
Using Sex Differences to Link Spatial Cognition and Program Comprehension

Maryanne Fisher
Department of Psychology

Saint Mary’s University
Halifax, Nova Scotia, Canada

mlfisher@smu.ca

Anthony Cox
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

amcox@cs.dal.ca

Lin Zhao
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

lzhao@cs.dal.ca

Abstract

Spatial cognition and program development have both
been examined using contrasting models. We suggest
that sex-based differences in one’s perception of risk is
the key to relating these models. Specifically, the survey
map approach to navigation and the top-down develop-
ment/comprehension strategy use similar and related high
risk cognitive skills that males show a preference towards.
Conversely, the route-based approach to navigation and the
bottom-up development/comprehension strategy use simi-
lar and related low risk cognitive skills that women show
a preference towards. On the assumption that programmers
are consistent in their risk-taking behaviours, we believe
that they will, as much as possible, tend to use the same
strategy when performing program development and com-
prehension. In an experimental setting, we compare pro-
grammer’s performance on spatial cognition and program
comprehension tasks. The correlations that we found sug-
gest that programmers use equivalently risky strategies for
program comprehension and spatial cognition. Thus, there
is evidence that similar cognitive skills are used for spatial
cognition and program comprehension/development, and
that the similarities are a consequence of sex-based differ-
ences in risk-taking behaviour.

1 Introduction

Program comprehension, reading a map, and driving an

automobile are tasks that, at first, appear to have little in

common. However, it is very unlikely that we have devel-

oped a highly specialised skill set for each of these tasks.

Instead, as a result of evolutionary pressures, we have devel-

oped a small set of widely adaptable, general purpose cogni-

tive skills and structures [5]. When given a new activity that

requires a cognitively complex skill set, the needed skills

are generated by adapting and combining existing skills [4].

Furthermore, mechanisms and structures that have proved

useful in one domain will be used in similar domains and

will be changed only when driven by the need for perfor-

mance improvement [4].

As the need for program comprehension skills has de-

veloped only recently, in evolutionary terms, these skills

must result from the ‘new’ application of existing skills. We

postulate that some of the skills used during program com-

prehension overlap significantly with those used for spa-

tial cognition. In other words, we equate the navigation

and exploration of source code, an abstract virtual space,

with our navigation of the world in which we live, a three-

dimensional physical space. A rationale for equating the

application of real-world navigation skills with those used

in virtual spaces has been suggested by Vinson [35].

In previous research [7], we used the term codespace to

describe the abstract mental representation that program-

mers form for a software system. We now further refine

this definition and define codespace as:

A programmer’s mental model of source code

with respect to the perceived spatial attributes of

entities identified within the code.

We focus on source code, as opposed to other representa-

tions (e.g., flow graphs, class hierarchy diagrams), as these

alternative representations can be considered as abstractions

of the source code. We also consider other code-like arti-

facts (e.g., build scripts) as part of a system’s source code.

Support for this definition is provided by Green [13],

who postulates that “mental representations of programs

seem to use spatial imagery where possible.” Evidence also

suggests that, when possible, programmers use spatial im-

agery as a coding for program concepts [14]. Green and

Navarro found that program comprehension was facilitated

when related program concepts occurred in close physical

proximity [14]. Douce et al. [11] suggest that comprehen-

sion and maintenance substantially use programmer’s spa-

tial abilities and that the source file can be viewed as pro-
gram space.

Movement by a programmer, within and between the

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

source artifacts of a system, during maintenance and devel-

opment tasks has been considered as software navigation.

Kersten and Murphy [18] observe that, “programmers tend

to spend more time navigating [the] code than working with

it.” To support software navigation, a variety of tools (e.g.,

Mylar [18], NavTracks [31]) and visualisations (e.g., terrain

maps [9], fluid views [10]) have been developed. As well,

spatial complexity has been examined as a metric of soft-

ware complexity [11, 24].

Thus, there is a well-documented relationship between

spatial cognition and a programmer’s mental modeling and

navigation of a system’s source code. However, the skills

that are used must be adapted for the specific environment

as differences also exist. For example, one can not ‘tele-

port’ to a new location in the real world in the same way that

‘jumping’ to a search target can be performed in codespace.

The existence of virtually instantaneous movement illus-

trates that there are differences between codespace and the

real world. However, these differences do not prevent the

same skills from being used in both environments. Instead,

the differences suggest that a common subset of skills is

used in each world and that this subset is augmented and

modified to deal with the unique aspects of each. Cosmides

and Tooby [6] support this view in their swiss army knife
hypothesis.

Spatial cognition, program development, and program

comprehension have been examined using contrasting ap-

proaches. Program development/comprehension is per-

formed using top-down and bottom-up approaches while

navigation, a key element of spatial cognition, uses route-

based and survey map approaches. These approaches are

examined in more detail in Sections 2 and 3. We suggest

that a sex-based difference in one’s risk-taking behaviour,

as examined in Section 4, is the key to relating these ap-

proaches. Specifically, the survey map approach to navi-

gation and the top-down development/comprehension strat-

egy use similar and related high risk cognitive skills that

males show a preference towards. Conversely, the route-

based approach to navigation and the bottom-up develop-

ment/comprehension strategy use similar and related low

risk cognitive skills that women show a preference towards.

These relationships are examined in Section 5. On the

assumption that programmers are consistent in their risk-

taking behaviours, we believe that they will, as much as

possible, tend to use the same strategy when performing

program development and comprehension.

