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The Effectiveness of Control Structure
Diagrams in
Source Code Comprehension Activities

Dean Hendrix, Member, IEEE, James H. Cross Il, Senior Member, IEEE, and Saeed Maghsoodloo

Abstract—Recently, the first two in a series of planned comprehension experiments were performed to measure the effect of the
control structure diagram (CSD) on program comprehensibility. Upper- and lower-division computer science and software engineering
students were asked to respond to questions regarding the structure and execution of one source code module of a public domain
graphics library. The time taken for each response and the correctness of each response was recorded. Statistical analysis of the data
collected from these two experiments revealed that the CSD was highly significant in enhancing the subjects’ performance in this
program comprehension task. The results of these initial experiments promise to shed light on fundamental questions regarding the

effect of software visualizations on program comprehensibility.

Index Terms—Software visualization, control structure diagram, program comprehension, controlled experiments, evaluation.

1 INTRODUCTION

REPRESENTING objects, processes, and ideas with pictures
rather than words is intuitively appealing. The intuition
is that a visual representation will be more readily under-
stood than its textual counterpart. If one accepts such a
premise, it is quite natural to investigate ways of applying
visual representations to tasks in which comprehension
plays a central role. Such tasks are abundant in the
everyday world: e.g., reading parts-assembly manuals to
understand the structure of a machine, or reading operation
manuals to understand how a machine works. In these
particular domains, the utility of visual representations is
accepted without question.

Applying visualization techniques to represent program
structure and behavior is the central theme and focus of
software visualization research. The roles of visualization in
software design, implementation, formal technical reviews,
and maintenance are of particular interest. Specifically,
those activities in which program comprehension plays a
significant role are expected to benefit through the effective
use of software visualizations. Since it has been estimated
that in the maintenance phase alone software professionals
spend at least half of their time analyzing software artifacts
in an attempt to comprehend the software [13] and that
code reading is a popular and viable verification and testing
strategy [5], [8], it follows that increasing the comprehen-
sibility of software should have a significant impact on
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improving productivity and reducing cost. Although this
area of research is quite active and graphical representa-
tions and visualizations for software abound, the effective-
ness of software visualization is still an open question and is
certainly not universally accepted. Von Mayrhauser and
Vans [40], [41] studied the cognitive limitations that
hindered software engineers in large maintenance projects.
Their study indicated both the need for automated
comprehension support tools in which software visualiza-
tions could play an important role and also the inadequacy
of current tools.

There are many issues that influence the utility of
software visualization. Some issues are practical and
cognitive relating to the user of the visualization and the
process of human comprehension [2], [31], [39], [41]. Other
issues include those which relate to the nature of a
particular visualization itself [34].

This paper describes experiments performed to measure
the effect of a particular software visualization on perfor-
mance in source code comprehension activities, and in so
doing makes the following contributions:

e The experimental design focuses on comprehension
activities that are common to most, if not all, source
code comprehension tasks and most cognitive
models of program comprehension. Thus, the
experiments are applicable to a variety of tasks
(e.g., source code inspections, source level debug-
ging) and to a variety of comprehension strategies
(e.g., top-down, bottom-up).

e The experimental design focuses on fine-grained
comprehension activities that are considered low-
level or primitive components of higher-level com-
prehension strategies. Thus, instead of revealing a
positive effect while shedding little or no light on
why the results were obtained, these experiments
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allow results to be directly associated with specific,
well-defined comprehension activities.

o The experiments lay the groundwork for a larger
research program that incrementally scales from
fine-grained comprehension activities to more coarse
grained, complex tasks. Such a systematic research
program is needed to clarify the present under-
standing of the effectiveness of visualization techni-
ques for software.

The remainder of the paper is structured as follows:
Section 2 discusses related research, points out the need for
experimentation in this area, and describes the particular
focus and approach taken in the present work. Section 3
describes the control structure diagram, which is the
particular software visualization under study. Section 4
contains a description of the experiments performed along
with detailed analyses of the data. Section 5 draws
conclusions and outlines future work.

2 MOTIVATION FOR THE RESEARCH

While the potential utility of visualizations may appear to be
widely accepted, the extent of their use in practice is not
clear. Documented empirical evidence of measurable bene-
fits of software visualization is limited in scope and contra-
dictory, especially with respect to production software [31].

