterns.

It is much more of a leap to get from mathematical
and data manipulation primitives to concepts such as
acquire target or reserve airplane seat, since any such

recognition process must involve an arbitrary

semantic mapping from operations expressed on

numbers and data structures to computational

intentions expressed in terms of domain concepts (e.g,

a target or a seat). There is no a priori connection

between the domains of “mathematics and data

manipulation”, and any application domain such as

“airline seat management.” In short, once we get past

a small domain of numerical computation and non-

domain-specific data manipulation, there is no

algorithm (or, equivalently, no set of inference rules)
that allow us to compute this mapping with complete

contldence. In moving from recognizing programming

oriented concepts to recognizing human oriented

483



concepts, we have moved from a problem that is schedulers typically use data items from process

amenable to algorithmic reasoning to a problem that tables); previous concept assignments (e.g.,

requires plausible reasoning. in short, there is a large recognition of a process table enhances the ability to

gap between the set of programming oriented later recognize the scheduler that uses it); and the

primitives in a signature pattern and the concept additive weight of differing kinds of evidence (e.g.,

expressing the computational intent in human oriented proximity reinforces domain conventions, natural

te~s. language token clues, and so forth). When observing a
person puzzling out the understanding of a program, it

Table 1

Properties of Concept Types

Programming Concepts

Numerical computation and
data manipulation

I Feature types I Formal elements. .

Reasoning method I Deductive or algorithmic

-Language syntax and semantics
-Data flow
-Control flow
-Deducible properties

Human Concepts

Arbitrary domain concepts

Formtd and iIlfOllUd

-Natural language tokens

-Proximity and grouping

-Design conventions

-Domain conventions

-Previous solution states

-Weight of evidence

Plausible or fuzzy reasoning

Uniqueness of solution I Unique or canonical I Multiple equivalent solutions

Precision I Precise I Approximate

Kinds of Features: The difference is once again
clear if we look at the kinds of features that signat
concepts in these two distinct domain classes.
Programming oriented concepts by their definition are
signaled by the formal features of the programming
language or other features that can be deductively or
algorithmically derived from those features (e.g.,
variable liveness or data flow properties).

On the other hand, given only formal features, it is
often incredibly difficult to make the leap to domain
concepts such as reserve airplane seat without some
additionat clues that relate the numbers and data
structures to the application domain concepts. These
additional features include natural language tokens

and structare (e.g., in comments and identifier

names); the proximity and grouping of statements and

deftitions (e.g., conceptually related deftitions are

often grouped together); design conventions (e.g.,

layering or object-oriented designs, which imply

structural relationships that may or may not be

expressible in the programming language but, like

proximity, signat deeper domain relationships);
application domain design conventions (e.g., process

is clear that features from these various classes me
used in concert to make the (usually plausible)
assignment of domain meaning to the formal
structures within the program.

Reasoning Method: Different reasoning methods

underlie these two concept types. Programming

oriented concepts can be easily recognized by

deductive or algorithmic processes whereas human

oriented concepts seem to force plausible reasoning --

guessing based on natural language clues, the weight

of accumulated evidence, heuristic rules of thumb, a

priori knowledge of inter-concept constraints, and so

forth. If one observes a person who is starting to

understand a large program he has never seen, the fust

thing he does is read data names, function names and
comments. Oral protocols reveat obvious streams of

plausible reasoning using mostly the informal

information from these clues.

Uniqueness: Parsing technology is biased toward
unique or canonical solutions. If there are several
equivalent conceptual forms possible for a signature,
then the technology must provide a method for
determining equality among them and this adds a
significant level of computational complexity to the

484



recognition system making it impractical for all but

the smallest of problems. By contrast, human oriented

concepts comfortably allow multiple, roughly

equivalent representations for concepts (e.g., “seat

reservation” is conceptually equivalent to “reserve

airplane seat”). Further, the notion of two concepts

being roughly equivalent is a fuzzy notion and appears

to behave much like the human oriented concept

recognition process itself. That is, we conclude

concepts are equivalent based on the weight of

evidence rather than an axiom-driven proof of

equivalence.

In conclusion, we are led to the belief that human

oriented concepts (which typically tend toward

domain specificity) me different from the class of

programming oriented concepts and are not easily

recognized by simple, pattern driven parsing models.

Further, we believe that the recognition process

depends heavily upon a priori knowledge about the

application domain, the domain entities that are

typically important and the typical relationships

~ong them. Thus, we are driven toward a processing

model based on a fuzzy or plausible reasoning

heavily on generic information such as formal

programming language structures (e.g., data

structures, functions, calling relations, and so forth) as

well as informal information such as grouping and

association clues. The second task relies more heavily

on domain knowledge, e.g., knowledge of the problem

domain entities and typical program architectures.

The two tasks are complementary with each providing

knowledge that simplifies the other.

Now let us look at an example, as depicted in

Figure 1, and examine how we can identify important

entities in code with the help of fuzzy recognition and

plausible inference. The following set of statements is

taken from a multi-tasking window system [1] written

in C. Taken as a set, they constitute the set of data

structuresnecessary to h~dle breakpoint processing

within a built-in debugger subsystem. We will

examine what can be plausibly inferred about this set

of statements without any knowledge of the

application domain context (i.e., task 1) and then what

additional lmowledge can plausibly be inferred given

knowledge of the application domain context (i.e.,

task 2).

cBLANK LINE>
unsigned char brkpts [MAXPROCS] [MAXBRKS]; /*Bytes to be restored at bkpts*/

unsigned char *brkat [MAXPROCS] [MAXBRKS]; /*Locations of set break points*/

unsigned int nbrkpts [MAXPROCS]; /*Number of breakpoints set for a process*/

int breakpoint; /*No of task hitting breakpoint*/

unsigned int breakcs, breakip; /*Address of breakpoint”l

unsigned int breakflags; /*Flags register value at breakpoint*/

unsigned int breakss, breaksp; /*Top of stack within breaker routine.

Points to saved registers.*/

unsigned int current_ip, current_cs; /*Current instruction address*/

dMANK LINE>
Figure 1 : A Code Example That IUustrates Data Grouping

method, which is in turn supported by a priori

kaowledge of the application domain.