In Section 6, we describe an experiment that we per-

formed to explore the relationship between spatial cognition

and program comprehension. This experiment, by linking

known but previously unrelated cognitive strategies, fur-

thers our understanding of software maintenance and the

sex differences that have been previously reported [33].

In Section 7, the results of this experiment are examined

and discussed, before we provide suggestions for future re-

search in Section 8 and summarise our results in Section 9.

2 Program Comprehension

Program comprehension begins with source code and

ends with a mental model describing the code’s purpose,

operation, and abstractions. To construct this model, pro-

grammers must examine the text of the source code using

some form of strategy.

Brooks [3] suggests that maintainers use a top-down

hypothesis-driven model of comprehension. Beginning

with a primary hypothesis, programmers examine source

code to confirm and refine this hypothesis, and conse-

quently generate new supplementary hypotheses. Soloway

and Erlich [32] suggest that a top-down approach is used

when maintainers are familiar with the source code. Using

rules of programming discourse, programmers match code

fragments to a suspected program plan that generalizes sim-

ilar and familiar programs. In both models, programmers

begin at a high level of abstraction and move towards a

lower level.

Pennington [26] finds that maintainers use a bottom-up

model of comprehension and begin by forming a control-

flow program model based on the syntactic elements of the

source code. A situation model is then constructed to de-

scribe the program in terms of semantic objects and con-

cepts. In bottom-up comprehension, programmers begin at

a low level of abstraction and move towards a higher level.

To unify the bottom-up and top-down comprehension ap-

proaches, von Mayrhauser and Vans [36] developed an in-

tegrated comprehension model. In their model, maintain-

ers opportunistically shift between top-down and bottom-

up approaches. Generally, programmers begin using a top-

down approach when they have sufficient experience to gen-

erate high level hypotheses or they begin using a bottom-

up approach when they lack this experience. A shift be-

tween these approaches occurs when either they lack the

experience to form additional hypotheses (i.e., top-down to

bottom-up) or they encounter a recognizable element such

as a beacon [3] (i.e., bottom-up to top-down). Switches con-

tinue to occur as opportunities present themselves.

These models suggest that programmers use multiple

strategies during program comprehension, depending upon

a variety of contextual factors. Some of these factors, such

as programmer experience [26], have been identified, while

others remain unknown. However, independent of strategy,

these models are based on the examination of source code.

As documented by Mosemann and Wiedenbeck [25], pro-

grammers do not examine a file sequentially. Thus, during

comprehension, programmers must develop a mental model

of the code so that they can identify the location of the fea-

tures under examination.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

3 Spatial Cognition

Just as individuals vary in their use of a program compre-

hension strategy, they similarly vary in their performance of

navigational tasks. As will be demonstrated in this section,

the literature on spatial cognition indicates that individual,

task and situational differences all affect the choice of skills

used for spatial cognition.

Downs and Stea [12] define spatial cognition as:

“A process composed of a series of psychological

transformations by which an individual acquires,

stores, recalls, and decodes information about the

relative locations and attributes of the phenomena

in their everyday spatial environment.”

Spatial cognition is composed of several elements: wayfind-

ing, object location memory and mental rotation. Each of

these elements is now examined.

Wayfinding or navigation uses landmarks, route maps

and survey maps. Landmarks are identifiable environmental

markers associated with specific geographic locations [4].

Route maps are sequences of instructions, often involving

landmarks, that describe at a personal level how to get from

one location to another [2]. Survey maps are similar to topo-

logical maps and describe an environment’s spatial layout

independent of a specific navigational task [2].

It is well accepted in the spatial cognition literature that

Piaget’s model for children is correct and that we develop

and learn to use these concepts in the order they are listed

[27]. However, as adults, when placed in a new and unfa-

miliar environment, we do not learn about the environment

in the same order.

Moeser found that after two years in the same building,

most nurses had not developed survey maps of a hospital

and used other strategies to navigate [23]. Appleyard [2]

suggests that about 75% of the population use route maps

and the remainder survey maps, but that this choice is me-

diated by a variety of factors. For example, one’s situation is

a factor; drivers are more likely to use a survey map while

bus passengers are more likely to use a route map. It is

also suggested that routes and landmarks are inseparable. A

landmark is identified when needed to distinguish an impor-

tant element of a route, such as a change of direction.

Aginsky et al. [1] show that the use of a route oriented or

survey oriented strategy is an individual preference and that

one can use the survey oriented strategy before developing

a prerequisite route map. However, one is not restricted to

using a sole strategy, as Kitchin [19] found that one person

uses many strategies.

Kato and Takeuchi [17] discovered that, independent of

wayfinding ability, individuals are able to use both survey

maps and route maps and switch between the two strate-

gies. However, individuals with a better sense of direction

made more effective use of each strategy and switched more

appropriately. They also suggest that wayfinding is an op-

portunistic process and that individuals change strategies at

different parts of a route. Also, one’s choice of strategy may

be dictated by the environment (e.g., when a lack of suffi-

cient landmarks exists, one adopts a survey strategy).

It would be useless to navigate without any knowledge

of places where one can go. Thus, our memory of objects

(e.g., buildings) and their location with respect to other ob-

jects, is also an element of spatial cognition. Our ability

to recall the set of objects that we know exist is referred to

as object memory and our ability to recall the position of

these objects is referred to as location memory. As with all

elements of spatial cognition, our object and location mem-

ory can be used at various levels of abstraction. As well

as remembering where we work and live, we must also re-

member the items that are in our home and on our desk.

