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Program Understanding and the
Concept Assignment Probiem

person understands a program when able to explain the program,
its structure, its behavior, its effects on its operational context, and its rela-
tionships to its application domain in terms that are qualitatively different
from the tokens used to construct the source code of the program. For
example, it is qualitatively different for me to claim that the program
“reserves an airline seat” than for me to assert that “if (seat = request
(flight)) && available(seat) then reserve(seat,customer),”

Apart from the obvious differences in level of detail and formality, the
first case expresses computational intent in human-oriented terms— terms
that involve a rich context of knowledge about the world. In the second
case, the vocabulary and grammar are narrowly restricted, formally con-
trolled and do not inherently reference the human-oriented context of
knowledge about the world. The first expression of computational intent
is designed for succinct, intentionally ambiguous (i.e., informal) human-
level communication, whereas the second is designed for automated treat-
ment (e.g., program verification or compilation). Both forms of the infor-
mation must be present for a human to manipulate programs (create,
maintain, explain, reengineer, reuse, or docurnent) in any but the most
trivial way. Moreover, one must understand the association between the
formal and the informal expressions of computational intent.

When a person tries to develop an understanding of an unfamiliar pro-
gram or portion of a program, the informal, human-oriented expression
of computational intent must be created or reconstructed through a pro-
cess of analysis, experimentation, guessing, and crossword puzzle-like
assembly. As the informal concepts are discovered and interrelated con-
cept by concept, they are simultaneously associated with or assigned to
the specific implementation structures within the program {and its opera-
tional context) that are the concrete instances of those concepts. The prob-
lem of discovering these human-oriented concepts and assigning them
to their realizations within a specific program or its context is the concept
asstgnment problem [4].

In practice, there are several general strategies and classes of tools that
can successfully address this problem. We will illustrate some of these
strategies through example scenarios and some classes of tools that sup-
port them through examples of the DESIRE {DESign Information
Recovery Environment) suite of tools. The problem, strategies, and tools

are relevant to anyone who creates, maintains, changes, reengineers,
reuses, or otherwise manages the design of a program or system.

A central hypothesis of this article is that a parsing-oriented recogni-
tion approach based on formal, predominantly structural patterns of pro-
gramming language features is necessary but not sufficient for solving
the general concept assignment problem. While parsing-oniented recogni-
tion schemes certainly play a role in program understanding, the
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signatures of most human-oriented

concepts are not constrained in
ways that are convenient for parsing
technologies. So there is more to pro-
gram understanding than parsing.
(See sidebar titled “Automatic Con-
cept Recognition™).

More specifically, parsing technol-
ogices lend themselves nicely 1o the
recognition of  programming-oriented
concepts (e.g., numerical integration,
searches, sorts, structure transforma-
tons) because thev are easily under-
stood almost completely in terms ol
the patterns of their algorithms (i.e.,
numerical and  data
manipulation steps).

On the other hand, luanan-oriented

computation

concepts such as acquire target or reserve
airplane seat are decoupled from the
formal patterns ol their algorithms
because they involve an arbitrary
semantic mapping from operations
data
structures  to computational inten-

expressed on numbers and
uons expressed in terms of domain

concepts (e.g., a target or a seat).
There is no algorithm (or, equiva-
lently, no set of inference rules) that
allows us to recognize these concepts
with complete confidence.

Is this difference just a manifesta-
tuon ol a layers-of-abstraction model, in
which the higher-level abstractions
are defined in terms of the lower-
level abstractions? Can we just write

Engineering

determimistic rules relating the lay-
ers? Observations of humans trying
to understand programs suggest this
is not the case. It appears there is
truly a paradigm shift between pro-
gramming-oriented  and  human-
oriented concepts. There is a change
both in the that

must be used to recognize the two

kinds of features

kinds of concepts and the nature of

processing required. Programming-
oriented concepts are signaled by the
formal features of the programming
language or other features that can
be deductively or algorithmically de-
rived from those features (e.g., vari-
able liveness or data flow properties),
human
appears to additionally use informal,

while concept  recognition
inherently ambiguous tokens [6], re-
quire plausible reasoning, and rely
heavily on a priori knowledge from
the specific domains. Thus, concept
assignment is more like a decryption
problem than a parsing problem.
We give an example of this para-
digm shift, in which a priori knowl-
edge is used to drive the assignment
ol human-oriented  concepts  and
focus on how tools, both naive and

intelligent, can aid in that process.

