
COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 55

Programming on an

Already
Full Brain

Bugs happen because people create them when they

can’t remember the details needed to write correct

programs. Why waste the user’s scarce biological

cache memory when plentiful computer memory

performs better?

Christopher Fry

ROGRAMMERS OPTIMIZE THE INNER LOOPS OF

their code because that’s where the biggest

performance gains are possible. Programming

environments should do the same. The inner

loop involves figuring out what to type and then

typing it. Is it possible to create a programming

environment that speeds both the figuring out

and the typing?

Getting correct all the details of code demands lots of biological memory,

frequently more than is available. But at any point in the typing of code,

options are usually constrained by the legal constructs of the language, the

functions and data available, and the context. Since the programmer’s

brain is already full of the details of the task and the algorithm, let’s

P

use the computer’s brain instead. Emacs Menus is an
adjunct to the Emacs text editor presenting the pro-
grammer with context-sensitive menus containing
options that are at least syntactically and typewise
legal for the code under the mouse. Emacs Menus, not
a commercial product, was written by the author dur-
ing the past few years in Boston.

Most debugging tools concentrate on finding and
fixing relatively infrequent deeper bugs, such as errors
in algorithms. But in practice, too much time goes to
edit-compile-debug cycles for minor bugs, such as
typos and “brainos,” use of “kill” instead of “delete,” or
reversal of the order of two arguments to a function. By
catching these problems in the editing stage, Emacs
Menus speeds programming’s inner loops.

The Limits of Biological Memory
Of the things humans do, there is, perhaps, no task
more demanding of biological memory than program-
ming. A common myth in our society is that the
human brain has unlimited capacity for knowledge
acquisition and storage. I don’t buy it. We can store
only so much at a particular time, and our ability to
change the contents of that finite memory over time is,
to be polite, limited. Overcoming that limitation is
the strong suit of the computer. Humans are good
compared to their silicon peripherals at abstract
thought and higher-level knowledge organization.
Computers are good at storing and searching large
amounts of data. Emacs Menus helps each member of
the programming team—a computer and a person—
optimize what it, he, or she does best and interface
smoothly with the other half of the team.

Programming involves design as well as writing. The
continuum between concept and code can be organized
into four major stages:

• Conceptual design
• Picking the right components to assemble
• Assembling the components
• Testing

Conceptual design takes place mainly in the program-
mer’s head. Picking the components and understand-
ing how to assemble them requires answering such
questions as What components are there to choose
from? and How do I put them together? Answering
these questions often overwhelms the programmer’s
biological memory.

A modern programming language may have choices
numbering in the hundreds or thousands. For humans
fortunate enough to have occupations that allow them
to program full time or blessed with an infallible
memory for detail, answers to the related questions

may pop to mind immediately. The rest of us tend to
stick to a small set of familiar commands we are likely
to use correctly and give up on the rest, regardless of
their utility.

Understanding what parts are available and how to
put them together is crucial. Since the need for this
information is greatest just as the user is about to type,
Emacs Menus builds an agent into the text editor that
dynamically computes the available choices using
knowledge of the programming language and knowl-
edge of the interactive context. Help is available not in
a Help window or in Help mode but through a pop-up
menu at the point of insertion, exactly where the pro-
grammer needs it. Further, unlike most Help systems,
Emacs Menus doesn’t just tell users what they should
do, it spares them the possibility of mistyping it.

Earlier Solutions
Until now, there have been three approaches to the
problem of inputting programs. The classic one has
been to type programs in an unrestricted text editor,
just as the programmer might type a natural language
document. The second is to have the system provide a
text-based structure editor. The third is to use a special
kind of structure editor that uses icons instead of text
to represent the program source.

Text Editors (the nonsolution). Text editors give
programmers so much rope it’s difficult to use them to
specify so simple a task as hanging yourself, let alone
writing a valid piece of software. Programmers create
a new document and are presented with a large blank
space in which to enter just about any amount of
garbage consisting of characters. They are free to create
illegal syntax and nonsensical vocabulary and to add
comments to the code with whatever they like, regard-
less of validity.