In the remainder of the paper, we will use an

example of such a priori knowledge to examine how

it might be used by a programmer who is trying to

understand a program. We will focus upon how tools,

both naive and intelligent, can aid in that process.

3. An Example

In trying to assign concepts to code, one has two
generat tasks: 1) to identify what few entities and

relations are really important out of the many in the

code, and 2) to assign them to the known domain

concepts and relations. The first task relies most

In task 1, we can use generic knowledge to infer

that these statements are related to each other in some

non-casual way, because 1) they are grouped together

(proximity), 2) bracketed with blank lines, 3) exhibit a

strong surface similarity among many of the formal

and informal tokens (e.g., breakpoint, brkpts, breakcs,

etc.), and 4) exhibit coupling via common tokens

among several definitions (e.g., coupling via

MAXPROCS and MAXBRKS). Based on these

features, we can tentatively assign the generic concept

data-group to them, indicating that taken as a set,
they are likely to be an instance of some (currently

unknown) application domain data concept. Further,

we expect that this application domain data-group

485



concept is a composite of some set of strongly related, its original form. At this point, the user would see

detailed data subcomponents that are signaled by exactly the same code as he originally wrote, which is

individual programming language tokens defined in what he expects,

the example. Presumably, at some time during the

recognition process, the specifics of which particular
How might a knowledgeable user relate this model

application data concept we assign will be (plausibly)
to specific instances of the concepts in a program

inferred from accumulated evidence.
under analysis? What features might he use to make

the concept assignments? For the sake of brevity, we

UserInput

Figure 2 : A Model of Breakpoint

Processing in Debuggers

In task 2 (assi@ng the data-group and its

subcomponents to domain specific concepts), we

utilize a priori domain specific knowledge such as

illustrated informally in Figure 2. This is an informal

model in which the boxes represent data stores, the

ellipses functions, the arrows data flows and the text

blocks other concepts such as debugging events. This

is a fuzzy model in that all concepts are weakly

constrained, thereby allowing the model to cover a

wide variety of specific designs. We believe that a

person with expertise in breakpoint processing must

possess a model similar to this.

This model expresses one way in which debuggers
typically handle breakpoints. That is, when the user

asks for a breakpoint to be set at a specific address,

the originat code at that address is saved in the

debugger’s data area and then, it is replaced by code

that will generate an interrupt when executed. That

interrupt is how the debugger gets control back from

the program being debugged (i.e., the target program).
Immediately after regaining control, the debugger

replaces the interrupt code with the onginat target

program code, thereby returning the target program to

will defer recognition of the functions until

later in the paper and at this point, focus on the

data store concepts (e.g., the Location of

breakpoints concept.)

The features that suggest the concept

assignments are 1) natural language token

meanings, 2) occurrence of closely associated

concepts, 3) individual relations paralleling

those in the model and 4) the overall pattern of

relationships in the model. Examples of each

such feature are seen in this example.

There are certain natural language tokens -

- words, phrases and abbreviations -- that are

features of (i.e., that signal a reference to) the

breakpoint-data concept. For example,

“breakpoint,” “brkpts, “ “brkat” and so forth

signal the likelihood (although not absolute

certainty) of a reference to the concept

breakpoint-data. Further, there are other natural

language tokens that signal possible references

to associated concepts that are likely to be

found in a breakpoint-data instance (e.g, the

concepts address, regist~rs, instruction, process, task

and so forth). Find~g evidence of these associated

concepts adds evidence to the possibility that

“breakpoint,” “brkpts, “ “brkat” and so forth are indeed

signaling a reference to the concept breakpoint-data.

Further evidence might be provided by the used_by

relations between these data items and some

previously assigned breakpoint processing function(s)

(e.g., some known breakpoint processing function
uses brkpts, breakpoint, brkat or nbrkpts). In this case,

there are some such functions that the user might

already know about, notably “bpint3,” which handles
the actual breakpoint interrupt; “set_brer&s,” which

replaces bytes of target program code with hardware

interrupt code bytes (i.e., breakpoint interrapt bytes)

and saves the original code bytes in the table “brkpts”

and their addresses in “brkat”; “restore_breaks,”
which replaces the hardware interrupt code bytes with

the code bytes that were originally in the” target

program before the breakpoints were set; and several
other functions.

486



If the user has already proposed concept

assignments to any of these functions (e.g., bpint3),

then these concept assignments add weight to the

evolving assignments associated with the data-group.

On the other hand, the concept assignment could

occur in the reverse order with breakpoint-data

concept assigned frost. In this case, association of the

breakpoint-data concept with this data-group would

serve as evidence for the concept assignments of

“bpint3”,” set_breaks” and “restore_breaks”.

4. Concept Assignment Tools and

Scenarios

4.1. Automated Assistance

Based upon the hypothesis about the underlying

nature of the concept assignment problem, we have

built a Design Recovery system called DESIRE [2,3]

that is designed to be a program understanding

assistant. DESIRE contains two distinct kinds of

facilities that aid the user in attacking the Concept

Assignment problem: 1) naive assistant facilities, and

2) intelligent assistant facilities. The naive assistant

facilities assume that the user is the intelligent agent
and the naive facilities provide simple but

computationally intensive services to support that

intelligence.

The intelligent assistant facility, which is called

DM--TAO (Domain Model -- The Adaptive

Observer), is more experimental and attempts to

provide a limited amount of intelligent assistance in

performing concept assigmnent.

In this section, we will use scenarios to examine

how assistant tools can be used to foster, simplify and

accelerate the concept assignments in the previous

example. Even though all of the tools discussed here

are experimental prototypes, they have been in use on

real, large-scale programs (of up to 220 KLOC) since

1989 by a number of different users in several

companies. DM-TAO is the one exception. It is still a

research prototype that we have not yet released for

use outside the lab.

4.2. Scenario 1: Suggestive Data Names as First

Clue

In this scenario, we will assume that a hypothetical

user is browsing the global data of some program he

has never seen and discovers the breakpoint data

group shown earlier. Let us further assume that this

user has the domain knowledge that is illustrated in

Figure 2. Under this scenario, the names brkpts, brkat

and nbrkpts along with their associated comments

should suggest candidate concept assignments. In

particular, brkpts is a candidate instance for the Code

bytes &om locations data store, brkat is a candidate

instance for the Location of breakpoints data store and

nbrkpts is a candidate instance for the # of breakpoints

data store.