An Example
Two general tasks are required when
assign

attempting  to concepts  to

code:

Glossary

Domain model. A knowledge base that defines application-specific concepts
(e.g., debugger concepts) as a set of entities and relationships (e.g., the enti-
ties Locations of breakpoints and Save code bytes are related by the Uses rela-

tionship).

Dominator. A procedure or function f is the dominator of another procedure
or function g if all call paths to g go through f.

Parsing-oriented recognition model. A recognition strategy that uses a finite
set of pattern templates, each of which specifies a concept occurrence as a
set of syntactic features and patterns. Recognition is a recursive process in
which the simplest, most elemental concepts are recognized first and then
become features of larger-grained, composite concepts.

Program slice. A program slice with respect to a specific program variable
reference is all statements of the program that affect the value of that vari-

able at the location of the reference.

Recognition model. The method or strategy chosen to perform program

recognition.

Signature. The set of features (e.g., syntax, semantic, graphical) that together
signal the occurrence of a specific concept.
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1. Identify which entties and rela-
tions out of the often overwhelming
numbers in a large program are re-
ally important.

2. Assign them to known (or newly
discovered) domain concepts and re-
lations.

The first task relies heavily on ge-
neric, formal information (e.g., data
structures, functions, calling rela-
tions) plus some informal informa-
tion such as grouping and association
clues. The second task relies more
heavily on domain knowledge, e.g.,
knowledge of the problem-domain
entities and typical application archi-
tectures and relationships.

Consider the example in Figure 1
to see how concepts in code can be
identified. This example is taken
from a multitasking window system
[1] written in C. These definitions
constitute the set of data items neces-
sary to handle breakpoint processing
within a debugger. We will examine
what can be plausibly inferred about
this set of statements without any
knowledge of the apphcation domain
context (i.e., task 1) and then what
additional knowledge can plausibly
be inferred, given knowledge of the
application-domain
task 2).

For task 1, we use generic knowl-
edge to infer that these statements
are related to one another in some
noncasual way, because they are

context  (l.e.,

L. grouped together (proximity),

2. bracketed with blank lines,

3. exhibit a strong surface similarity
among many of the formal and mnfor-
mal tokens (e.g., breakpoint, brkpts,
breakcs), and

4. exhibit coupling via common to-
kens among several definitions (e.g.,
coupling  via  MAXPROCS
MAXBRKS).

and

Based on these features, we can tenta-
tively assign the generic concept data-
group to them, indicating that taken
as a set, they are likely to be an in-
stance of some (currently unknown)
data  concept.
expect that this data-
group concept is a composite of some
set of strongly related, detailed data
subcomponents that are signaled by
individual programming

application-domain
Further, we

language



tokens defined in the example. Pre-
sumably,.at some time during the rec-
ognition process, the specifics of
which particular application
concept we assign will be (plausibly)

data

inferred from accumulated evidence.

For task 2, we will assign the data-
group and
domain-specific
a priori domain-specific knowledge
such as illustrated informally in Fig-
ure 2. In this diagram, the file draw-

its Suh(‘tlm])nm'n[s 1o

concepts, utilizing

ers represent data stores, the ellipses
the data/control
flows, and the text blocks other con-
cepts such as debugging events. This
is a fuzzy model, in that all concepts
and relationships are weakly con-
strained, thereby allowing the model
to cover a wide variety of concrete
designs. We assume that a person
with expertise in breakpoint process-
ing must possess a model similar to

functions, ATTOWS

this.
This model expresses one way in

which debuggers typically handle
breakpoints. That is, when the user
asks for a breakpoint to be set up at a
specific address, the original code at
that address 1s saved in the debug-
ger's data area and then itis replaced
by code that will generate an inter-
rupt when executed. That iterrupt
is how the debugger gets control back
from the program being debugged
(i.e., the target program). Immedi-
ately after regaining control, the de-
bugger replaces the interrupt com-
mand byte with the original target
program code, thereby returning the
target program to its original form.
At this point, the user would see ex-
actly the same code as originally writ-
ten, which is what is expected.