After a document is created in the text editor, the
programmer then submits it to a compiler or inter-
preter, which checks the validity of the syntax and
reports errors. If the program makes it through this
step, it is executed and any runtime errors that arise are
reported. Forced by errors back to the text editor, the
programmer is faced with the cognitive task of associ-
ating error messages with the place in the code that
caused them. Several errors may be reported at once,
possibly due to either a single underlying cause or a
series of independent causes, further confusing the
matter. While modern programming environments
try to minimize the overhead of context-switching in
the edit-compile-debug cycle, this overhead is
nonetheless significant even in the best of them and
violates the principle of immediacy (see the article by
Ungar et al. in this issue.)

56 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Structure Editors and Forms-Based Languages
(the bureaucratic solution). The structure-editing
approach tries to retain the flexibility of text editing
while adding knowledge about the programming lan-
guage structure [10]. This way, the unambiguous
structure of function calls or data-structure description
is neatly delineated by a form that permits the pro-
grammer to enter text into a named slot. Free text edit-
ing is allowed only within the fields.

Although structure editors reduce the possibility of
syntactic error, they lose the flexibility of free text edit-
ing. No longer can the text motion, searching, and
editing commands be used
indiscriminately on any vis-
ible text; needed instead are
specific commands to move
up and down the template
structure. Because illegal
syntax can’t be entered, you
can’t change your code by
passing through several ille-
gal states (often necessary
when you want to make
something more than a triv-
ial modification).

Structure editors also typi-
cally take advantage of only
the static knowledge of the
programming language syn-
tax. As demonstrated by
Emacs Menus, much more
can be done by taking into
account the dynamic con-
text—exactly where the user is in typing the program,
what has already been typed, what variables are avail-
able at the moment, and more.

There are two kinds of structure editors: One is
embedded inside a text editor, and the templates are
inserted as text; the other consists of forms-based pro-
gramming, where the template is graphical.

While at MIT’s Center for Coordination Science, I
worked on a forms-based programming environment
called Objects, Views, Agents, and Links (OVAL) [5],
which provided clear online help for both writing and
reading code (see Figure 1). Parsing for the compiler is
trivial, so some checking can be performed on argu-
ments and data-slot values by rather simple programs.

But forms-based programming suffers from severe
space inefficiencies (as do the iconic languages discussed
in the next section). The designer of the form can’t pre-
dict the optimal size for an argument to take up.
Dynamically varying the size of fields via scrolling or
resizing the form consumes more operations in the user
interface, more space for controls, or both. Embedding

forms within forms is the logical strategy for depicting
nesting, but the borders tend to take up an ever-larger
amount of screen real estate.

Iconic Languages (the straightjacket solution).
Iconic programming environments offer many benefits
to memory-challenged humans [8], providing palettes
of functions so programmers need not remember what
functions exist or how each is spelled. They provide
constrained ways to wire up functions so syntactically
incorrect code can’t be entered. Furthermore, the oper-
ations used to edit code can be as intuitive as dragging

a wire between an output and
an input node using the
mouse. But for large complex
programs, the iconic cure is
often worse than the freedom-
of-text disease.

As much as I love graphics,
words are more spatially effi-
cient. One word is worth a
thousand pixels of icon, yet
takes up less screen real estate.
Iconic programs can’t display
as large a section of the pro-
gram at once. The smaller the
piece of a program the pro-
grammer can see at once, the
more difficult it is to mentally
piece the whole thing together,
causing yet another biological

memory problem. In addition,
trying to remember the mean-

ings of a large set of small icons, humans run into even
more memory problems. Marian Petre [7] discovered
that a graphic representation was so difficult to under-
stand, people tended to use the textual representation to
help them understand the graphical one rather than the
other way around.

Visual programming also confronts the programmer
with having to spatially lay out the icons. Unfortu-
nately, programming involves constant revision. Some-
times the programmer wants to add 10 times as much
code in a particular area than the original layout left
room for but must spread everything out to make more
space. The original layout work is wasted. Automatic
layout programs are available but are tricky to get
right and often don’t convey the “semantic proximity”
the programmer intended. Are we doomed to use tools
no better than a text editor?