The next logical step for our hypothetical user is to

explore the fimctions that use these globals to try and

identify the functional units that save/set and restore

these code bytes. Let us say our user forms a query

using DESIRE’s Prolog-based facility to look for the

functions that use these global variables. This is one

of about half a dozen ways that he could discover this

information using the various DESIRE facilities. The

results reveal two strong candkiates (set_brkpt and

restore_brkpt) for assignment to the save/set and

restore concepts. It also introduces a new function,

mdebug, which the user will want to explore a little

later. So, we assume that he puts mdebug on his

agenda of code to be browsed and analyzed, and goes

back to the save/set and restore concepts. While

set_brkpt and restore_brkpt are strong candidates for

the save/set and restore concepts, this might not be all

of the story, so the user queries the system to

determine what functions call set_brkpt and

restore_brkpt. This results in the discovery of the two

other functions, restore_breaks and set_breaks, which

sound like they operate on a set of breakpoints

whereas set_brkpt and restore_brkpt sound more like

they operate on individual breakpoints. He probably

would now look at the source code of restore_breaks,

restore_brkpt, set_breaks and set_brkpt to verify that

they do indeed perform the save/set and restore

functions described in the breakpoint model, as indeed

they do. At this point, the evidence is sufficient to

make a pretty strong assignment of the pair

restore_breaks and restore_brkpt to the restore
concept and the pair set_breaks and set_brkpt to the

save/set concept.

48’7



..........,,”,,,.,-..s.,,......——..-....“.,, -......., . . . .,” .-..-.., .,

.% “h c-n C!.11
-!., ,r_&m*e—

M) ,1,,.1.”

:r;.ww

kc
,.

4WZ==ZZ== t.mb=.,tbl \\

‘r k?
readc!w ,?,,.,.

w .$-. E
.. .:.—

:r

Figure 3 : Germ View of Call Graph

However, he is still in the dark about the

breakpoint interrupt service routine and the function

that requests the save/set function. He is likely to use

the current assignments as the starting point and try to

extend the context, expecting that he might fmd these

concepts called from within some slightly expanded

context. starting with the set_breaks and

restore_breaks functions and recursively looking up

the call paths, he discovers that both are called by the

function mdebug. Now it would seem like a good time

to get an overview of the functions in the current

context. Using a graphical browser called Germ, asks

for a call graph that includes all of these functions

starting at mdebug. This is shown in Figure 3.

This view introduces a number of new avenues

(functions) to explore. In particular, there are a

number functions that are doing some kind of parsing

(e.g., parseword) and others that appear to perform

dumping of various kinds of data (e.g. dumpbytes).

These names trigger associations with other models of
debugging functionality and our hypothetical user

would probably add these to his agenda to be explored

and analyzed later. But for the moment, he continues

to add evidence to and fill out the concept

assignments for the breakpoint model.

Our user notices mdebug and recalls that it calls

set_breaks. A simple query reveals that mdebug is the

only such routine that does. Therefore, mdebug is a

candidate for the Set breakpoints command concept. A

quick look at the code and in particular, at

the point in mdebug’s code where

set_breaks is called verifies this concept

assignment. Of course, mdebug does a

great deal more than just call set_breaks,

thereby playing the role of multiple

concepts, but at the moment our user is

focused on understanding the breakpoint

model.

Now, the user might turn his attention to

exploring the broader calling relationships

in order to understand the wider context in

which the breakpoint model occurs and

hopefully discover the last unassigned

concept, viz. the Breakpoint interrupt

service routine. Where is it? Why has it

not shown up? This is not surprising

because interrupt service routines me not

invoked explicitly by the user code so, we

would not expect it to show up in a call

graph view. The address of an interrupt

service routine is usually stored in a table

at a location known by the interrupt hardware and it is

invoked by the bardware when an interrupt event with

its number occurs. Nevertheless, such interrupt service

routines do communicate with the rest of their

program through global data. Therefore, our

hypothetical user could use the set of global data

identified so far to form a query that looks for

functions that are not included in mdebug’s call tree

but do use some of the breakpoint global data. And

this strategy will payoff for the user. He discovers a C

function called bpint3 and by examining the code will

verify that bpint3 is indeed the Breakpoint interrupt

service routine concept sought.

The strategy that we have just used and the

DESIRE facilities that we have illustrated are typical

of those actually used by DESIRE users. Of course,

there are many alternative routes and sub-routes we

could have taken but we cannot explore all of them

here. Nevertheless, we will use a several alternative

strategies to illustrate other DESIRE facilities that can
be brought to bear on the concept assignment

problem.

4.3. Scenario 2: Suggestive Function Names as

First Clue

Now, let us choose a different scenario in which

different choices were made because different

opportunities were noticed frost. Let us suppose that

4ss



the user chose to examine the functions in the target

program frost using any one of the several tools/views

available. He could be examining the graphical call

view in Germ or the text view in his favorite editor

when he notices two functions whose names

(restore_breaks and set_breaks) trigger an association

with the breakpoint model. Examining the various text

strings associated with the functions ( e.g., the printf

fortnat string “mdebug: Setting breakpoints at -h”)

supply additional evidence for this association. So,

our user chooses to explore the context of these

functions and chooses DESIRE’s Slicer tool (which

extends the slicing method of [18]) to do this

exploration.

This Slicer is a tool that allows views to be rapidly

generated, extended, contracted and shifted based on a

set of program entities that are considered interesting

g DESIRE Shell

ytore_breaks; extern, (functi on_returni ng) i nt, <13>7011
alud: /usr/local/desl re/vl. 3c-extras/exampl e+ n-mgrlmdebug.c
afil: /usr/local/dasi ra/vl. 3c-extras/exampl es/wI n-mgrlmdebug.c
defn: /usr/local/desi re/vl 3c-extras/exampl es/wi n-mgr/mdebug.c
df i 1: /us r/1 ocal /desi re/vl. 3c-ext ras/exaapl es/wi n-mgr/mdebug.c
line: 600

parms: pno; auto, i nt. <17>7489
qcals: (out reuwe Dri ntf restore_brkptl
~refs:
1refs:
crefs:
lsets:
csets:
scald!