How might a knowledgeable user
relate this model to specific instances
of the concepts in a program under
analysis? What features might be
used to make the concept assign-
ments? Let us start with the recogni-

unsigned char brkpts [MAXPROCS] [MAXBRKS]};
unsigned char *brkat [MAXPROCS] [MAXBRKS];
unsigned int nbrkpts [IMAXPROCS];

int breakpoint;

unsigned int breakcs, breakip,

unsigned int breakfiags;

unsigned int breakss, breaksp;

unsigned int current_ip, current_cs,

<BLANK LINE>

<BLANK LINE>

/*Bytes to be restored at bkpts*/

/*Locations of set break points*/

/*Number of breakpoints set for a process®/

/*No of task hitting breakpoint*/

/*Address of breakpoint*/

*Flags register value at breakpoint*/

/*Top of stack within breaker routine.
Points to saved registers.*/

*Current instruction address*/

tion of the data store concepts (e.g.,
the Locations of breakpoints concept.)

Features that suggest concept as-
signments are:

. natural language token meanings
2. occurrences of closely associated
concepts

3. individual  relations  paralleling
those in the model

4. the overall pattern of relationships

in the model

We illustrate these features in our
example.

Certain natural language tokens—
words, phrases and abbreviations—
are features of (i.e., signal a likely ret-
erence to) the breakpoint-data1 con-
cept (e.g., “breakpoint,” “brkpts,”
and “brkat”), while others signal pos-
sible references to concepts that are

breakpoint-data™ is the canonical name used
m DESIRE's knowledge base for the set of data
items expected by the breakpoint model of Fig-
ure 2

Figure 1. A code exampleiillus-
trating data grouping

Figure 2. A model of breakpoint
processing in debuggers
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closely associated with the breakpoint
data concept (c.g., the concepts ad-
dress, registers, instruction, process
and task}.. Finding evidence of these
associated concepts adds to the possi-
bility that “breakpoint,” “brkpts,”
“brkat” and so forth are indeed sig-
naling a reference to the concept
breakpoint data.

Further evidence could be pro-
vided if the user has already discov-
ered that these data items are used
by some previously assigned (i.c.,
known) breakpoint-processing func-
tion(s). For example, the user might
already know about one or more of
the following functions:

® bpint3, which handles the actual
breakpoint interrupt;

® set_breaks and set_brkpt, which
together replace bytes of target pro-
gram code with hardware interrupt
code bytes (i.e., breakpoint interrupt
bytes) and save the original code
bytes in the table brkpts and their
addresses in the table brkat; or

® restore_breaks and restore_rbrkpt,

Engineering

which together replace the hardware
interrupt code bytes with the code
bytes that were originally in the target
program before the breakpoints were
set.

If the user has already proposed
concept assignments to any of these
[unctions (e.g., bpintd), then these
concept assignments add weight to
the evolving assignments associated
with the data group. On the other
hand, the concept assignment could
occur in the reverse order with the
breakpoint-data concept assigned
first. In this case, association of the
hreakpoint-data concept with this
data group would serve as evidence
for the subsequent concept assign-
ments of bpint3, set_breaks, res-
tore_breaks and so forth.