2.1 Need for Experimentation

The fundamental issue being addressed—the relationship
between software visualizations and the human compre-
hension of software—is intrinsically one that requires
experimentation. The literature on software visualizations
is filled with graphical representations of control structure,
data structure, architecture, and class and object hierarchy
[32], [33]. These visualizations range from strictly static
views of source code to dynamic views of the runtime
behavior of an algorithm. The proponents of these
visualizations and their associated automated environments
generally make claims for potential improvements to
various software development activities afforded by the
visualizations. While visualizations abound, empirical
evaluations of their effectiveness have been generally
limited in scope and not necessarily designed to scale up
to industrial practice.

Numerous evaluations reported in the literature have
indicated mixed results with many in the negative. For
example, Aoyama [1] and Scanlan [36] indicated gains in
comprehensibility when using visualizations while Green et
al. [21] and Green and Petre [20] reported that graphics
were significantly slower than text in the experimental
comprehension tasks. Scanlan’s experiments compared
plain text algorithms with structured flowcharts. Green’s
experiments included the comparison of indented plain text
algorithms with a gate type diagram (digital design) and an
interactive sequential block diagram. Moher et al. [25] used
three forms of a Petri net in a similar study and reported
that none of the graphical representations were significantly
better than the corresponding textual version. Petre [31]
asserted that secondary notation, such as spacing and shape
of symbols, plays a significant role in the effect of a
graphical representation. Furthermore, Petre claimed that
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comprehensibility is affected mainly by this secondary
notation rather than the primary graphical constructs and
symbols that comprise the representation. These studies
also showed that poor use of secondary notation can
confuse and mislead one when reading the graphical
representation.

Although empirical studies of the usefulness of software
visualizations generally show mixed results, other studies
comparing the cognitive processing of simple pictures and
text favor the efficiency of a pictorial representation.
Numerous studies indicate that semantic analysis is
performed faster for pictures than for text and that
graphical information is more easily and efficiently remem-
bered than textual information [19], [43]. These studies
suggest that graphical representations of software are
inherently useful, though particular representations may
not be. For example, studies reported by Green and Petre
[20] and Moher et al. [25] each showed that properly
indented plain text outperformed or performed as well as
the graphical representations they tested. An examination
of the particular visual representations used in their
experiments, however, indicated that they were far from
intuitive or familiar.

Experimentation is also needed to address the interaction
of visualizations with various cognitive models of program
comprehension [43], [27], [12]. Pennington [30] asserts that
programmers attempt to comprehend source code in a
bottom-up fashion. That is, small sections of code are
understood, followed by large blocks based on control flow
relationships. Other studies [38], however, assert that, in
some situations, programmers employ a top-down com-
prehension strategy. Such a strategy would begin at a high
level of abstraction (e.g., architecture) and work toward
comprehending lower levels of abstraction. Von Mayrhau-
ser and Vans [41] have defined an integrated comprehen-
sion model that combines the top-down and bottom-up
strategies. Their work indicates the importance of tools to
support comprehension tasks at both high levels of
abstraction (e.g., architecture) and lower levels of abstrac-
tion (e.g., source code). Citrin et al. [12], however, report the
difficulty in providing visualizations at both high and low
levels of abstraction and point out the need for scalable
visualizations.

Murphy et al. [27] reported a study of several broadly
distributed software engineering tools which generate call
graphs from existing source code as an architectural level
visualization. The call graphs generated by the different
tools varied greatly, even when applied to the same source
code. The authors of the study observed that, although the
architectural level visualization tools obviously made
different design decisions when planning their visualiza-
tions, there were insufficient data on how software
professionals actually use and benefit from such visualiza-
tions to make a determination of good or poor choices.
Studies are needed to identify software engineering tasks
that could benefit from particular types of visualizations as
well as appropriate information that is needed to support
the automatic generation of such visualizations. This
knowledge would allow appropriate visualization tools to
be developed [27].
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2.2 Focus and Approach

The role played by visualizations in software comprehen-
sion tasks is certainly not well understood. The work
reported in this paper seeks to clarify current under-
standing on this issue by performing controlled experi-
ments that can yield important, baseline information and
also be used as springboards to future, more comprehensive
studies. The approach taken is to focus the initial experi-
ments on the effectiveness of a particular visualization with
respect to fundamental comprehension activities that are
applicable to a wide variety of comprehension tasks as well
as components of a variety of comprehension models.