(nbrkptil
(“mdebug: bad
(nbrkpts [1)
(bno)
(nbrkpts [l)
(mdebua)

urocess number\rr” 01 bno pno)

. Explicitly reference symbols by in internal name

or oid (i.e., object id) which is unique for each

symbol, or

● Implicitly reference a set of symbols (the Slicer’s

so called collection) by a formal specification of

the set.

The third method of reference is the most powerful

and often used. For example, it provides the ability to

specify the set of all symbols that are defined (or not)

in the program in a given scope that are of a

particulm kind (e.g., function or variable) and are in

(or not in) a particular relation (e.g., calls, caUed_by,

ref_by, set_by and so forth) with some other set of

objects (e.g., interests, collection or other).

In our example, the user probably starts with an

interest set that includes restore_breaks and set_breaks

. . ---
parms: cmd; suto. [poi nter_to) char, <17>7464
gcals: (outrange parseaddr Irarseword printf set-brkut SSCanf)
grefs: (brkat nbrkp~s-tracedl
1refs: (“%0.lx:%C4x %x” “\n- “mdebug: Setting breakpoints at

“mdebua: bad m’ocess number\n” &addr &DnoO 1 10 64 addr
result-word)

crefs: (brkat[l brkat [1 [1 nbrkpts [1)
1sets: (bno result)
csets: (nbrkpts [1)
gcald: (mdebug)
hodv: [FE CS74E43

-\n”\
bno cr!d pno\

Figure 4 : Slicer’s DB View

and asks for a DB (data base) view of the

symbols, which reveals all of the

relationships known by DESIRE (Figure 4).

It shows all of the raw data information that

is cached in DESIRE’s internal data base for

these functions, i.e., what functions call

them, what functions they call, where they

are defined, their internal oids, what globals

they reference, what ones they set and so

forth.

This opens up a number of new avenues

for exploration. The user could explore the

text file further with the editor or he could

chose to explore the relations in the

program. Deriving the relational structure of

a program with a text editor, even one with

good search and hypertext capabilities, is

tiresome at best. So, we will assume that the

user will specify the desired explorations

symbolically to the Slicer and let it do the

at the current moment. This set is called the interest work and keep track of the growing context (via the

setl. The views that the interest set engenders are

highly dynamic, quick and easy to change based on

the user’s evolving understanding of the context. The

Slicer provides three ways to specify program entities
for the interest sec

● Explicitly reference symbols by identifier name,

which may produce a number of different

instances of a symbol,

1mere are real]y two sets, the interests and the collection that are

calculated, recalculated, merged in various ways and manipulated by

the slicer during an interactive exploration session.

interest and collection sets).

So, the user extends the interest set with the global

data referenced (i.e., accessed or set by) any function

in the interest set. This will add nbrkpts (number of

breakpoints) and brkat (locations of breakpoints) to

the interest set. At this point, we assume that he has
made the correct concept assignments for these two

global data variables and begins to wonder where the

target program code bytes are kept. Maybe in a global

variable used by one of the routines called by
restore_breaks or set_breaks, so he adds this set of

functions to the interest set resulting in restore_brkpt

and set_brkpt (plus a couple of others) being added to

489



the interest set. A DB view of these two routines

reveals a new global variable (i.e., brkpts) and a quick

look at its deftition, which includes a revealing

comment (“Bytes to be restored at bkpts”) pretty much

nails the concept assigmnent for brkpts.

Just as in the previous scenario, some concept

assignments are still open and the strategy will be the

same, expand the context and examine what new

program entities get added to the interests. Our user

4.4. Scenario 3: Patterns of Relationships as

First Clue

Another approach to program analysis is to try to

identify the clusters of functions and data that appear

to be closely related in order to form a structural

framework on which to hang the details of the

program. We call these clusters modules, not to be

confused with tiles, objects, or other formal

does this by adding the functions that call the programming language structures. Object oriented

v t)ESIREShell ‘1
~
{
,..
extern int parsewordo;
. . .
i f :breakpoi nt)

restore_ breaks (breakpoint);
?printf(word,’’mdeb.g: breakpoint in procno %x, at %C4X:%04X,

fl ags=%04x” ,breakpoi nt .breakcs, breaki p, breakfl ags);
. . .
1

do
{

. . .
parseword(cmd, word);
. . .
switch (cl

{
. . .
case BREi+KREG5:

printf(”mdebug: breakpoint in procno %x, at %04x: %04x\ n”,
breakpoi nt, breakcs,breakip, breakflags);

p=&((g->proctbl ) [breakpoi ntl );
. . .
pfusion(&bkp.breakss .breaksp);

Figure 5 : Slicer’s View of Part of mdebug Code

functions in the interest set, which adds mdebug and

then he adds all global variables referenced by entities to search for clues to our program’s org&izational

in the interest set. This adds breakpoint, breakcs and

the rest of the data variables from Figure 1. The user

will now ask for a usage slice of the program to get an

integrated, contextual view of the all of the entities

from the interest set. This view reconstructs the code

by including all uses of the interests plus all of the

control paths necessary to get to those usages. All

other parts of the program are elided and are shown as
,,...“ in the slice viewz. Figure 5 illustrates a portion of

a usage slice.

Probably, the user would continue to explore this
area of the program driven by other related models but

these explorations would proceed much like this

scenario. So, we will turn our attention to other

approaches and strategies available to the DESIRE

user.

structure.

So let us go through a scenario that starts by the

user looking for program clusters that are suggested

by generic clues and then using those clusters as the

jumping off point for a more domain specific

exploration to fill in the details. What kind of cluster

criteria might our user bring to bear on this problem?

Some clusters reveal themselves because they

consist of a set of functions that we cohesively bound

to some set of global data that they management. For

example, process tables typicatly have a set of
functions that perform process management functions

such as changing the state of a process, e.g., kill a

process, suspend a process, stat a process and so

forth.

languages include formalisms (i.e., the

ability to specify classes) that allow such

frameworks to be formally described but

non-object oriented languages do not. So,

how might one go about trying to

discover such a framework in a language

such as C?

Sometimes module groupings depend

upon domain specific lmowledge such as

in the breakpoint model, but often the

module structures are revealed by more

generic program features. Sometimes the

generic features of the program structure

provide clues that a given set of functions

and data are logically related. What are

such generic features? Relations (e.g.,

calls or references) and the kind of

program entity (e.g., function or data) are

the two most obvious and useful kinds of

features, and we will use these plus others

2ActuaUy, users typically ask for such slice views with each

change of tie interest set but for ttre sake of brevity, we have chosen

to show onty one example of this kind of view.