Object and memory location are often measured using

the tests developed by Silverman and Eals [30]. This test

has been modified by James and Kimura [15] to explore

our ability to remember an item’s location when the item is

moved (i.e., a location shift), or swapped with another item

(i.e., a location exchange).

The final element of spatial cognition is that of men-

tal rotation. Mental rotation is our ability to manipulate a

three-dimensional object such that we can visualise the ob-

ject from a different perspective. Mental rotation is often

measured using a variant of the Vandenburg and Kuse men-

tal rotation test [34]. This paper-based test is highly abstract

and requires participants to match a two-dimensional draw-

ing of a three-dimensional object with two of four possible

solutions. The solutions are drawings that show either a ro-

tated view of the object, or a rotated view of a similar, but

slightly different object (e.g., a mirror image of the object).

Thus, spatial cognition is a complex task for which in-

dividual differences exist. When given a choice of cogni-

tive skills such as using routes or survey maps, there is con-

siderable variation depending upon the individual, the task

and the current situation. As with program comprehension,

an individual will often use more than one strategy or skill

and will change opportunistically according to their current

needs and situation.

4 Sex Differences in Behaviour

It has been well established among social psychologists

that men are more risk tolerant, and take more risks, than

women (see Daly and Wilson [8] for a comprehensive re-

view). In contrast, women take fewer risks and accept risk

only as a last resort, or when the benefits are maximised

and the costs minimised. In general, women tend to choose

high probability, low payoff strategies, whereas in similar

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

situations, men tend to choose low probably but high pay-

off strategies [8].

When developing code, it is well known that the more

code one writes, the greater the risk of an error being made.

Thus we expect women, who prefer lower-risk strategies,

will tend to write shorter code fragments and compile more

frequently than will men. As well, since compilers only

identify syntax errors, they should execute and unit test the

code more frequently to detect other coding errors. If this

is the case, women should tend towards using a bottom-

up development strategy to permit more frequent testing of

source code.

Bottom-up program development and comprehension

are low risk strategies. One works from a known position

and builds using only what one knows is correct. Top-down

strategies are much higher risk, as they can not be confirmed

as correct until the supporting lower-level code is available.

Thus, we suggest that women, documented as more risk

averse, will prefer to use bottom-up comprehension and de-

velopment strategies while men are more risk prone and will

use top-down strategies.

It is documented that women tend to program using a

bottom-up approach while men tend towards using a top-

down approach [33]. Thus, it is likely that this known differ-

ence is a result of differences in risk-taking behaviour. We

expect a similar difference will exist for program compre-

hension task since they can also be performed using a top-

down or bottom-up approach. As one’s risk-taking prefer-

ences tend to remain consistent, the gender difference found

for program development should also be evident in program

comprehension. Of course, other factors such as program-

mer experience may limit one’s choice of strategy. How-

ever, when a choice exists, we assume that, when feasible,

women will tend to use a bottom-up comprehension strat-

egy while men will prefer to use a top-down strategy.

It has also been found that women, more than men, tend

to use less abstract, more concrete representations of the

environment, such as landmarks. Conversely, men tend to

use more abstract representations such as cardinal direc-

tions (e.g., north, south) [29]. When the level of abstraction

is considered, it can be seen that bottom-up programming

and landmark identification both use a low level of abstrac-

tion. Similarly, top-down programming and cardinal direc-

tion tend towards a higher level of abstraction.

Postma et al. [28] suggest that route-based navigation

can be performed at both an abstract or a concrete level, but

that the use of survey maps is predominately performed at

an abstract level. If women tend towards the less abstract,

then they should tend to use a route-based navigation strat-

egy. Lawton [20, 21] confirms this suggestion and found

that women were more likely than men to use route-based

strategies whereas men were more likely than women to use

survey navigation strategies.

Silverman and Eals [30] report that women tend to per-

form better on an object location task than do men. In re-

lated research, James and Kimura [15] reproduce Silverman

and Eals’ result when using object exchanges, but find no

sex difference when using object shifts, suggesting that nei-

ther sex has an advantage when objects are moved to new

positions. However, when asked to play the commercial

game “Memory,” McBurney et al. [22] found that women

out-performed men by a large margin.

Spatial cognition demonstrates robust, frequently repro-

duced sex differences. Men typically perform better on ab-

stract mental rotation tests, tend towards using survey maps

when navigating, and do so because they are more accepting

of the higher risk associated with these activities. Women

typically perform better on more concrete object and loca-

tion memory tests and tend towards using route-based nav-

igation strategies, as these activities exhibit lower risk.

We believe it is important to note that the tendencies ex-

hibited by a particular sex are simply activities that are more

probabilistically likely, for that sex, and can not be con-

strued as rules constraining one’s activities. We also stress

that it is incorrect, and inappropriate, to consider a specific

sex-based behaviour as better or superior. Each sex has its

tendencies and each sex is evolutionarily optimised to ex-

ploit these tendencies.

5 Comparing Spatial Cognition and Pro-
gram Comprehension

From an evolutionary perspective, humankind has only

recently needed skills for performing program comprehen-

sion. Hence, these skills should have developed from the

adaptation of an existing skill used for some other task. Fur-

thermore, as source code provides the notational represen-

tation for a complex set of domain and programming con-

cepts, the skills needed to manipulate and understand code

must be similarly complex and have arisen to manipulate

and understand an equally complex environment.

When directly compared, program comprehension and

spatial cognition do not exhibit much similarity. While

there are gross, surface level correspondences, the two areas

have significant differences when examined in detail. The

key to achieving a successful comparison is found by using

known sex-based differences in behaviour.