Emacs Menus
It should come as no surprise that I chose rather con-
ventional text as the medium for displaying code. Text

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 57

ARGUMENT: C runs very fast

(C runs very fast)

(Use C)

(Use HyperCard)

(Jane Leroy)

ly important for the
appl icat ion we're going

Save Duplicate OtherSend

Nosa

Supports

Objects To

Entered By

Add Link
Add New Object…
Add New Description…
Resolve Descriptions

Change View…
Set Alternatives…
Set Default…
Set Type…
Explanations…
Hide

Figure 1. An OVAL form for specifying a
data structure

is the most flexible and the most dense medium. I’m
all for careful pretty printing of the text, but that func-
tion is already provided in decent text editors.

Hackers familiar with text editors who switch to dif-
ferent kinds of programming environments often
lament the lack of their favorite features in their favorite
text editor. The first characteristic of a programming
tool I wanted to achieve was to be no worse than an
existing text editor. So I implemented Emacs Menus on
top of an Emacs-like text editor. All commands in the
underlying text editor are present. Also, I did not want
to waste permanent screen real estate on displaying
palettes of commands, as in many iconic environments.
In fact, unless you are aware of the enhancements, you
may be unable to detect that a powerful tool awaits
under your mouse.

Whenever the user is in the text
editor, holding down the mouse
brings up a pop-up menu after a
short delay. The delay is provided
so a quick click simply repositions
the text cursor without bringing
up the menu. Holding down the
mouse requests help from the sys-
tem in the form of the question
What might I do next? It is
important that the menu appear
right at the point of insertion—
where the user’s attention is
focused—not elsewhere on the
screen.

The contents of the menu (see
Figure 2) appearing at any moment
is highly dependent on the textual
context. Emacs Menus analyzes the
surrounding code and displays
only the choices that make sense for the current con-
text. Since the user is faced with a large number of pos-
sible choices, the pop-up menu presents a large
number of items, but the categorization of items and
special 4D menu navigation features make these large
menus less scary than one might initially expect.

Just-In-Time Help
The menu that pops up contains items and submenus
supplying:

• Knowledge about what was just clicked on
• Code to insert
• Other editing and debugging operations

Emacs Menus and Common Lisp Code. I built a
database of information on the global variables and
functions in Common Lisp. Each variable is associated

with the type of values it can hold as well as with sev-
eral typical values, one designated as the default value.
The database entry for each function contains the type
of the result, as well as the name, type, typical values,
and a default value for each parameter. (I use parameter
to mean the description of the kind of value that can be
passed to a function, and argument to mean a particular
value passed in a particular function call.) All parame-
ters to a Lisp function are not necessarily required. The
Emacs Menus database also stores the kind of parame-
ter, whether optional, keyword, or “&rest” (meaning
any number of arguments can be passed).

A typical mouse click is on an argument to a func-
tion. Emacs Menus’ inside-out parser figures out its
corresponding function and parameter, looks it up in

the Emacs Menus Common Lisp database, and con-
structs, on the fly, a submenu containing items for
information purposes only. The items are:

• The name of the enclosing function call and rank of
the argument, such as 2nd arg to +

• The kind of the parameter, such as required or
optional

• The type of the parameter, such as number and
sequence

• The type of the actual argument being passed, such
as integer or string

• Whether or not the type of the argument matches
(is the same as or a subtype of) the parameter type

Emacs Menus can infer the argument type by
knowing the result type of arguments that are func-
tion calls, the type of Common Lisp global variables,

58 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 2. Emacs Menus top-level menu

or the type of literals (see Figure 3). For lexical vari-
ables and some other constructs, Emacs Menus can’t
infer the type. Such type-checking helps catch a lot of
errors that in a weakly typed language, such as Lisp,
might not be caught until runtime. In a strongly
typed language, such as Java, the Emacs Menus’
early-warning system would catch the errors before
the compiler is invoked.

Inside-Out Parsing
To escape the straightjacket of iconic programming
and the regimentation of forms-based programming,
the user must be able to create illegal code fragments.
Maintaining an accurate model of what all the text in
a buffer represents is therefore difficult at best. Emacs

Menus doesn’t do it. However, Emacs Menus does
include detailed information about the code under the
mouse. Every time the programmer clicks and holds on
some code, a parse of the underlying text is started.
Most parsers start at the beginning and move sequen-
tially through the text. Theoretically, Emacs Menus
could start at the beginning of the buffer, but pausing
at the beginning of the buffer would take too long,
especially in the face of illegal code between the begin-
ning of the buffer and the mouse position. The Emacs
Menus user interface requires that a fraction of a second
after the user clicks, a context-specific menu of infor-
mation and commands pops up. The parser starts
where the user clicked and parses outward. It stops
when it has captured just enough code to identify the
current statement and its enclosing form, usually
which argument of which function call.