490



Alternatively, some clusters are characterized by a reached on call paths through mdebug and only on

set of functions that are tightly bound because their such paths. Compare this diagram to Figure 3 and

call paths are dominated by a single function. That is, notice that various functions called by mdebug have

all functions in the set can be reached by call paths been eliminate by the cluster analyzer (e.g., resume

that contain the dominant function and by no paths and durnp_win). Obviously, these functions are called

from other functions as well. The user

will now have to decide whether some

of the functions that were eliminated

because of formal features should be

added back in because semantically they

really belong to this module or whether

other functions not including in the call

graph of mdebug and therefore, not

found by the cluster analyzer should be

included in this module. In this case, he

decides no on the fust issue, but later in

his analysis he will discover several

functions (e.g., bpint3, the breakpoint
interrupt service routine) and edit them

into the module. This is a typical

scenario that includes a mix of

automation and human intelligence.

At this stage, the user asks that this

clustering relationship be recorded as a

(new) module and an aggregate node is

created in the DB, which will then

appear in the Germ graphical view. This

Figure 6: Cluster Analysis

that do not. Our debugging example considered earlier new module node groups these functions so that they
contains just such a cluster where the dominant

function is “mdebug.” All other functions in the group

are tilled only on paths that go through mdebug. How

might our user fmd this cluster?

There are a variety of ways but let us say the our

user notices a suggestive pattern in the graphical

browser where there are a little group of functions that

appear connectively isolated except for a rich set of

connections to mdebug. This is a candidate for a

cohesive cluster but verification is needed because the

eye cannot be sure. Therefore, our user brings up the

cluster analysis tool and chooses to run a cluster

analysis on mdebug. A Prolog program from the

library runs and attempts to form a cohesive cluster

with mdebug the dominant function. The results are

shown in Figure 6. The analyzer verifies that the

cluster noticed by the user is indeed a cohesive

cluster. This graph contains all functions that can be

can be dealt with as an individual. If user then wants

to simplify the graphical view, which is typical, he

would collapse (i.e., hide) all of these functions

temporarily inside this new module node.

Our user might use these results in Germ, Prolog or

the Slicer to complete the exploration using the same

strategies and tools shown in the other two scenarios.

But eventually, the user would proceed with other

cluster analyses and eventually assign all functions to

some module thereby, allowing him to get an

overview of the system, a so called module view. See

Figure 7. The relational links in Figure 7 are

subcomponent links rather than calls links. That is,

each module contains a set of functions or other

modules. This forms a tree structured overview of the

target system.

491



J /’”
d

\

<.,.. -,,,.,.,,>

\

M
I rpurn

Figure 7: Module View of the System

Not shown in these scenarios are the results of the

user’s other explorations, which typicatly follow

scenarios similar to scenario 1 and 2. In the course of

such explorations, the user will build up many notes,

crosslinks and summaries that record the results of his

explorations and these will be all available as the

starting point for future anatyses.

It should be clear from these scenarios that concept

assignment with the human playing the role of the
intelligent agent requires a wide variety of viewing,

analysis and query tools. The detailed mture of these

tools are heavily determined by the style of the

investigators. However, the central invariant

requirement is that the tools provide the mechanism

for creating opportunistic associations and

juxtapositions of information. Now, let us consider

whether it is possible for the machine to play a

support role that involves more intelligence.

4.5. Scenario 4: Intelligent Agent Provides Fkst
Clue

Another approach would be for our user to ask

DM-TAO -- an experimental intelligent assistant for

concept assignment -- to scan the code and present a

list of candidate concepts based on its domain model

(DM) knowledge. The results me used to glean a

rough sense of the conceptual highlights of the code

being studied or to serve as starting points for tier

investigation using the naive tools

described in earlier sections.

The current version of DM-TAO can

answer several kinds of questions about

source code: 1) Conceptual Highlights:

Look for any concepts that correspond to

some concept in your DM, 2) Conceptual

grep: Look for instances of a user-

specified concepq and 3) What’s this?:

Propose a concept assignment for the

currently selected code. In our scenario,

we will assume that the user starts with a

question of type 1 to perform a broad

sweep of the code looking for important

concepts. In the resulting concept list, the

user notices breakpoint-data, DM’s

name for the model shown in Figure 2.

The user asks to see the specific code

associated with that concept and TAO

presents the code from Figure 1 in a

window. (TAO records the location of

each concept found during the highlights

search, so access is quite fast.) At this point, the user
may need to understand the breakpoint-data concept

in greater detail and so he selects the line in which

brkat is declared and asks TAO to suggest a concept

assignment for the selection (question type 3). The

result is shown in Figure 8. TAO infers that the

selection is an instance of the breakpoint-location

concept, which is the DMs internal name for what we

have informally referred to as the Location of

breakpoints concept. This provides the user a place to

stint. From here on, the user would use the same

strategies and tools that we have atready seen in the

previous scenarios to verify the concept assignments

and work out the detailed pattern of relationships.

How does DM-TAO accomplish its assignments? It

uses a domain model (DM) to drive a connectionist-

based inference engine (TAO), similar to [7]. The DM

is built as a network in which each concept (e.g.,

Location of breakpoints) is represented as a node and

the relationships between nodes are represented as
explicit links (e.g., Save code bytes and Location of

breakpoints are related via a uses link). The

information associated with each concept includes:

the typical features that characterize the concept, its

relationships to other concepts in the domain, relevant

informat knowledge - such as the terminology likely

to be used by a programmer when referring to this

concept in code, the syntactic and/or conceptual

context this concept is likely to occur in, etc. The

domain model atso captures the underlying semantics

492



in the target domain through a rich set of inter- cede for relevant features - such as syntactic clues,

concept relations embodying the nature and degree of lexical terms which might embody a concept-

the semantic associations between the domain reference, clustering clues etc. Their activation level

concepts. is a function of the number of corresponding clues

extern unsigned int nbrkpts [MAXPROCS]; /*Number of breakpoints
set for a proces5*/
extern int breakpoint; /*No of task hi tti n
break uoi nt*/
extern unsigned int breakcs, breaki P;
breakpoint*/

I“Address of

extern unsigned int breakflags; /*F1 ags value at
breakpoi nt”l
extern unsigned int breakss. breaksp; /*Top of stack within
breaker routine.