Concept Assignment Tools
and Scenarios

One can approach the tasks outlined

previously in a variety of ways. Of

course, the human mind is one of the
best pattern recognizers and is a sig-

Automatic Concept Recognition

oncept assignment is a process of recognizing concepts within a

computer program—inciuding all artifactual information associated

with the code—and building an "understanding’’ or model of the
program by relating the recognized concepts to portions of the program, to
its operational context, and to one another. One of the simplest operational
madels for the concept recognition and understanding process is to view It as
a parsing process [1, 2. in this view, any glven concept can be recognized
from a specific slgnature (i.e., some pattern of features) within the target pro-
gram. Indeed, many basic computer science algorithms such as quicksort are
amenable to this process. The recognizer program uses a finite set of pattern
templates that recognize the concept signatures by a parsing process in which
the simplest, most elemental concepts are recognized first and then they be-
come features of iarger-grained, composite concepts. A degenerate case of
this recognition process Is the familiar process of parsing programming lan-

guages for compilation.

These patterns typically rely almost completely on the formal, structure-
orlented patterns of features—Ilargely a result of the nature of the technology
(specifically, parsing technology) conveniently avaliable to attack this problem.
For parsing technologies to be effective, they rely heavily on the premise that
the concepts to be recognized are completely and (mostly} unambiguousty
determined by the formal, structural features of the entity belng parsed and
that these features are contextually quite local (e.g., as In context-free

languages).
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nificant part of any solution to the
concept assignment problem. But
even primitive tools such as ‘grep’
and commeracial reengineering tools
can be quite useful. Based on our
hypothesis about the underlying na-
ture of the concept assignment prob-
lem, we have built a Design Recovery
systern called DESIRE [2, 3] that is
designed to be a program-under-
standing assistant. DESIRE contains
both naive and intelligent facilities to
assist the user in attacking the con-
cept assignment problem. The naive
assistant facilities assume the user is
the intelligent agent and they provide
simple but computationally intensive
services to support that intelligence.
On the other hand, the intelligent
assistant facilities, which include a
Prolog-based inference engine and a
knowledge-based pattern recognizer
called DM-TAO (Domain Model-The
Adaptive Observer), are more experi-
mental and attempt to provide a lim-
ited amount of intelligent assistance
in assigning concepts.

We will use several scenarios to
examine how such assistant tools can
be (and have been) used to foster,
simplify. and accelerate the concept
assignments in the previous example.

Scenario 1: Suggestive Data Names
as First Clue

In this scenario, we suppose a user is
browsing the global data of some un-
familiar program and discovers the
breakpoint data group of Figure 1.
Let us further assume this user has
the domain knowledge illustrated in
Figure 2. Under this scenario, the
names “brkpts,”  “brkat” and
“nbrkpts” along with their associated
comments should suggest candidate
concept assignments. In particular,
brkpts is a potential instance of the
Code bytes data store, brkat of the Loca-
tions data store and nbrkpts of the #
Breakpoints data store.

The next logical step is to explore
the functions that use these globals to
iry to identify the functional units
Save code bytes . .. and Restore byles

Our user asks for a Germ®

? Germ (graphical entity-relation modeler} is a
schema-driven graph browser with hvpermedia
lunctionality that relates browser items o ele-
ments of target programs.



Figure 3. Germ view of use/call graph
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Figure 4. Slicer's view of part of mdebug code
DESIRE Shell
/* In: extern int mdebugq(), <13>2248 */

extern int parseword();
if (breakpoint)
£

restore_breaks(breakpoint);
‘Sprintf(wurd,"mdehug: breakpoint in procno %x, at %04x:%04x,
flags=%04%" ,breakpoint,breakcs,breakip,breakflags);

do
i

b?a'rgeward{cmd,wurd);

éhitch (<)

case BREAKREGS :
printf{"mdebug: breakpoint in procno %x, at %04x:%04x\n",

breakpoint,breakcs,breakip,breakflags); -
p=&((g->proctbl) [breakpoint]); B
s , . ﬂ
pfusion(&kp,breakss,breaksp); =h
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browser view of all of the functions
that use these global variables along
with all of the call chains to these
functions, resulting in the view shown
in Figure 3.

These results reveal several strong
candidates (set_brkpt, set_breaks, re-
store_brkpt, and restore_breaks) for
assignment to the Save code bytes and
Restore bytes concepts. The user exam-
ines the source code to verify these
tentative assignments and discovers
the evidence is strong enough to as-
sign the two “set” routines to the Save
codé bytes . . . concept and the two “re-
store” routines to the Restore bytes . . .
concept.