Coding via Mouse
The sooner the programmer catches errors in the cod-
ing process the better. One reason this rule is true is
that the programmer has already built up a mental
model of the current code, and creating that model
takes time. The Information menu in Emacs Menus
helps catch such errors as “wrong number of arguments
to a function” or “wrong type of an argument” before
compiling or runtime but after they’ve been entered.

Can we catch errors even sooner? The Information
menu (see Figure 3) delivers just-in-time help on an
argument before the programmer enters it. Say you type
in a function call to the Common Lisp function elt,
which returns the nth element of a list, but you wonder
whether it’s the first or the second parameter that accepts

the sequence in question. You can
use the Information menu to tell
the name and type of the first argu-
ment to elt. You’ll find the first
argument is a sequence and that you
can type in your sequence. That’s a
lot faster than looking up the func-
tion in the documentation.

Can we do better? Another sub-
menu of the main Emacs Menus
menu contains typical values for the
place under the mouse. In the case
of the 2nd argument to +
where you must pass a number,
you’d see menu elements for -2, -1,
0, 1, and 2, giving you examples
of the kinds of values that can go
there (see Figure 4). A correct set of
examples not only makes a strong
hint as to the type of value that can
be used but tells you the syntax of
those values.

Can we do even better? In the case of such functions
as the 2nd argument to +, certain values are
common. Several small integers qualify. If you select an
item from the Typical Values menu, that item is
inserted into the program text at the place of the
mouse. This automatic insertion spares the program-
mer having to type in the code, but more important, it
eliminates the risk of making a mistake that forces you
to go through a compile-debug-edit cycle. For para-
meters of type sequence, the menu of typical values
might contain the empty string “ ”, the empty list (),
and the empty array # []. A user can pick a value to
insert, then edit the value to contain exactly what is
wanted. Emacs Menus can’t read a programmer’s mind,
but at least it helps programmers get the basic syntax
right.

Typing in unbalanced delimiters is a common bug in

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 59

Figure 3. Context Information Menu showing information
about the 2nd argument to +

Lisp coding that need never occur if
you use Emacs Menus (see Figure 5). I
found eliminating this source of bugs
so compelling, I added a special menu
containing just delimiters. Common
Lisp multiline-comment delimiters
are particularly error prone. Inserting
delimiters on white space inserts just
an empty pair. But if the mouse is
over an expression and the program-
mer chooses insert, the delimiters
are automatically wrapped around the
text in question.

Inserting Lexical Variables. Some-
times the code wanted for an argu-
ment is not a literal but the name of a
lexical variable (also known as a local
variable, such as the names of function
parameters). Another submenu off the
main Emacs Menus menu contains a
list of all the legal lexical variables, or
all the variables “in scope,” at that
point in the program. Thus, users
need type in only the name of each
variable once (to declare it). From
then on, they can pick it from a menu,
preventing inconsistent spellings.
Also, since the menu contains only
variables legal at that point, they
never get an “undeclared variable”
error. Unfortunately, Emacs Menus
doesn’t yet infer the types of lexical
variables, so users can still insert a
typewise incorrect variable. Fixing
this limitation is a natural extension
to Emacs Menus.

Inserting Function Calls. Because complex code fre-
quently involves deep nesting of function calls, pro-
grammers need easy ways of inserting function calls.
When a programmer picks a function call from an
Emacs Menus Insert menu, a call to the function is
inserted, including both open and closed parentheses.
The cursor is moved to the position of the first argu-
ment so the user is ready to pick it from a menu as
well.

The real problem with functions is that there are so
many to choose from. Common Lisp contains about a
thousand. It’s nice having all that functionality in the
language, but wading through the functions to find
what is wanted is a challenge even for seasoned hack-
ers. Emacs Menus to the rescue.