It is our hypothesis that since women tend to favour a

lower risk and less abstract, bottom-up programming style

and the less abstract and less-risky route-based navigation

strategy, the two use similar cognitive skills. That is, route-

based navigation is cognitively similar to bottom-up pro-

gram comprehension. Men tend to prefer the higher risk and

more abstract top-down programming style and the more

abstract survey map navigation strategy, thus suggesting

that the two approaches also use similar cognitive skills.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

More specifically, survey map navigation is cognitively sim-

ilar to top-down program comprehension.

Cartesian space is generally reduced to one-dimensional

space within a specific source file. Programmers tend to

assign a linear ordering to code, just as we assign a linear

ordering to the words, sentences and paragraphs that make

up this paper. The linear nature of code is made explicit in

older language dialects, such as BASIC and Fortran, where

all lines are monotonically numbered. This ordering simpli-

fies the concept of direction, since one can only go forwards

or backwards with respect to the numbered lines in a file.

The treatment of codespace as unidimensional is further in-

fluenced by the fact that to improve readability, each line

typically contains a single meaningful syntactic element.

To explore codespace, it is necessary to make some as-

sumptions. First, we assume that for an object-oriented lan-

guage such as Java, methods will be one of the primary

codespace entities that programmers recognize and remem-

ber. Secondly, in a predominantly unidimensional environ-

ment, distances and sizes will be remembered with respect

to this dimension. That is, a method’s size is measured

by the number of lines it covers and distance between two

methods is measured by the number of lines between them.

Finally, as one’s maintenance ability is highly impacted by

one’s understanding of the code being maintained, we use

measures of one’s effectiveness at program maintenance as

an indicator of one’s program comprehension.

The experiment we describe in the next section com-

pares participants’ object and location memories, their men-

tal rotation abilities, and their program maintenance abil-

ities. Mental rotation and object location memory differ

with respect to their level of abstraction and risk and as a

consequence, exhibit robust sex differences. As top-down

comprehension is risky, needs abstract skills, and is likely

to be preferred by men, there should be be correlation for

men between mental rotation and their maintenance ability.

Conversely, as bottom-up comprehension is low risk, con-

crete in nature and is likely to be preferred by women, there

should be correlation for women between their object and

location memory and their maintenance ability. We next

describe our experiment before discussing the results.

6 Experimental Validation

To examine the use of spatial cognition in codespace,

we performed a study to compare participants’ knowledge

about codespace objects with their spatial cognition skills.

Participants were asked to perform a set of maintenance

tasks and then given a post-task questionnaire. After com-

pleting the questionnaire, their mental rotation skills, object

memory and location memory were tested.

6.1 Subjects

The 30 particpants were students, both undergraduate (7)

and graduate (23), at Dalhousie University in the faculties

of Engineering (3), Science (2), and Computer Science (25).

All participants indicated that they had sufficient knowledge

of the Java programming language to perform a set of main-

tenance tasks on a Java program. One half the participants

were male (mean age 27.67, SD = 5.59) and one half were

female (mean age 25.80, SD = 5.28).

6.2 Stimuli

The program used in the study, Calc.java was 300

lines long and contained 10 methods in 1 class. The pro-

gram extends the Applet class and implements a simple

calculator providing the operations: addition, subtraction,

multiplication, division, exponentiation, and square-root.

Java was selected due to the results of an informal survey

that indicated it was the language with which students were

most familiar. Students were shown the program using the

web-browser of their choice to avoid any effects introduced

by differences in environment (i.e., editor). We consider the

differences in features of web-browsers to be minimal when

viewing a single file with no embedded hyperlinks.

While a 300 line program is certainly trivial with respect

to actual production code, we were limited by experimental

criteria from using a larger code-base. During pilot testing

[7] we found that participants were unable to complete the

experiment in under an hour when using a longer program.

As it is known that participants are subject to fatigue effects

in experiments lasting longer than about an hour, we chose

to limit the size of the program we used to ensure that all

data is of a high quality.

6.3 Procedure

Participants performed the study at their own work area,

or at that of a researcher if they were undergraduates with-

out an assigned work space. After ensuring that the par-

ticipants could access the online stimuli, the session began

by obtaining informed consent. Next, a brief demographic

questionnaire was administered to identify the participants’

age, sex, program, field of study, years of experience in Java

and ‘comfort’ in Java programming (a score from 1 to 7).

To perform the maintenance tasks, participants were

given 15 minutes, with a prompt when 10 minutes had

elapsed. For the three tasks, each programmer had to

identify by line number, the locations where changes were

needed to modify the program’s behaviour. Task 1 required

the programmer to switch the positions of two buttons. In

Task 2 the programmer had to change the type of a variable

from the primitive type double to the class Double. For

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Task 3 the applet background and button foreground colours

were to be changed to blue and magenta, respectively.

During the tasks, the source code was viewable using

a web-browser. For convenience, line numbers were dis-

played to the left of the source code. The maintenance

tasks required changes to be made throughout the program

with the first change on line 11 and the last on line 298.

These tasks ensured that the programmers examined the en-

tire source file. If the tasks were finished in less than 10

minutes, the programmer was encouraged to study the file

until 10 minutes had elapsed in preparation for completing

a post-maintenance survey. Once the tasks were completed,

the browser window was closed to prevent further study of

the file.