However, the user does not vet
have assignments for the breakpoint
Interrupt Service Routine and the Sefup

. concept (i.e., the user-driven in-
terface function that triggers the sav-
ing of the breakpoint). Since inter-
rupt service routines are invoked by
the hardware, the Interrupt Service
concept have
turned up in the call chains. But in-
terrupt routines do communicate
with the rest of their application via
global data. Further, the two routines
corresponding to Interrupt  Service
Routine and Setup . . . will be some-
how related (indirectly, perhaps) to
the interesting functions and global
data that we have discovered so far.
Thus, our user needs a way to search
for global variables and functions that
are loosely related to the current set
of interesting functions and data. In
DESIRE, this is accomplished by re-
questing a program slice® [8] based
on the set of currently interesting
program entities.

While a simple tool like ‘grep’ can
isolate the lines of code containing a
given string, it does not identify con-
trol paths or other computational

Routine would not

dependencies related to a variable of

interest as DESIRE’s slicer does.
Moreover, DESIRE’s slicer is a highly
interactive tool that allows slices to be
rapidly generated, extended, con-
tracted, and shifted based on a (typi-
cally shifting) set of currently interest-
ing program entities called the interest

* Loosely defined, a slice for a variable is all of
the statements that affect the value of the vari-
able. There are several variations on this idea in
DESIRE.

Engineering

set. It also includes powerful opera-
tions for generating and combining
interest sets.

In our example, the user might
start with an interest set that includes
the functions and global data so far
assigned (i.e., restore_brkpt, re-
store_breaks, set_brkpt, set_breaks,
nbrkpts, bkpts and brkat) and gener-
ate a slice based on these interests.
Figure 4 shows part of the slice
generated.

The slice introduces several new
global variables because of the condi-
tional branch leading to the re-
store_breaks call in mdebug. And all
of these new global variables play a
part in breakpoint processing. The
flag breakpoint triggers the operation
that restores the code bytes (i.e., Re-
. concept) and the others (e.g.,
breakes, breakip, and breakflags) are
part of the breakpoint’s state. Inclu-
sion of these variables in the slice will
also bring in bpint3—the breakpoint
interrupt service routine—because it
uses these global variables to commu-
nicate with the main part of the
debugger.

Elsewhere in mdebug (not shown
in the figure), the user finds the code
that calls set_breaks, and it is embed-
ded within logic that interprets the
user’'s debug commands. Hence,
mdebug is the assignment for the
Setup  breakpoints command concept.
With this discovery, all of the key con-
cepts have been assigned to specific
program concepts, thereby providing
a framework for further detailed
analysis of the code by an intelligent
human agent.

store . .

Scenario 2: Patterns of
Relationships as First Clue

A different approach to program
analysis is to try to identity the clus-
ters of related functions and data that
form the abstract architecture or
framework of the program. We call
these clusters modules, to distinguish
them from files, classes, objects, and
other formal programming language
and development system structures.

How might one go about trying to
discover such an architecture in a lan-
guage such as C? Sometimes module
clusters depend on domain-specific
knowledge, but often the module
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structures are revealed by more ge-
neric program features, such as

e Functions that are coupled by
shared global variables, or

¢ Functions that
shared control paths.

are coupled by

Suppose a user is searching for
functional clusters based on shared
control paths, looking for a cluster of
functions that are tightly related be-
cause all call paths to them contain a
single function, called their dominator.
Our debugging example contains just
such a cluster where the dominator is
mdebug. Why might our user suspect
this is a cluster? Perhaps a suggestive
pattern of calls within the call graph is
noticed. For example, a set of func-
tions that appear connectively iso-
lated except for a rich set of connec-
tions to mdebug might be detected
(see Figure 5). So, our user runs a
cluster analysis with mdebug as the
dominator—the results are shown in
Figure 6.