One commonly accepted element of program compre-
hension can be referred to as incremental abstraction, that
is, the process of successively building up mental repre-
sentations of various levels of abstraction of source code
text structures and their relationships. These mental
representations are often called chunks and have been
shown in the literature to play significant roles in human
comprehension of software [11], [18], [29].

The study of fundamental cognitive processes has
revealed well-defined limits on the capacity of the human
mind during comprehension tasks. Miller [24] described the
classic 7 & 2 limit on short-term memory and others have
demonstrated that this capacity diminishes as task complex-
ity increases [22]. Thus, grouping portions of source code
together allows a section of code to be understood
abstractly as a unit rather than through the complete details
of its components. This concept builds upon itself in that
lower-level groupings are combined to form higher-level
units, thus providing a method of comprehending a
program in terms of various levels of abstraction in a
systematic way, while addressing the inherent limits on the
capacity of the human mind.

Before chunks can be used as part of a comprehension
strategy, they must be identified. This process of identifica-
tion, which involves scanning through the source code in
either a forward or backward direction, is known as tracing
[11]. Tracing involves both semantic and syntactic knowl-
edge [37]. Semantic knowledge is relatively independent of
any particular language and involves understanding basic
concepts such as looping structures and fundamental
algorithms and recognizing design patterns in code.
Syntactic knowledge is language specific and allows
semantic structures to be recognized in a particular
language [11]. Since the process of tracing is fundamental
to so many comprehension tasks in a variety of contexts, it
was selected as the comprehension activity on which to
focus the initial experiments.

The control structure diagram (CSD) was selected as the
particular visualization under study. The CSD is a graphical
representation that visually depicts the control structure
and module-level organization of a program. The CSD was
designed to address some of the possible shortcomings of
other algorithmic-level visualizations such as flowcharts.
Visualizations such as flowcharts disrupt the layout of the
source code by viewing a program as a flow graph with
source code statements or statement fragments attached to
nodes of the graph. Thus a reader is forced to comprehend
the source code through a completely different notation and

layout (i.e., the flowchart). The CSD appears as a compa-
nion to rather than a replacement for source code, thus
leveraging the perceived advantages of a graphical repre-
sentation together with the familiarity of pretty-printed
source code. In an earlier study [15], the CSD was compared
to four other graphical representations which were con-
sidered to be representative of a group of well-known
algorithmic level visualizations at the time: ANSI flowchart,
Nassi-Shneiderman Diagram, Warnier-Orr Diagram, and
Action Diagram. The study focused on detailed compar-
isons of the notations against 11 performance characteristics
and a preference-based instrument was given to 33 upper-
level software engineering students at Auburn University.
The CSD was clearly preferred to all other graphical
representations in a majority of the performance character-
istics. There is also significant anecdotal evidence from
CSD users in industry that the diagram provides a definite
benefit in code reading and comprehension tasks.

Thus, the focus of the experiments reported in this paper
is on measuring the effect, if any, of the CSD on program
comprehensibility, specifically with respect to tracing. This
approach allows the experiments to address broadly
applicable comprehension activities while providing a
natural starting point for a larger, more comprehensive
research program.

3 THE CONTROL STRUCTURE DIAGRAM

A major objective in the philosophy that guided the
development of the CSD was that the graphical constructs
should supplement the source code without disrupting its
familiar appearance. That is, the CSD should appear to be a
natural extension of the source code and, similarly, the
source code should appear to be a natural extension of the
diagram. Indeed, since many professional programmers
consider the source code to be the only trusted specification
of the software [42], the CSD was designed to seamlessly
coexist with the source code. This has resulted in a concise
and compact graphical notation that attempts to combine
the best features of diagramming with those of well-
indented source code (see Fig. 1).