The maintenance tasks were scored to determine the par-

ticipant’s correctness and completeness with regard to the

lines identified as needing changes. To simplify coding, the

tasks were designed such that each could only be success-

fully accomplished in one way, thus allowing all results to

be compared against this single correct solution.

When the maintenance tasks had been completed, each

participant was handed a shuffled deck of 10 cards, with

each card displaying the prototype for one of the program’s

methods. Participants were asked to sort the cards such

that they matched the order in which the methods appeared

in the program and with the top card identifying the first

method. After sorting these cards, they were given a sec-

ond, identical, deck of cards and asked to sort the cards with

respect to the length of the methods and with the top card

identifying the shortest method.

Next, participants were given a post-maintenance survey

to complete. In the first part of the survey, participants had

to indicate on a horizontal bar the position of a method in

the program. The bar was divided into quarters, with the

divisions being identified as lines 0, 75, 150, 225, and 300.

An example was provided as part of the instructions. The

location of 5 methods was asked using this technique. In

the second part of the survey, 5 pairs of methods were given

and, for each pair, participants were to identify the method

that occurred first in the file. In the third part, 5 methods

were listed and participants were asked to select the cate-

gory (1-5 lines, 6-10 lines, 11-20 lines, over 50 lines) that

best described the method’s length. For the fourth and final

part of the survey, participants were given 5 pairs of meth-

ods and asked to select the category (adjacent, 5-10 lines,

11-50 lines, 51-100 lines, over 100 lines) that best described

the spacing between the two methods. No time restrictions

were put on completing the survey.

Participants then completed the object memory test and

object location test using the protocol described by Silver-

man and Eals [30]. Each test was timed and took two min-

utes to complete. To conclude the study, the Vandenburg

and Kuse mental rotation test [34] was then administered.

Participants were given 10 minutes to complete the test and

scored using negative scoring – one point for a correct so-

lution, minus one for a wrong solution and zero for an unat-

tempted item.

After completing this set of surveys, each participant was

debriefed, thanked for their time and given $10 in remuner-

ation. On average, each participant took about 45 minutes

to complete the session.

7 Discussion

Within this section, an value of is used to deter-

mine significance. All -tests are two-tailed and assume that

samples are independent. Rather than following a more tra-

ditional style, we combine our presentation of results with

our discussion due to the complexity of the experiment.

7.1 Sampling Differences

Males and females were compared to determine whether

they differed in years of experience using Java, comfort in

Java programming, years of university experience and age.

No significant differences were found between these groups

(in all cases). When compared on their software

maintenance skills, no significant differences were found

between men and women in terms of their mean correctness

or completeness on these tasks.

The lack of a significant difference between men and

women, with respect to their background, suggests that the

two groups are equivalent and that any differences that are

found are not a result of their experience. The lack of differ-

ence on their ability to perform software maintenance fur-

ther confirms this equivalence.

However, on almost all measures, women exhibited

much higher standard deviations than did men. We have

identified three possible explanations for this finding. First,

there are very few women in the Dalhousie computer sci-

ence programs. Thus, they may represent a far broader pop-

ulation than does the small subset of men we surveyed. Sec-

ond, it is well known that it is difficult for women to flourish

in the male-dominated world of computer science. Thus, it

is possible that those who succeed in this domain are not

‘typical’ and may not form a highly representative sample.

Finally, while not as probable, we may have inadvertently

surveyed a very homogeneous and non-representative sam-

ple of men.

7.2 Location and Object Memory

Surprisingly, there were no sex differences on object

memory, , , or location memory,

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

, . There were some significant find-

ings, however, in how these abilities relate to program com-

prehension.

For all participants, location memory significantly cor-

relates with post-maintenance task one, ,

, with post-maintenance task three, ,

, and with the card sort by method position,

, . However, when examined by

sex, it can be seen that performance on the post main-

tenance tasks did not correlate significantly with location

memory for men. Thus, the correlations are a consequence

of women’s abilities.

Location memory significantly correlated, for women,

with their total correctness for task two, ,

, which asked participants to state which of

two methods appeared first in the file. As well, women’s

location memory significantly correlated with task three,

, , which asked participants to se-

lect the corresponding length of a method from a list. Thus,

women with a high location memory ability recalled more

correct orderings of methods, and knew the length of these

methods. Additionally, although not significant, task one

(the identification of the line number where a method be-

gan) approached significance when correlated with location

memory for women, , . Interestingly,

the last post maintenance task, which asked participants the

spacing between methods, was not correlated with location

memory for women.

Location memory was not correlated with either of the

card sort tasks for men, yet did yield significant correlations

for women. Card ordering by location was significantly cor-

related with location memory , , such

that women’s location memory was associated with more

correct ordering of methods. Similarly, women’s location

memory was also significantly correlated with card order-

ing by method length, , . Moreover,

for women but not men, the two card sorts were related,

, .

Location memory seems to be important for women’s

global program comprehension. It is how they remember

the location of items, and their length. The knowledge they

can recall is important because it suggests they are forming

landmarks using codespace entities, but have not yet begun

the next stage of relating these landmarks, using their spac-

ing, to form routes.

Object memory did not significantly correlate with men’s

or women’s post maintenance tasks or with location mem-

ory. However, it was significantly associated with women’s,

but not men’s, average correctness on the three code-based

maintenance tasks, , .

The findings for both object and location memory sug-

gest that, when performing program comprehension dur-

ing maintenance, women are using a bottom-up strategy,

working with the code on a low level, and are thus learning

detailed low level spatial information about the methods –

their names, locations and lengths. We suggest that women

are using a bottom-up approach due to its low level con-

crete nature and its relationship to a low level route-based

navigation strategy in which landmarks (significant objects)

are identified as a precursor to forming routes. The fact that

men did not demonstrate the same correlations provides ev-

idence of a sex difference and supports our model.