The functions found not only in-
clude the set and restore functions
discussed in scenario 1, but also a
number of functions involved in un-
assembling  machine
(e.g., unassemble and decode), an-
other set for reading and parsing
user commands (e.g., parseaddr) and
others for dumping information (e.g.,
dumpwords). exploration
will suggest additional candidates for
inclusion in the proposed debugge:
module based on functions that are
perhaps less directly related to the
debugger concept.

At this stage the user asks that this
clustering relationship be recorded as
a (new) module, and an aggregation
node is created in the database. This
new module node groups these func-
tions so they can be dealt with as a
unit. Typically, the user will want to
use this aggregation relationship to
simplify some graphical views by col-
lapsing (i.e., hiding) the complexity
of all of these functions temporarily
inside this single module node.

The user would likely proceed with
other cluster analyses until all func-
tions are assigned to some module,
which provides a module-based over-
view of the system (see Figure 7).
These cluster results can then be used

instructions

Further



@ DB=/m¢c/project/maint/src/desire/reveng paper Scﬁm-rmcclproje_cb'maintfsrcldeslreJrevengJ)aperfSCHEMA.cprog
(n]

0~0

idth_arg
s ol o i

—_—

[w]
calls unaasenb}.\ decode arg :‘M———_ﬁ ++ l‘l.lj:ﬁ.cvl
0=0 T~ 0= ‘\\\\\\\\\“\isifh_ﬂrg_tupe
restore_breaks rey e_brkpt 0=
> MDM ea

L}
funs vars

oggle_ty?

0~

suitch '
N/ o '
0= remove
etsp\&g 0=

\ttfwﬁr disable

Figure 5. Germ browser call graph

Figure 6. Results of cluster analysis

@ DB=/mcc/project/maint/sre/desire/reveng paper SCHEMA=/mcc/projectmaint/src/desireireveng paper/SCHEMA.cpro

00
o2 [0 g

—_— =

__»width_arg

—
_

unassemble decode

0~0 ea
00 . —"set _brkpt

|

set breaks“‘\\ﬁ“\H‘Parseaddrm‘aiﬁ
00 [~

parseword parsesegoff

O

dumpuords

. 1
e ety

arg - ——. (=T
*D D*D \\\\\%%\\\\‘£‘H\%
res¥ore_breaks restore_brkpt etch,[]a-’r ~type




in other tools—the browser, query
engine or the slicer.

It should bhe clear from the prion
that

scenarios concept  assignment
benefits from a wide variety of naive
tools for viewing, analysis, and query.
The nature and
these tools are heavily influenced by

the style of the investigators. How-

detailed usage of

ever, the central invariant require-
ment is that the wols provide the
mechanism for creating opportunistic
associations and juxtapositions of in-
formaton. Now, let us show how 1t 1s
possible for the machine to play a
more intelligent support role.

Scenario 3: Intelligent Agent
Provides First Clue

Another approach
browse the code looking for evidence
of key concepts based on the user's
experience. But with DESIRE. the
ask DM-TAO—DESIRE's
experimental intelligent assistant fon
concept the
code for him and present a list of can-

would be o

user may

assignment—io  scan
didate concepts based on the knowl-
edge
model (DM) knowledge base. The
results are used to glean a rough

represented  in its  domain

sense of the conceptual highlights of
the code being studied or to serve as
focal points for further investigation
using the mnaive tools  described
earlier.

The current version of DM-TAQ
can provide several kinds ol analyses
of the source code:

® Conceptual highlights: Look tor
all instances that correspond to any
concept m the DM.

¢ Conceptual grep: Look
stances of a user-specified concept.
® Identification: Propose a concept
assignment for the currently selected
code.

for in-

In our example, the user might
start with a scarch of type 1 to per-
form a broad sweep of the code look-
ing for important concepts. This will
find breakpoint-data. The user could
then ask to see the specific code asso-
ciated with that concept and TAO
present  the from
Figure 1 in a window. At this point,
the user may need to understand the
breakpoint-data concept in greater

would code

Engineering

detail, and so selects the hne m which
TAQ 10

suggest a concept assignment for the

brkat is declared, and asks

selection (a type 3 quervy. As shown
m Figure 8, TAO infers that the selec-
tion is an instance of the breakpoint-
location concept, which is the DM’s
mternal name for the Locations ol
breakpomts concept. This provides
the user a place o start furthe
analysis.