The first trick for Emacs Menus is to figure out the

functions the user is likely to want to call, depending on
context, then stick them on a menu. A few special
cases can go a long way; one common context is at top
level within a file. When the user clicks down on white
space, not in another construct, the typical values for
that context are forms for defining functions, macros,
and global variables. Emacs Menus’ typical values for
the top-level context menu also contain the package
declaration form and a call to load a file (see Figure 6).
As a group, these comprise the vast majority of top-
level forms in most programs.

As it turns out, function calls at the top level within
a function definition also fall into a relatively con-
strained pattern. Declaring and setting local variables
and a few control structures, such as if, cond, and
do loops, make up a significant fraction of many top-
level calls in a definition. Starting off with these two

60 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 4. Typical Values menu for an argument to +

Figure 5. Delimiters menu

contexts, programmers can use Emacs Menus’ typical
values for a fair fraction of code. Typical values may
include function calls themselves, indicating common
idioms.

However, these contexts don’t cover many important
cases. For example, adding the thousand or so Common
Lisp functions to the functions for a window system
and a few other utility packages yields several thousand
possibilities. All on one menu?

4D Menus
A linear 1D menu with more than 20 or 30 items is
cumbersome. We can create a second dimension using
hierarchical menus. That helps for a few hundred items
at best. Do we have to remember what to type relying
on our already full brain? This problem prompted me
to invent a new kind of menu with two more dimen-
sions—the horizontal and “pages.”

I’ve found three or four columns of 20 items each is a

reasonable amount of information for programmers to
navigate. “Pages” of these multi-columned menus repre-
sent a fourth dimension. Moving the mouse outside the
menu, then jiggling it slightly to the right or left allows
the user to quickly flip the 2D pages.

Just as humans with good spatial memory can
remember, say, some blob in the lower right-hand corner
of a page in a book and flip the pages to find that page,
Emacs Menus users can relocate a menu item they’ve
been to before. I used color as an additional clue to help
users recognize a page and as an indicator of how deep
they are in a page stack.

Using pages with, say, 50 items each and page stacks
five deep gives users 250 items without scrolling.
Adding hierarchical submenus makes it easy to get up
to several thousand items on one 4D menu, all without
scrolling.

Menu Organization. Anything we can do to help the
user select the correct function the first time saves

debugging time down the road. Being able to put
thousands of items on a menu is nice, but without
proper organization, finding what is wanted can be
time consuming. I concluded that programmers
needed more than one organization of the Common
Lisp functions, because they want to look them up in
different indexes.

Alphabetical ordering is an obvious organization,
although it is not part of the current implementation.
Having the front page of the menu contain all the
starting characters of functions (with each item being
hierarchical) is an easy way to take advantage of 4D
menus.

My primary organization is by returned type (see Fig-
ure 7). All the functions that return strings are under
one subtree, all the functions that return numbers
under another, and so on. This organization is espe-
cially convenient when users are about to insert an
argument to a function call for which they know the

type of the argument and the general
functionality they are after but have
no idea how to spell the function
name.

I found this organization wasn’t
always what I needed. Sometimes I
didn’t really care about the returned
type of the function but just needed
to scan the functions that manipulate
strings. Some of these return non-
strings, so users can’t simply look
under the String subtype menu to
find them. I built a menu organized
according to the chapter titles of the
book Common Lisp: The Language [9]

in which each function is documented. This organiza-
tion proved to be a valuable way to capture semantic
neighborhood.

Even with such structuring, some of the submenus in
Emacs Menus still include a confusing number of items.
The horrible thing about large dictionaries and large
programming languages is that looking for a common
word takes much longer than looking for a common
word in a smaller language. So I’ve split large cate-
gories into common and uncommon parts. Users who
first scan the common list and fail to find what they
want can delve into a submenu of the less frequently
used functions. This organization is especially useful
for beginners, since it eliminates the primary disad-
vantage of large languages.

Commands
Programming is not just inserting text. Text has to be
edited, even when syntactically correct. The program-
mer would also like to invoke a number of debugging

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 61

Figure 6. Top-level Insert Function Call menu

tools that take code fragments as
arguments, such as steppers [4].
Emacs Menus has an extensive Tools
menu (see Figure 8) that simplifies
the invocation of tools. I briefly
describe just one—Find Symbols—
which is so important I moved it to
the top-level menu.