Points to saved regs*/

extern unsi gnad current_i p,current_cs; /*Current instruction
address”l

Figure 8: DM-TAO Suggests Assignment

To facilitate inferencing, this domain information

is represented as a semantic/connectionist hybrid

network. The concepts and their features are

represented by nodes, which are of different types:

concept node, feature node, term node, syntax node

etc., depending on the information being represented.

The nodes are grouped together into layers. The

feature, term and syntax nodes form the input layer of

the network, while the concept nodes are loosely

organized at different levels of abstraction, generally

reflecting the conceptual infrastructure of the domain

model. The different inter-concept relationships

present in the domain model are represented by

corresponding inter-node link types. Every link in the

system has a real-valued weight associated with it,

quantifying the strength of the relationship between

the two nodes .comected by it.

The nodes serve as the processing units of the

network and generate appropriate signal strengths or

activation levels as a nonlinear function of the input.
For most nodes (except those in the input layer), the

input is a function of the activations generated by the

nodes in the previous layer that they are connected to,

modulated by the weight on the connecting link.

Nodes in the input layer are directly driven by the

actions of a feature-extractor which scans the target

found in the current target code

segment, the degree of the

match, and the activation

history of related feature nodes.

The signals generated in the

input layer are propagated

throughout the network via a

controlled spreading activation

process, which continues until

the concept nodes compute their

activation levels. If the

computed output of a concept

node is higher than a certain

value - called the recognition

threshold, then the domain

concept represented by that

concept node is predicted to be

present in the corresponding

section of code from which the

relevant clues were extracted.

The accuracy of prediction of

the network is a function of the weights distributed on

it’s links. The system adapts it’s response via a

‘training’ process, which modulates these weights

according to certain rules to obtain an optimal

distribution. In DM-TAO, the training is effected in

two stages:(1) The network is initially primed with a

priori knowledge from the domain model regarding

the degree of the association between two connected

concepts (a qualitative assessment of low, medium or

high provided by the domain builder). (2) The

network weights are adjusted in a performance driven

manner using qualitative relevance feedback from the

user regarding the validity of the tentative concept

assignments made by the system.

While DM-TAO has shown promise, it is still

evolving and very much a research prototype.

5. Evaluation of DESIRE

The evaluation of any system meant to assist a user

in understanding real programs, that is not performed

in a real-world context is necessarily suspect.

Consequently, the testing and evaluation of DESIRE

has always been done with “live ammo” and real

users, which has often led to some discomfort for the

research team. Nevertheless, we feel that the result is

better because of this approach,

493



DESIRE was first released to selected users in

severat companies in the spring of 1989. By 1992, it

had been implemented at more than a dozen sites in

seven companies. The users are what we would

characterize as early adopters and for the most part

are quite self sufficient. However, there was still a

fairly heavy load of interaction with the users. A

dozen or so sites is about the limit that a small

research group can handle without impeding research

progress.

The users of DESIRE have not always plumbed the

full depths of the recovery facilities available. For

example, cluster analysis is not often used because the

users have not wanted to do a complete recovery.

Often, they are under intense time pressure to bring in

foreign code and get it running. Therefore, they tend

to do a minimat recovery. The canonical pattern for a

minimal recovery seems to be 1) generate and print

out various Germ overviews, 2) use the query system

(sometimes Germ and sometimes Prolog) to focus on

areas with compiling or execution problems, 3) use

the Slicer in a highly interactive, fast changing

anatysis of processing threads (driven by the

problems) and 4) interspersed with all of the rest, use

the hypertext navigation facilities to check definitions,

etc. The only users who plumb the depths of DESIRE

are those that are doing a full recovery (e.g., for re-

engineering) and have a well defined, documented

process for executing that recovery.

DM-TAO is nearly complete but is still missing

several key facilities necessary for doing large-scale

validation experiments. Consequently, we have so far

been limited to small experiments that required a good

deal of manual labor. These experiments are

promising but not yet definitive.

We have found that in the domain of multi-tasking

windows systems, which is where we have our richest

set of training data and experience, DM-TAO can

recognize an interesting set of concepts. In one

experiment, we chose three files (about 600 lines of

code) containing data deftitions within this domain.

We performed a manuat analysis of these files to
identify the most important concepts to understanding

the data. There were 27 human-oriented concepts in

this set, of which only 20 were defined in the domain

model. Next we ran the files through DM-TAO asking

two kinds of questions: 1) what me the important

domain specific concepts in these files, and 2) for

specific code segments, what is the concept most

closely associated with this code segment? DM-TAO

recognized 20 of the 27 most important concepts in

the files and produced three false positives, which we

attributed to the fact that the net was only weakly

trained.

When focusing on specific code segments, DM-

TAO had a tendency to over generalize, recognizing

the most specific appropriate concept as well as its

superconcept (e.g., a queue concept as well as a data-

holder concept). We currently believe that some of

this is due to the fact that some of the feature

extractors we planned (e.g., syntax categories) are not

yet fully implemented. We are currently working on

this and other mechanisms to control over

generalization.

Even in it incomplete state, DM-TAO is interesting

and promising but not yet ready for wide scale use.

DESIRE has always had at least two personalities

because our client base is so varied. On the one hand,

some of our clients wanted us to focus all of our

energy on the risky research ideas (DM-TAO) and
ignore the product-like features needed for practical

use. On the other hand, many of our most active users

wanted to do real work with DESIRE and requested

new languages such as FORTRAN, particulm report

types and new features such as incremental module

load and unload to support huge programs. Since the

largest number of active clients were using the naive

assistant tools, the requests for naive tools and

features probably got the lion’s share of our efforts.

For example, there are tens of report types

implemented, incremental module load/unload was

implemented and FORTRAN will be delivered in a

few months.

Because of this dual personality, the strengths and

weaknesses are quite different depending upon which

client group you ask. On the whole, however, I think

we can legitimately record some strengths and

weaknesses from the user feedback that would achieve

fairly broad consensus.