How does DM-TACQ accomplish its
assignments? The distinctiveness ol
DM-TAO and the problems it attacks
merit some elaboration. I
DM 1o
inference engine (TAQ), similar 1o [5]
and [7]. The DM is built as a se
mantic/connectionist hybrid network

uses the

drive a connectionist-based

in which each domain concept (e.g.,
Locations ol breakpoints) 1s repre-
sented as a node and the relation-
ships between nodes are represented
as exphcit hnks (e.g., Save code byles
and Locations of breakpoints are re-
lated via a Uses ink), There are a vari-
cLy of network node types: concept
node, feature node, term node, syn-
tax node, for example, representing
the different kinds of
present. ‘The nodes are grouped to-

information

gether into layers. The feature, term
and syntax nodes form the input
layer of the network, while the con-
cept nodes are loosely organized at
different levels of abstraction, gener-
ally reflecung the conceptual infra-
structure of the domain model. The
different interconcept  relationships
are represented by corresponding
internode link types. Every link in the
system has a real-valued weight asso-
ciated  with i, quantifying  the
strength of the relationship between
the two nodes connected by it.

The nodes serve as the processing
units of the network and generate
appropriate signal strengths or acu-
vation levels as a nonlinear function
of their input. For most nodes (except
the input layer), the input signal is a
function of the activations generated
by the connected nodes in the previ-
ous layer, modulated by the weight
on the connecting link. Nodes in the
input layer are directly driven by the
actions of a feature-extractor which
extracts features such as syntactic,
lexical, and clustering clues. Their

80 May 1994/Vol.37, No.5) COMMUNICATIONS OF THE ACM

level s a funcuon ol

of

found in the current target code seg-

activation

number corresponding  clues
ment, the degree of the match, and
the acuvaton history of related fea-
ture nodes. The signals generated in
the mput  laver are propagated
throughout the network via a con-
trolled spreading acuvaton process.
which continues until the concept
nodes compute their activation levels.
If the computed output of a concept
node is higher than a certain value
(called  the threshold).

then Il](_' (!()l]l&ii]l COIC t'])[ I('lJl'l‘.\(‘]Il(‘(]

recognition

by that concept node is predicted o
be present in the corresponding sec-
tion of code [rom which the relevant
clues were extracted.

['he accuracy ol prediction of the
network 1s a funcion of the weights
distributed on its links. The system
adapts its response via a Ctraining’
process,  which  modulates  these
weights according 1o certain rules 1o
obtain an optimal distribution. In
DM-TAQ, the training is effected in
two stages: 1) The network is initially
primed with ¢ prior knowledge from
the domain model regarding the de-
gree ol the association between two
connected concepts (a qualitative as
sessiment ol low, medium or high
provided by the domain builder). 2}
The network weights are adjusted in
a performance-driven manner using
qualitative relevance feedback from
the user regarding the validity of the
tentative concept assignments mace
by the system.

While DM-TAO has shown prom-
ise, it is still evolving and very much a
rescarch prototype.

Evaluation of DESIRE

In order to be credible, the evalua-
ta
user in understanding real programs

tion of any system meant to as

should be performed in a real-world
context. Consequently, the testing
and evaluation of DESIRE has always
real Even
though all the tools discussed here

been done with users.
are experunental prototypes, they
have been in use on real, large-scale
programs (ol up to 220 KLOC) since
1989 by a number of difterent users
in several companies. DM-TAQ is the
one exception since it is stll a re
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Figure 7. Module view of the system

Figure 8. DM-TAO suggests assignment

int-location

extern unsigned ,char hrkpts [MAXPROCS] [MAXBRKS]:
at brknts=/

extern unsigned char *brkat [MAXPROCS] [MAXBRKS]:
points*/

extern unsigned int nbrkpts [MAXPROCS]:

set far a process#®/

extern int breakpoint;

1 break point*/

1 extern unsigned
1 breakpoint*/
extern unsigned
breakpoint*/
gxtern unsigned
breaker routine.

int breakcs, breakip;
int breakflags;

int breakss, breaksp:

extern unsigned

address*/

current_ip,current_cs;

/*Locations of set break | i

F*Number of breakpoints
/*No of task hittin
/*pddress of

f*Flags value at

/*Tap of stack within

Points to saved regs™/

J¥*Current instruction




search prototype and has not yet

been released for use outside the lab-
oratory.