Lisp has long had a function called
Apropos, which takes an argument of a
string and prints out all the Lisp func-
tions and global variables whose names
contain that substring. The Find Sym-
bols dialog I developed for Emacs
Menus gives many more ways to filter
the possible functions than traditional
Apropos (see Figure 9). Consider it an
interactive way of constructing custom
menus of functions in case the organi-
zations using 4D menus are not conve-
nient enough. With a few mouse
clicks, the Find Symbols dialog enables
users to filter down the set of interest-
ing functions to an easily scannable
10–30, then allows them to get docu-
mentation on each, and, after finding
the right one, click on it to insert it into
a program. Since Find Symbols can be
invoked on some selected text already
in an editor buffer, the programmer
doesn’t need to type the initial sub-
string as required to invoke conven-
tional Apropos.

Few things are more frustrating
than trying to fix a bug and inadver-
tently introducing a second bug by
misusing a debugging tool. If Emacs
Menus fails to prevent the first kind of
bug, at least it prevents the second.

Language Design and
Hardware
Although the problems and the solu-
tions I provide for them are applica-
ble to just about any textual
programming language, the particu-
lars of the syntax make a difference.
The more inconsistent and complex a
language, the more the programmer
needs help and the more difficult it is to write the
code to provide that help. Elegant syntaxes, such as
Lisp, are easiest for logical humans and programs to
parse. Languages, such as C and Java, that combine
infix and prefix syntax make life more difficult for

both the user and the tool-builder. Tools like Emacs
Menus can reduce but not eliminate the problems
caused by unnecessarily complex syntax.

Emacs Menus is software that can benefit from input
interface hardware designed with humans in mind.

62 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 8. Debug Tools menu

Figure 7. Users may know the type of the value they want, but not how to spell
the name of the function. Items in this menu are types that contain submenus of

functions that return a value of that type.

Switching between mouse and keyboard is bad. Most
hackers I know think in terms of keyboard commands
that perform equivalent mouse operations, so they
don’t have to switch to and from the mouse. I think in
the opposite direction, so the programmer doesn’t have
to switch to and from the keyboard. Emacs Menus pro-
vides most operations via mouse imput, although each
new identifier must be entered at least once.

Humans would benefit greatly from a mouse with a
button for each finger. Having to hold down a keyboard
key in combination with a mouse-click should con-
vince any user how badly the designers of one-, two-,
and three-button mice blew it. For example, allowing
scrolling via mouse would eliminate the need for scroll
bars taking up lots of screen real estate. Putting the
default action on a button eliminates the coordination
needed for double-clicking. Having Help and an
Additional Operations menu each on its own mouse
button would spare users from moving up to the
menu bar for operations.

The pen is mightier than the mouse and can be even
more convenient for entering small amounts of text

[3]. Character recognition is becoming quite reliable,
especially with stylized characters, such as those used
in the Graffiti software product [6]. Onscreen key-
boards are potentially even faster than Graffiti, espe-
cially if well laid out (as shown by the Instant Text
software product [11]).

When designing Emacs Menus, I wanted a pen-
based computer. A tablet is inadequate; better is a
screen you can write on. Getting five buttons on a pen
is difficult, but a pen would give not only higher spa-
tial resolution but the additional dimensions of pen
angle and pressure that make up for the one or two but-
tons that fit comfortably on a pen. Speech recognition
would be another advantage; so would two pointing
devices, one for each hand [1].

Throwing out the keyboard and using input
devices designed to fit the human body would
finally permit the smooth integration of hardware
and software. Under such an arrangement, tools
like Emacs Menus could really shine, because the
hardware wouldn’t get between users and their
bugs.

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 63

Figure 9. Find Symbols dialog

Programming Pain
For many hackers, debugging involves both mental and
physical pain. Hackers hack long hours. Repetitive
strain injury (RSI)—the hacker’s disease—is an occupa-
tional hazard. Emacs Menus allows users to perform
most operations via mouse. Since it is trivial to move
between keyboard and mouse, users can pick whichever
input device is less painful at the moment, making
their movements less, well, repetitive. Furthermore, the
mouse, particularly the one-button variety on Macin-
toshes, has many variations and can be used with either
hand. The mouse can also be augmented with head
trackers, eye-trackers, trackballs, trackpads, the IBM
Trackpoint, or devices operated via feet or voice. Emacs
Menus allows programmers to distribute their physical
stresses across a variety of input mechanisms.