For illustrative purposes, a comparison of the CSD with
plain text source code is shown in Figs. 1 and 2. Fig. 1
contains Java source code and Fig. 2 contains the same
source code rendered with a CSD. While the same structural
and control information is available in both figures, the CSD
makes the control structures and control flow more visually
apparent than does the plain text alone and it does so
without disrupting the conventional layout of the source
code.

The CSD provides companion graphical representations
for all the major control constructs found in Java, Ada 95, C,
and C++. Appendix A illustrates the CSD for Java’s major
control structures, while a more complete discussion of the
CSD is given in [14].

The CSD’s utility is perhaps more evident in larger and/
or more complex programs. For example, in large pro-
grams, especially those that are a part of legacy systems, it is
not uncommon for complex control structures to span
hundreds of lines. The physical separation of sequential
components within these large control structures becomes a
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public static int fibonacci
int i, last, nextTolLast;
int answer = 0;

(int n) {

if ((n==0) ||
answer = 1;

(n==1)) {
}

else {
last = 1; nextToLast = 1;
for (i=2; i<=n; i++)
{
answer = last + nextTolLast;

nextToLast = last;
last = answer;
}
}

return answer;

Fig. 1. Plain text source code.

significant obstacle to comprehension. The CSD clearly
delineates each control structure and provides context and
continuity for the sequential components nested inside,
thus potentially increasing comprehension efficiency. With
additional levels of nesting and increased physical separa-
tion of sequential components, the visibility of control
constructs and control paths becomes increasingly obscure
and the effort required of the reader can increase in the
absence of the CSD.

It is clear from experience and from reports in the
literature that a relationship exists between the syntactic
form of source code and the ability of programmers to
construct useful mental abstractions from that source code
[11], [14]. Source code that is well structured and visually
appealing facilitates the comprehension process. The use of
good typography in program comprehension has been
documented extensively in the literature [10], [5], [23], [28].
Bouwhuis [10] found that good comprehension is the result
of deliberate reading, which takes advantage of good
typography and other semantic cues. Deliberate reading
should be facilitated by the graphical constructs that are in
addition to existing typographic conventions and indenta-
tion in source code. Since the CSD adds visual cues for
sequence, selection, iteration, exits, exceptions, etc., it
should improve the clarity of plain text.

The validity of these claims concerning the CSD can only
be determined by thorough, systematic evaluation proce-
dures. Fundamental evaluative questions that must be
addressed include: Do users perceive a utility or benefit in
using the CSD? To what extent and in what manner do users
employ the CSD in real tasks? Does CSD utilization provide
statistically significant gains in program comprehensibility?

4 COMPREHENSION EXPERIMENT

To measure the effect, if any, that the CSD has on program
comprehensibility, two controlled comprehension-based
experiments, I and II, were designed and implemented.
Experiment I involved a senior-level software engineering
class that also had a few graduate students and Experiment I
dealt with a sophomore-level class that involved only
undergraduates with little experience in programming. The
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ipublic static int fibonacci (int n) {

—e int i, last, nextTolLast;
e int answer = 0;
—OE ({n==0) || (n==1)) {
: answer = 1;
else {
last = 1; nextTolLast = 1;

for (i=2; i<=n; 1i++)

answer = last + nextTol.ast;
nextToLast = last;

last = answer;

4—— return answer;

L)

Fig. 2. Source code rendered with a CSD.

results from these two experiments are quite promising and
demonstrate that the CSD can provide statistically significant
benefits in program comprehension tasks.

4.1 Procedure
The students of Experiment I in the senior-level course and
those of Experiment II in the sophomore-level course were
presented with the same Java source code and asked
questions related to its structure and execution. The subjects
were divided equally into two subgroups. Both subgroups
were presented with the same source code and asked to
respond to the same series of 12 questions concerning the
code. One subgroup (the control) was given the source code
in plain text only (as in Fig. 1, i.e., without the CSD), while
the experimental subgroup was given the source code
rendered with the CSD (as in Fig. 2). Thus, one factor was
source code presentation (with CSD = level 1, or in plain
text = level 0). The task of each subject was to answer each
question correctly in the shortest time possible.

The operational (or alternative) hypothesis is as follows:

Hi: The CSD did have a positive effect on program
comprehensibility.

Thus, the null hypothesis that was tested is stated as:

Hp: The CSD did not have a positive effect on program
comprehensibility.