7.3 Mental Rotation

We did not find a sex difference on the mental rotation

test, , . Although we were initially

surprised by this finding, there are several potential expla-

nations. We review these explanations in Section 7.5.

Women’s mental rotation did not significantly correlate

with their performance on the post-maintenance tasks, card

sorts, or object and location memory tests. However, men’s

mental rotation did correlate with their average correctness

on the software maintenance task, , .

The mental rotation test is highly abstract, as is top-down

program comprehension. If men tend to use abstract skills

when performing comprehension, their abilities on the two

should correlate. Thus, this correlation provides evidence

for men’s use of a top-down, more abstract, program com-

prehension strategy.

We do not deny that men could be using some form

of mental rotation to orient themselves when performing

software navigation, program comprehension and software

maintenance. However, the linear nature of source code

does not suggest that mental rotation is as important, or will

be used as much, as women’s use of location memory.

7.4 Approaches to Software Maintenance

The performance of men of post-maintenance task three

significantly correlates with their average maintenance

score for correctness, , . For

women, their performance on the object memory test and

post-maintenance task one significantly correlates with their

average maintenance score for correctness, ,

, and , , respectively. There

were no significant correlations for men’s or women’s aver-

age maintenance completeness scores.

These correlations with the average maintenance correct-

ness score are revealing and important. For men, their main-

tenance score (ability) is correlated with maintenance task

three (how long is a method?). Thus, men are aware of a

method’s size, but not its location. For women, their mainte-

nance score is correlated with their object memory and their

score on task one (where is this method located?). Thus,

women are aware of a method’s location.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

When using a top-down program comprehension strat-

egy, men will focus on the functionality of the program’s

methods. If one assumes that methods that do more compu-

tation will take up more space (i.e., more lines), the relation-

ship between men’s maintenance skills and their awareness

of method length can be considered as evidence that they

are using a top-down comprehension approach.

Women are more aware of a method’s location. Thus, the

correlation of their method location and maintenance skills

is evidence of the use of a bottom-up comprehension strat-

egy. Rather than focusing on what a method does, women

are tracing control-flow and, in doing so, are more aware of

where methods are located and their order within a file.

7.5 Sex Differences

Although we expected to find sex differences in mental

rotation, object memory, and location memory, the lack of

any differences is easily explained. Typically, these psy-

chological measures are administered to participants who

do not rely on these abilities as part of their professional

development. To succeed as a computer programmers, men

are forced to develop better than average object memory

skills. It is impossible to work with large numbers of source

code entities without being able to organize and recall them.

Conversely, computer programming can be highly abstract,

thus forcing women to become more adept at abstract skills

such as mental rotation.

However, regardless of their equivalence in these skills

and when given the choice, men and women will still use

the skills they are more comfortable with and first devel-

oped. Women can operate abstractly and equivalently to

men, but will prefer to form route maps using their object

location skills and a bottom-up approach. Men can remem-

ber the locations of objects, but will prefer to operate ab-

stractly and form survey maps using a top-down approach.

These preferences are demonstrated in the sex differences

that our correlations exhibit.

Women can be considered as focusing on low level de-

tails, such as method names and positions, as they are us-

ing a low level, concrete strategy to identify elements that

can be used as landmarks for a route-based navigation strat-

egy. The better they can find landmarks, the better their

navigation will be, thus allowing them to learn more about

the software and improving their ability to perform mainte-

nance. All these skills are related and built on the concept of

minimising risk by using a low level, bottom-up approach.

Men focus on high level abstractions and build a functional

model of source code. Their ability to perform maintenance

is based on their ability to use an abstract, high risk, top-

down approach. That is, women learn there is a calcu-
late method while men learn there is a method that calcu-

lates.

8 Future Work

It might be considered that one of the most important el-

ements of our work is its ability to suggest new directions

for research. While we have potentially established rela-

tionships between program comprehension, software nav-

igation, spatial cognition, risk-taking behaviour and pref-

erence for abstraction, these relationships expose a wealth

of research opportunities. We now present a few of these

opportunities to provide evidence of the model’s ability to

integrate different research areas.

8.1 Landmarks

When examining source code, beacons are used to iden-

tify features and structures (i.e., meaningful application do-

main objects) within the code [3]. Brooks suggests that pro-

grammers scan or search source code for beacons that con-

firm or suggest the existence of specific syntactic and se-

mantic objects. This use of beacons suggests that they may

have a relationship to landmarks. However, we know of no

research that explores the use of beacons for navigation.

We suggest that beacons are distinct to source code land-

marks. Beacons identify the existence of a specific feature.

Just as a square-shaped mound indicates the existence of a

probable archaeological site, three sequential assignments

using three variables indicates a probable swap and conse-

quently, a sorting algorithm. Beacons indicate the presence

of another, usually (cognitively) larger, object while land-

marks identify a significant positional location in space.

Although they are distinct from landmarks, beacons are

not unrelated. We suggest that beacons are a component of

a landmark. With a church, the spire can serve as a bea-

con to indicate that a church exists and the church can serve

as a navigational landmark. In code, the name ‘sort’ in a

subroutine definition acts as a beacon for the existence of a

sorting subroutine that can be used as a source code land-

mark. As they are a component of landmarks, the known

sex differences in the ability to recall landmarks should also

be exhibited for beacons. It now falls on future research to

explore the relationships between beacons and landmarks

and their opposing roles in software navigation and program

comprehension.