No less dangerous than RSI of the hand is RSI of the
brain. Programming environments requiring repeti-
tive, low-level, mind-numbing operations to get any-
thing done are a prime cause of programmer burnout.

Status and Future Modifications
Emacs Menus was implemented on the Macintosh
using Macintosh Common Lisp [2] by the author with
lots of assistance from its own earlier versions. What
good is a tool that can’t help make itself better?

The Common Lisp database to support Emacs Menus
is not fully implemented. Although support is included
for enough functions to test the basic ideas, support for
many more Lisp functions is needed before Emacs
Menus lives up to its promise for coding Common
Lisp. However, it is not yet used beyond developing
itself and could benefit greatly from user studies.

Conclusions
All programming environments involve trade-offs.
The main one with Emacs Menus was to design a sys-
tem that didn’t make it easy to make mistakes (like a
text editor) yet made it easy to do whatever the pro-
grammer wanted (like a text editor). The proper bal-
ance was achieved by augmenting a text editor with a
giant context-sensitive 4D menu that gives users just-
in-time help, along with the ability to insert textual
code without typing and access to appropriate tools—
all with minimal cognitive overhead.

Unlike traditional hierarchical menus, 4D menus
have the power to provide thousands of operations
without requiring the biological memory that would
otherwise be filled with thousands of words. Regard-
less of the capacity of a user’s human memory system,
when it’s full, it needs help.

Acknowledgments
These ideas were not developed in a vacuum but in

Cambridge, Mass., with the help of:

• The people at Coral Software I worked with to
develop the first version of Macintosh Common
Lisp

• David Levitt, who roped me into cofounding Hip
Software, a creative 1980s startup doing iconic
programming environments that went nowhere
financially

• Tom Malone of MIT’s Center for Coordination Sci-
ence for the vision of a generalized Information
Lens employing forms-based programming

• Jo Marks of Harlequin Inc. for wisdom seldom
found among software developers

• Mike Plusch of PowerScout Corp. for creativity
broad and deep

• Henry Lieberman of MIT’s Media Lab for being the
best comrade in arms I can imagine during our
long battle for innovation in programming
environments

References
1. Buxton, B. The natural language of interaction. In The Art of Human-Com-

puter Interface Design, B. Laurel, ed. Addison-Wesley, Reading, Mass.,
1990.

2. Digitool. Macintosh Common Lisp. User manual and language. Digitool,
Cambridge, Mass., 1996.

3. Goldberg, D., and Richardson, C. Touch typing with a stylus. In Pro-
ceedings of the Conference on Human Factors in Computing Systems (INTERCHI)
(Amsterdam, Apr.). ACM Press, New York, 1993, pp. 80–87.

4. Lieberman, H., and Fry, C. ZStep 95, a reversible, animated source code
stepper. In Software Visualization: Programming as a Multimedia Experience,
J. Domingue, J. Stasko, M. Brown, and B. Price, eds. MIT Press, Cam-
bridge, Mass., 1997.

5 Malone, T., Lai, K.-Y., and Fry, C. Experiments with OVAL: A radically
tailorable tool for cooperative work. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work. (Toronto, Canada, Oct. 31–Nov. 4).
ACM Press, New York, 1992, pp. 289–297.

6. Palm Computing Inc. Graffiti. Software product. Los Altos, Calif. 1995.
7. Petre, M., Why looking isn’t always seeing: Readership skills and graph-

ical programming. Commun. ACM 38, 6 (June 1995), 33–44.
8. Shu, N. Visual Programming. Van Nostrand Reinhold Co., New York,

1988.
9. Steele, G.L., Jr. Common Lisp: The Language. Digital Press, Maynard, Mass.,

1990.
10. Szwillus, G., and Neal, L. Structure-Based Editors and Environments. Acade-

mic Press, 1996.
11. Textware Solutions. Instant Text. Software product, Burlington, Mass,

1995.

Christopher Fry (cfry@shore.net) is the chief technical officer
of PowerScout Corp., a developer of agent-based browsers for the
Web, in Boston.

Permission to make digital/hard copy of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior specific permission
and/or a fee.

© ACM 0002-0782/97/0400 $3.50

c

64 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