Response time and response correctness were the two
dependent variables. It is reasonable to assume that any
effects of a visualization on comprehensibility would be
manifested in at least one of these two measures. This
assumption is also supported in the literature [17].
Response correctness was measured by whether the answer
to a question was correct or not.

Both subgroups in the two experiments were given
identical instructions concerning completion of the experi-
mental task prior to beginning the experiments. In a
10 minute orientation session, subjects were provided with
an overview of the task that they were being asked to
perform. Each subject was presented with a short example
program in laser-printed hardcopy form. They were then
verbally provided with sample questions concerning the
example program and informed of how they would be
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Fig. 3. Performance balance of groups prior to the experiments. (a) Experiment | and (b) Experiment II.

asked to record their response during the actual experi-
ment. The subgroup using the CSD had an additional 5 to
10 minute portion of the orientation session in which the
basic symbols of the CSD were introduced and explained.

The groups in both experiments were told that the
experimental task was to some extent designed to mimic
elements of a software inspection or debugging activity
and, thus, were provided a motivational context for the
experiment. Finally, each subject was given the fundamen-
tal instruction for the experiment: Without sacrificing
accuracy, they were to answer each question as quickly as
possible.

4.2 Participants

In both experiments, students from two different courses,
both of which required an extensive amount of program-
ming in Java, were asked to volunteer as subjects in the
experiments. Volunteers were rewarded with extra credit
points for their participation. Using students from the same
course in each of the two experiments ensured that all
subjects were either relatively expert at the experimental
task (all students in the senior-level class of Experiment I
were either a senior or a graduate student), or all were
inexperienced in programming (all subjects in the sopho-
more-level class were Freshmen or sophomores).

Since differences in ability among individual subjects in
the two groups could be a threat to experimental validity,
the two subgroups in both courses were balanced
randomly with respect to student performance in the
course. At the time when the experiments were adminis-
tered, the only graded item remaining in both courses were
the final exams. Thus, the performance balancing was done
with almost complete grade information, thereby ensuring
that the balancing was as accurate as possible. Since both
courses were programming intensive and based on Java,
student performance in these courses was directly related
to the experimental task. Figs. 3a and 3b show the
performance balance between the two subgroups for the
Experiment I and II, respectively. (A letter grade of “X”
indicates a graduate student taking the course on a
nonletter grade basis.)

Originally, 44 students in the senior-level and 50 students
in the sophomore-level course volunteered to participate in
the two experiments. These students were divided into two

equal sized subgroups and performance balanced as
discussed above. When the experiment was administered,
however, some of the volunteers in the senior-level class
were absent. This made the two subgroups of that class
unbalanced both in number and in performance. Specifi-
cally, the CSD subgroup had twice as many A students as
the control subgroup (4 versus 2) and the control subgroup
had an F student while the CSD subgroup had none. It was
felt that this imbalance, particularly with respect to student
performance, could pose a threat to the validity of the
experimental results. To bring the two subgroups back into
balance and address this possible threat to validity, the data
from the two A students in the CSD subgroup who had the
best performances in the experiment and the F student from
the control subgroup were eliminated before the data were
analyzed. Thus, data from only 39 subjects (with subgroup
balancing as shown in Fig. 3) were made available for
analysis. Further, one student in the control subgroup (i.e.,
without the CSD) of the senior-class made a procedural
error in reporting and, therefore, his/her data point was
completely disregarded in the analysis. Therefore, the
senior-level group of Experiment I had 38 participants
divided into two subgroups (control and experimental) of
19 students each. No procedural problems were encoun-
tered with the sophomore-level group so that both the
control and experimental subgroups of Experiment II
consisted of 25 students each.

4.3 Questions and Presentation

For the experimental task to be as realistic and practical as
possible, the source code under inspection was selected
from a graphics package currently in use as part of a data
analysis and presentation tool. The package, which was
written in Java, contained a function that with only minor
modifications could be made suitable for stand-alone
presentation in the experiments. This function contained
183 lines of source code' and exhibited several types of
control structures. To eliminate the effect that individual
familiarity with a particular program editor might have on

1. Due to its length, the actual source code used in the experiemnt is not
included in this paper. The complete source code is available on request
through email to D. Hendrix.