DESIRE was first
lected users in several companies in
the spring of 1989. By 1992 it had
been installed at more than a dozen
sites in seven companies. The users
are what we would characterize as
carly adopters and for the most part
are quite self-sufficient. However,
there was still a fairly heavy interac-
tion with the users. A dozen or so sites
is the limit a small research group can

released to se-

handle without impeding research
progress.

To date, the use of DESIRE has
fallen primarily
exploration for debugging or port-
ing, and 2) documentation for under-
standing and reporting. The most
popular tools for exploration are the

into two classes: 1)

slicer, the generic query system, and
the Prolog-based analysis system. For

l‘.[lgill(f(:l'lllg

documentation, Germ is favored—it
is often used for reporting passive,
artfully tailored views of program
structures for publication or analysis.

DM-TAO is nearly complete, but is
still missing several key facilities nec-
essary for doing large-scale validation
experiments. Consequently, we have
been limited to small experiments
requiring a good deal of manual
labor. These show
promise but are not yet definitive.
Although it has some of the weakness
of a research prototype, DESIRE has
been used to do real work and vali-

experiments

date the strategies described.

Conclusions

Since the concept assignment prob-
lem 1is obviously a difficult one, auto-
mation of even a small portion of this
problem requires architectures that
process a range of information types
varying from formal to informal, so
the information inferred from the
informal can improve the ability to
infer information from the formal
and vice versa. Further, it seems clear
from our analysis of sample code that
much understanding relies strongly,
though not exclusively, on plausible
inference. Finally, we conclude that
deep understanding relies on an «
priort knowledge base that is rich with
expectations about the problem do-
main and typical program architec-
tures.

We are encouraged by the prelimi-
nary results of DM-TAO and the
strategies that motivated it. While we
believe the concept assignment prob-
lem will probably never be com-
pletely automated, some useful auto-
mation is possible. We believe that by
incorporating those parts that we can
automate into mixed-initiative sys-
tems in which the software engineer
provides those elements that are be-
yond automation, it is possible to sig-
nificantly accelerate and simplify the
understanding of programs. @
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variety of technologies address facets of the program-under-
Astanﬂing problem. The approaches taken and facilities included

vary widely based on the research or technology purpose. A few
broad (overlapping) categories relevant to program understanding are:

Maintenance and reengineering: The forces of change (e.g., computer
“downsizing'’) are creating increased automation, supporting program
maintenance and reengineering. These tools are variously focused on pro-
gram reorganizing (6, 101, program porting, or database reengineering [4].

Reusable component recovery: Closely related to maintenance tools are
those aimed at extracting reusable information from existing code, either
in the form of executable components or nonexecutable business rules [7].

Program analysis and development aids: The development of large-scale
systems requires increasingly greater levels of tools support for the
programmer:

e Search, extraction, and condensation of explicit, static, and often distrib-
uted program information, such as provided by query systems [2], program
slicers, and language-aware editors;

« Computation of implicit program information such as provided by module
groupings [9]1 or data flow [1, 8]; and

« Generator-based tools with strongly domain-oriented visual metaphors,
clip-art assembly methods and hypermedia-like navigational aids (5).

Documentation and understanding aids: Documentation tools produce
publication-oriented projections of concrete program information (e.g.,
browser views and other diagrammatic descriptions) as well as more ab-
stract views such as CASE-oriented design views. In addition, expert systems
that can answer a limited class of questions about a target program (3]

are beginning to emerge. Also see sidebar titled "Automatic Concept
Recognition.”
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