Strengths

● The slicing mechanism is a popular feature with

the users and this may result from the fact the

Slicer was heavily used (in bootstrap mode) to
develop itself, to analyze some legacy code used

elsewhere in DESIRE and to develop other parts

of DESIRE. The slice representation appears to

be only part of its value. Two other features stand

Olm 1) the interactive operating regimen
engendered by the interest and collection set

facilities, and 2) the query facility that allows a

description of interest sets in natural, abstract

494



●

●

●

●

terms rather than requiring the explicit listing of

individual interests.

The graphical browser is heavily used as a facility

for reporting passive, artfully tailored views of

program structures for the purpose of publication

or for reporting on passive mediums such as

paper. This is a popular way to use the graphical

views. To some degree this may be because

conventionally, other graphical tools (e.g., CASE

tools) have been used mostly to passively

document designs after the fact (their interactive

design capabilities notwithstanding.)

The logic programming engine (Prolog) and the

embedded Scheme extension language have been

valuable in two ways: 1) as system extension

facilities, and 2) as generat engines for program

analysis. Many of our own extensions were built

using one or the other of these facilities. For

example, the cluster analyzers were written in

Prolog.

The various query facilities provide an armory of

easy ways to analyze a system and are heavily

used especially when porting code.

The hypertext navigation facility is extremely

important because even though an abstract

understanding of a program is possible without

looking at code, any depth of understanding

requires anal yzing the details of the code.

Hypertext provides among other things a

conceptual zoom capability.

Weaknesses

●

●

It is clear that we need a fuzzy search mechanism

that goes beyond slicing, regular expressions or

logic programming specifications (all of which

were implemented). DM-TAO seems like the

right idea but it is too early in its development to

make a final judgment about its effectiveness.

Currently, it is a loosely coupled component, so

the advantages of complete integration into the

rest of the system are not yet well understood.

The graphical browser (Germ) lacks certain

practical features (e.g., multiple windows per

browser process) that were not considered

important enough in a research environment to

gain our attention but would certainly enhance its

facility for interactively analyzing programs and

creating intermediate, tailored views. The current
process for this is slower and more clumsy than

we would like especially for large programs.

However, the large program aspect of this

problem appears to be common to atl graphical

browsers that we have seen (commercial and

research) and therefore, we believe that it may be

inherent to the browser approach to the viewing

of program structures.

● A second problem is also inherent to all graphlcat

browsers used as interactive investigation tools

for large programs. It is the impedance mismatch

between automated graphical organizations of

large amounts of information and the naturat

symbolic organization (i.e., chunking) of that
information. Germ’s aggregates, which allow

substructure to be instantly hidden or revealed,

begin to address this problem but they are not

automatically formed, except during cluster

analysis. There is much intelligence required in

the chunking process.

● Internally, information exchange between the

various tools (e.g., Germ, Prolog, and the Slicer)

and their associated views is sometimes more

clumsy than we would like. The problem is

corrected in a partially completed re-design of

DESIRE using an object-oriented canonical

representation across all tools.

These weaknesses fall into two basic categories 1)

inherent limitations in the technological approach

(e.g., automatically organizing large amounts of

graphical information), and 2) missing facilities and

features. Category one suggests an agenda for future

research and category two suggests an agenda for

productization.

Even though it has some of the weaknesses of a

research prototype, DESIRE continues to be used to

do real work.

6. Relation to Commercial Products and

Other Research

There are a variety of commercial products and

resemch prototypes that address some part of the
program understanding process. They can be

conveniently differentiated by two key properties: 1)

the degree of formality in the representations that they

deal with and 2) the degree of domain specificity. Not

unexpectedly, there is a rough correlation of reasotig

methods with the degree of formality in the

presentation, The more formal the representation, the
more likely that they use deductive reasoning or

algorithmic methods to derive information from the

program. The more informal the representation, the

495



more likely they use some fuzzy reasoning method Reasoning Systems’ toolsets based on REFfNE. A few

such as plausible reasoning, pattern recognition or tools like Bachman’s MIS oriented tools or BIOS

heuristic methods. decompiler provide a bit more domain-specific

Similarly, the degree of dependence on domain
Imowl&ige, but they do not really address the concept

knowledge correlates roughly with application
assignment problem in any strong sense. Bachman’s

Deduetlve/
Ptauslble

Akmrilhrnlc
Reasoning/

4 u Hewlsltc

A#pll##on

Knowledge

Fundamental
Knowledge

Formal Rlgolws ~1 Systwdk

Figure 9: Program Understanding Landscape

specificity. The most general tools tend to build all

knowledge into the tool, whereas the most domain

specific tools are likely to depend on models of their

domain specialties. Figure 9 summarizes current

results in the area of program understanding and

design recovery. It characterizes a number of product

classes and research approaches by placing them

according to where their architectural properties fit in

this scheme.

Commercial Systems: There are no commercial

tools that strongly address the general problem of

program understanding and those that address some

piece of the problem me clustered mostly in the lower

left part of the diagram. These tools tend to work only

with knowledge having the lowest level of conceptual
specificity and use approaches that are mostly model-

free. That is, these tools depend strongly upon general

(non-domain-specific) knowledge and like many of

the facilities shown in the scenarios are largely naive

support tools. These tools provide facilities such as

cross referencing, language restructuring, graphic

reformulation (e.g., charting services), integration

with CASE tools and so forth. Notable entries in this

class are ProCase’s SMARTsystem tools and

Model-
Ddven
Methods

]
Model-

Methods
Ad Hoc

tools provide some intelligent help in redesigning data

base schemas. Likewise, BIOS decompiler offer

some help in relating absolute data addresses to

meaningful symbolic names. Both of these toolsets

offer useful services but do not address the program

understanding or concept assignment problem in a

general sense.

Research on Naive Agents: There area number of

research projects that focus variously on integrated

tool sets [5], algorithmic analysis of program

properties, program slicing [18] or analysis of

program structure implied by generic program

features [10, 15]. Such facilities are the building

blocks for advanced program understanding systems

because the implied properties and structures that they

compute are a convenient starting point for intelligent

agent processing whether by human or machine.