8.2 Visual Sub-Systems

Viewing the world is much like program comprehension.

That is, we gather data using our visual system and then

generate meaning for this data. During program compre-

hension, we read source code to gather data, and then map

the data to application domain concepts to give it meaning.

Within the human visual system, it has been shown that

there are two separate subsystems: the contour and the lo-

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

cation systems [16]. The contour system identifies objects

while the location system determines an object’s spatial lo-

cation. These perspectives match the concepts of object

memory and location memory. Analogously, we can expect

to find parallel systems in place for navigating source code.

Research on program comprehension suggests that pro-

grammers generate meaning for a program by assigning

code fragments to domain concepts. This task can be con-

sidered as using the contour subsystem. That is, program-

mers identify meaningful conceptual objects that can be as-

sociated with the code.

Current research on program comprehension pays little

attention to the equivalent of the location system. There

is little examination on the location of these objects, or of

their manifestations in source code. Program comprehen-

sion models specify the cognitive structures used to gener-

ate meaning for code and ignore the spatial relationships be-

tween code fragments and domain concepts. It is likely that

this omission is tied to the lack of attention that is given to

the structural view of source code. By ignoring positional

relationships, the current models of program comprehen-

sion can be viewed as incomplete. Addressing this incom-

pleteness can lead to an improved knowledge of the com-

prehension process and in turn can motivate the production

of better techniques, environments, and tools for software

maintenance.

8.3 Risk-Taking During Comprehension

We have found initial evidence to support the idea that

one’s risk-taking behaviour is a key influence on one’s

choice of program comprehension and development strat-

egy. Using a top-down strategy is highly risky, as it takes

considerable time for results to be achieved and one is prone

to making more mistakes over a longer period of time. In

opposition, a bottom-up strategy is less risky as results, al-

beit much lower-level ones, are more readily obtainable.

We suggest that exploring the relationship between risk

and code manipulation strategy will yield considerable in-

sight into both program comprehension and development.

Furthermore, this exploration has the potential to consid-

erably improve, refine and add detail to our model. The

known sex differences in risk-taking permit an individual’s

perception of risk to provide the focus for an experiment and

thus serve as a surrogate for one’s sex. In this way, exper-

iments can be carried out on the predominantly male pop-

ulation of computer science and then extrapolated, via risk,

to identify their effect on female populations. We consider

this relationship to be an important one that could poten-

tially address many significant sociological issues exhibited

within computer science and related informatics disciplines.

9 Conclusion

In this article, we have created a model to link spatial

cognition, source code navigation and program comprehen-

sion. The model uses well known and robust sex differ-

ences in behaviour to identify links between the various el-

ements. The complexity of our model suggests that source

code navigation is not a trivial activity that occurs while

we develop a code-to-concept map as part of program com-

prehension. Instead, the model indicates that programmers

employ their preferred spatial cognition skills and create a

spatially-based view of a software system. We refer to this

spatial perspective as ‘codespace.’

We readily admit that our model is complicated and the

experiment that we performed is equally so. However, hu-

man behaviour is the product of many factors, and mod-

els that consider these many factors are necessarily com-

plex. We consider our contribution as a first step in explor-

ing the relationships between program comprehension, pro-

gram development and software navigation.

Furthermore, it is clear that our initial experiment is not

conclusive. We have found strong supporting evidence for

our hypothesis, but additional experimentation is needed to

replicate and validate our results. It now falls to our future

research, as well as that of other researchers, to verify, cor-

rect, refine and extend our initial model.

The rewards for understanding programmers’ behaviour

at the cognitive level are high. Tool developers will be

able to leverage this knowledge to create more effective

tools that are more likely to be adopted. Educators will be

more able to teach program development and comprehen-

sion through an improved understanding of the underlying

cognitive skills. Finally, and perhaps most importantly, by

understanding how sex-based differences in cognition are

applied, there is the potential to tailor computer science pro-

grams to better suit the needs of different populations and

potentially address the under-representation of these popu-

lations, such as women, in the computing disciplines.

Program comprehension is an important element of soft-

ware maintenance. We believe that our work identifies new

and previously unexplored links between comprehension,

abstraction, risk-taking, and spatial cognition. These links

expose a vast realm of new research opportunities and serve

to further our knowledge of program comprehension and

the rapidly developing area of software navigation.

References

[1] V. Aginsky, C. Harris, R. Rensink, and J. Beusmans. Two

strategies for learning a route in a driving simulator. Journal
of Environmental Psychology, 17:317–331, 1997.

[2] D. Appleyard. Why buildings are known. Environment and
Behavior, 1:131–156, 1969.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

[3] R. Brooks. Towards a theory of the comprehension of

computer programs. International Journal of Man-Machine
Studies, 18(6):543–554, 1983.

[4] E. Chown, S. Kaplan, and D. Kortenkamp. Prototypes, lo-

cation, and associative networks (PLAN): Towards a unified

theory of cognitive mapping. Cognitive Science, 19:1–51,

1995.
[5] A. Clark. Microcognition: Philosophy, cognitive science

and parallel distributed processing. MIT Press, Cambridge,

MA, 1989.
[6] L. Cosmides and J. Tooby. Cognitive adaptations for social

exchange. In The Adapted Mind, chapter 3, pages 163–228.

