
Program Understanding and ttk 
Concept Assignment Problem 

person understands a program when able to explain the program, 
its structure, its behavior, its effects on its operational context, and its rela- 
tionships to its application domain in terms that are qualitatively different 
from the tokens used to construct the source code of the program. For 
example, it is qualitatively different for me to claim that the program 
“reserves an airline seat” than for me to assert that “if (seat = request 
(flight)) && available(seat) then reserve(seat,customer),” 

Apart from the obvious differences in level of detail and formality, the 
first case expresses computational intent in human-oriented term-terms 
that involve a rich context of knowledge about the world. In the second 
case, the vocabulary and grammar are narrowly restricted, formally con- 
trolled and do not inherently reference the human-oriented context of 
knowledF about the world. The first expression of computational intent 
is designed for succinct, intentionally ambiguous (i.e., informal) human- 
level communication, whereas the second is designed for automated treat- 
ment (e.g., program verification or compilation). Both forms ofthe infor- 
mation must be present for a human to manipulate programs (create, 
maintain, explain, reengineer, reuse, or document) in any but the most 
trivial way. Moreover, one must understand the association between the 
formal and the informal expressions of computational intent. 

When a person tries to develop an understanding of an unfamiliar pro- 
gram or portion of a program, the informal, human-oriented expression 
ofcomputational intent must be created or reconstructed through a pro- 
cess of analysis, experimentation, guessing, and crossword puzzle-like 
assembly. As the informal concepts are discovered and interrelated con- 
cept by concept, they are simultaneously associated with or assigned to 
the specific implementation structures within the program (and its opera- 
tional context) that are the concrete instances of those concepts. The prob- 
lem of discovering these human-oriented concepts and assigning them 
to their realizations within a specific program or its context is the concept 
assignment problem [4]. 

In practice, there are several general strategies and classes of tools that 

can successfully address this problem. We will illustrate some of these 
strategies through example scenarios and some classes of tools that sup- 
port them through examples of the DESIRE (DESign Information 
Recovery Environment) suite of tools. The problem, strategies, and tools 
are relevant to anyone who creates, maintains, changes, reengineers, 
reuses, or otherwise manages the design of a program or system. 

A central hypothesis of this article is that a parsing-oriented recogni- 

tion approach based on formal, predominantly structural patterns of pro- 
gramming languuas features is necessary but not suffXent for solving 
the general concept assignment problem. While parsing-oriented recogni- 
tion schemes certainly play a role in program understanding, the 
























	block: 