Research on Intelligent Agents: Research in this

area has attacked more challenging unders~ding

problems but because it is research, it has tended to

address more constrained problems -- problems that

are easily accomplished by a small number of

496



researchers. There are three easily distinguishable

research approaches:

1) Highly domain specific, model driven, rule

based question answering systems that depend on a

manually populated data base describing the software

system, typified by the Lassie system [6],

2) Plan driven, algorithmic program understanders

or recognizes [8, 9, 11, 12, 13, 14, 16, 17], typified

by the Recognize system of [14, 17], and

3) Model driven, plausible reasoning understanders,

typified by DESJRE’S DM-TAO subsystem [2, 3].

Approaches 1 and 2 have the desirable

characteristics that they are good at faithfully and

completely deriving concepts within small-scale

programs but suffer from the problem of not being

able to deal readily with large-scale programs because

the inference chains or parsing procedures tend to

become computationally infeasible in the face of

overwhelming numbers of details. An exception to

this kind of computational growth appears to be

Hartman’s work but the technique is something of an

approximation technique and therefore, might

legitimately be classified somewhere between

approaches 2 and 3.

Conversely, approach 3 systems can easily handle

large-scale programs and their computational growth

appears to be linear in the length of the program under

analysis. They, of course, suffer the converse problem

in that their results are approximate and are therefore,

imprecise and not completely trustworthy.

Systems of the class 3 type appear to be good at

winnowing large numbers of details into a few

interrelated problem domain entities that abstract and

approximate a program’s conceptual framework. They

are less successful at deriving detailed implications

such as detailed computational behavior descriptions.

Conversely, class 2 is good at the latter and less

successful at the former. Because they appear to

complement each other so well, we expect these

streams of research to evolve into hybrid systems that

use different techniques to address the different

aspects of the problem. For example, we performed

some experiments that use logic programming to fmd

clusters of tokens that are related based on surface

features (e.g., similarities in spelling) and used the

resulting clusters to focus DM-TAO’S attention. Other

similar hybrid strategies include using the algorithmic
clustering facilities to extract implicit program

features (e.g., patterns of data coupling and control

cohesion) for input to DM-TAO and similarly, using

DM-TAO to suggest frameworks for deeper analysis

by DESIRE’s naive analyzers and the human software

engineer (e.g, stereotypical module architectures for

specific types of problems and domains).

7. Conclusions

We conclude that since the concept assignment

problem is an obviously hard problem, automation of

even a small portion of it requires architectures that

process a range of information types varying from

formal to informal such that the information inferred

from the informal can improve the ability to infer

information from the formal and visa versa. Further, it

seems clear from our analysis of example code that

much understanding (i.e., as represented via concept

assignments) is derived via a process that relies

strongly, though not exclusively, on plausible

inference. Finally, we conclude that rich

understanding relies on an a priori knowledge base

that is rich with expectations about the problem

domain and the program architectures typical of that

problem domain.

We are encouraged by the preliminary results of

DM-TAO and while we believe that the concept

assignment problem will probably never be

completely automated, some useful automation is

possible. We believe that by incorporating those parts

that we can automate into mixed-initiative systems in

which the software engineer provides those elements

that are beyond automation, it is possible to

significantly accelerate and simplify the

understanding of programs.

[1]

[2]

[3]

REFERENCES

Ted J. Biggerstaff, Systems Software Tools, Prentice-
Hall (1986).

Ted J. Biggerstaff, “Design Recovery for Reuse and

Maintenance” IEEE Computer, Vol. 22, No. 7, (July,

1989), pp. 36-49.

Ted J. Biggerstaff, Josiah Hoskins and Dallas Webster,

“DESIRE: A System for Design Recovery,” MCC

Technicrd Memo STP-081-89, (April, 1989).

[4] Daniel Brotsky, “Program Understanding through

Cliche Recognition” MIT AI Lab Working Paper 224,

(December, 1981).

[5] Yih Farn Chen, Michael Y. Nishimoto, and C.V.

Ramamoorthy, “The C Information Abstraction

System”, JEEE TSE, Vol. 16, No. 3 (March 1990), pp.

325-34.

497



[6]

[7]

[9]

[9]

Premkumar Devanbu, Ronald J. Brachman, Peter G.

Selfridge, and Bruce W. Ballard, “LaSSIE: a

Knowledge-based Software Information System,”

Proceedings of the 12th International Conference on

SoftwareEngineering, Nice, France (March, 1990).

Jerome A. Feldman, Mark A. Fanty, Nigel H. Goddard

and Kenton J. Lynne, “Computing with Structured

Connectionist Networks,” CACM Vol 31, No. 2,

(February, 1988).

Mehdl T. Harandi and Jim Q. Ning, “Knowledge-

Based Program Analysis,” IEEE Software, Vol. 7, No.

1, (January, 1990), pp. 74-81.

John Hartman, “Automatic Control Understanding for

Natural Programs,” Ph.D. Dissertation, University of

Texas, (1990).

[10] D. Hutchens and V. Basili, “System Structure

Analysis: Clustering with Data Bindings,” IEEE TSE,

11(8), (1985).

[11] Stanley Letovsky and Elliot Soloway, “Delocalized

Plans and Program Comprehension,” IEEE Software,

(May, 1986).

[12] Stanley Letovsky, “Cognitive processes in Program

Comprehension,” Journal of Systems and Software,

Vol. 7, pp. 325-339, (1987).

[13] Jim Q. Ning, “Knowledge-Based Approach to

Automatic Program Analysis; Ph.D. Dissertation,

University of Illinois, Urbana-Champaign, (1989).

[14] Charles E. Rich and Linda M. Wills, “Recognizing a

Program’s Design: A Graph-Parsing Approach,” IEEE

Software, Vol. 7, No. 1, (January, 1990), pp. 82-89.

[15] Robert W. Schwanke, “An Intelligent Tool for Re-

engineering Software Modularity”, Proc. 13th ICSE,

May 13-15,1991, Austin, ‘IX, pp. 83-92.

[16] E. Soloway and W. L. Johnson, “PROUSTKnowledge-

Based Program Understanding,” IEEE Transactions on

Software Engineering, Vol. SE-11, No. 3, pp. 267-275,

(March 1985).

[17] Linda M. Wills, “Automated Program Recognition by

Graph Parsing,” Ph.D. Dissertation, MIT, also

published as MIT AI Laboratory Technical Report

1358, (1992).

[18] M. Weiser, “Program Slicing: IEEE TSE, Vol 10,

(1984), pp 352-357.

498