Oxford University Press, Oxford, UK, 1992.
[7] A. Cox, M. Fisher, and P. O’Brien. Theoretical considera-

tions on navigating codespace with spatial cognition. In An-
nual Workshop of the Psychology of Programming Interest
Group, 2005.

[8] M. Daly and M. Wilson. Risk-taking, intrasexual competi-

tion, and homicide. In Nebraska Symposium Series, No. 47:
Motivation, pages 1–36, 2001.

[9] R. DeLine. Staying oriented with software terrain maps.

In International Conference on Distributed Multimedia Sys-
tems, Banff, Canada, September 2005.

[10] M. Desmond, M.-A. Storey, and C. Exton. Fluid source code

views for just in-time comprehension. In Workshop on Soft-
ware Engineering Properties of Languages and Aspect Tech-
nologies, Bonn, Germany, March 2006.

[11] C. Douce, P. Layzell, and J. Buckley. Spatial measures of

software complexity. In Annual Workshop of the Psychology
of Programming Interest Group, pages 36–45, Leeds, UK,

January 1999.
[12] R. Downs and D. Stea. Image and Environment: Cognitive

Mapping and Spatial Behaviour. Aldine, Chicago, IL, 1973.
[13] T. Green. Cognitive approaches to software comprehension:

Results, gaps and limitations. In Experimental Psychol-
ogy in Software Comprehension Studies, Limerick, Ireland,

1997. Extended abstract of talk.
[14] T. Green and R. Navarro. Programming plans, imagery,

and visual programming. In Human-Computer Interaction:
INTERACT-95, pages 139–144, London, UK, 1995. Chap-

man and Hall.
[15] T. James and D. Kimura. Sex differences in remembering the

locations of objects in an array: Location-shifts versus loca-

tion exchanges. Evolution and Human Behavior, 18:155–

163, 1997.
[16] S. Kaplan and R. Kaplan. Cognition and Environment.

Praeger, New York, NY, 1982. Republished, 1989, Ulrich’s,

Ann Arbor, MI.
[17] Y. Kato and Y. Takeuchi. Individual differences in wayfind-

ing strategies. Journal of Environmental Psychology,

23:171–188, 2003.
[18] M. Kersten and G. Murphy. Mylar: A degree-of-interest

model for IDEs. In International Conference on Aspect-
Oriented Software Design, pages 159–158, Chicago, IL,

March 2005.
[19] R. Kitchin. Exploring spatial thought. Environment and

Behavior, 29:123–156, 1997.
[20] C. Lawton. Gender differences in way-finding strategies:

Relationship to spatial ability and spatial anxiety. Sex Roles,

30(11/12):765–779, 1994.

[21] C. Lawton. Strategies for indoor way-finding: The role of

orientation. Journal of Environmental Psychology, 16:137–

145, 1996.
[22] D. McBurney, S. Gaulin, T. Devineni, and C. Adams. Su-

perior spatial memory of women: Stronger evidence for

the gathering hypothesis. Evolution and Human Behavior,

18:165–174, 1997.
[23] S. Moeser. Cognitive mapping in a complex building. Envi-

ronment and Behavior, 20:21–49, 1988.
[24] A. Mohan, N. Gold, and P. Layzell. An initial approach to

assesing program comprehensibility using spatial complex-

ity, number of concepts and typographical style. In Working
Conference on Reverse Engineering, pages 246–255, Delft,

Netherlands, November 2004.
[25] R. Mosemann and S. Wiedenbeck. Navigation and com-

prehension of programs by novice programmers. In IEEE
International Workshop on Program Comprehension, pages

79–88, Toronto, Canada, April 2001.
[26] N. Pennington. Stimulus structures and mental representa-

tions in expert comprehension of computer programs. Cog-
nitive Psychology, 19:295–341, 1987.

[27] J. Piaget and B. Inhelder. The Child’s Conception of Space.

Norton, New York, NY, 1967.
[28] A. Postma, G. Jager, R. Kessels, H. Koppeschaar, and J. van

Honk. Sex differences for selective forms of spatial memory.

Brain and Cognition, 54:24–34, 2003.
[29] D. Saucier, M. Bowman, and L. Elias. Sex differences in the

effect of articulatory or spatial dual-task interference during

navigation. Brain and Cognition, 53:346–350, 2003.
[30] I. Silverman and M. Eals. Sex differences in spatial abili-

ties: Evolutionary theory and data. In The Adapted Mind,

chapter 14, pages 533–549. Oxford University Press, Ox-

ford, UK, 1992.
[31] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting

navigation in software maintenance. In IEEE International
Conference on Software Maintenance, pages 325–334, Bu-

dapest, Hungary, September 2005.
[32] E. Soloway and K. Erlich. Empirical studies of program-

ming knowledge. IEEE Transactions on Software Engineer-
ing, SE-10(5):595–609, September 1984.

[33] S. Turkle and S. Papert. Epistemological pluralism: Styles

and voices within the computer culture. Signs, 16:128–157,

1990.
[34] S. Vandenburg and A. Kuse. Mental rotations: A group test

of three dimensional spatial visualization. Perception and
Motor Skills, 47:599–604, 1978.

[35] N. Vinson. Design guidelines for landmarks to support nav-

igation in virtual environments. In ACM CHI 99 Conference
on Human Factors in Computing Systems, pages 278–285,

Pittsburgh, PA, May 1999.
[36] A. von Mayrhauser and A. M. Vans. Comprehension pro-

cesses during large scale software maintenance. In Interna-
tional Conference on Software Engineering, pages 39–48,

Sorrento, Italy, May 1994.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