468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002

160

CSD
BNoCSD

Time (sec)

1 2 3 4 5 6 7 8 9 10 11 12

Question #

(a)

160
140 1
120
< 100 1
2 ®mCSD
> 801
£ mNoCSD
F 60 1
40 -
20 1
0

1 2 3 4 5 6 7 8 9 10 11 12
Question #

(b)

Fig. 4. Total Average Time Taken to Respond. (a) Experiment I: The difference T, (NoCSD) - T, (CSD) = 31.54 was significant at the 0.0216 level
and (b) Experiment II: The difference T; (NoCSD) - T, (CSD) = 13.50 was not significant at the 0.1876 level.

the experimental results, both groups in the experiments
were given the source code in laser-printed hardcopy form.

To facilitate accurate and efficient recording of response
times and whether the corresponding answer was correct or
not, the questions were presented to the subjects in a
sequence of web pages. Each web page contained a single
question along with a text field and a submit button. To
respond to a question, a subject simply typed in their
answer in the text field and clicked on the submit button. A
script associated with each web page automatically re-
corded the subject’s response as well as the response time
for that question. The response variable, T, was calculated
as the amount of elapsed time from the instant a question
was displayed to when the subject submitted the corre-
sponding response. To eliminate any effect that the order in
which the subjects responded to the questions might have
on their performance, the questions were presented in a
random order. The same random order was used for all
subjects.

The questions were designed in accordance with the
focus and approach to the experiment described in
Section 2.2. The questions should focus on the process of
tracing while being relevant to real comprehension tasks
such as those found in inspection, testing, maintenance, and
debugging activities. The questions should be universal, or
as generally applicable as possible. That is, the questions
should be drawn from a set that would have to be
answered, either explicitly or implicitly, in most program
comprehension tasks regardless of the task context or
program functionality. For example, questions concerning
the syntactical boundaries of constructs and questions
concerning transfer of control after a certain point in
execution fall into this category. In addition, the questions
were also designed to be answered in terms of line numbers
in the source code and were thus unambiguous and easily
scored.

Experimental questions were thus written to address the
following categories of program knowledge, related directly
to tracing;:

e Syntactical boundaries of control constructs (e.g.,
where does a given loop end?).

e Location and number of entrance and exit points for
control constructs (e.g., how many exit points does a
given loop have?).

e The target for a transfer of control after statement
execution (e.g., where does execution continue after
a given statement?).

e Syntactical nesting depth (e.g., how many levels
deep is a given statement?).

e Execution predicates for statements (e.g., how many
conditions must be evaluated for a given statement
to execute?).

4.4 Results

Analysis of the data from both experiments strongly
rejected the null hypothesis that the CSD had no positive
effect on subject performance in answering the 12 questions.
Indeed, the effects of the CSD on both the speed and
correctness of responses were highly significant.

An initial analysis of differences in performance between
the two subgroups was done using average time taken to
respond to each question (T), average time taken to
respond correctly to each question (T:), and the number
of correct responses across all questions (X).

4.4.1 Analysis of Average Response Times (T)

Figs. 4a and 4b graph the total average response time (T)
over all 12 questions, without regard to correctness. In
Experiment I (Fig. 4a), there is only one question (number
12) for which the control group performed better, while the
control group performed a bit better in questions 3, 6, 7, 11,
and 12 (i.e., five out of 12 questions) in Experiment II
(Fig. 4b). This must be understood, however, in light of the
fact that there were no correct responses from the plain text
control group for question 12 in Experiment I, while, in
Experiment II, the CSD subgroup had 44 correct answers
versus only seven correct answers for the control (NOCSD)
subgroup in the same five questions 3, 6, 7, 11, and 12. The
effect of the CSD on shortening average response time (T)
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Fig. 5. Total average time taken to respond correctly. (a) Experiment I: the difference T, (NoCSD) - T, (CSD) = 52.42 was significant at the 0.0002
level. (b) Experiment Il The difference T, (NoCSD) - T, (CSD) = 39.76 was significant at the 0.0035 level.

across all 12 questions, using a t-test, was significant at the
0.0216 level in Experiment I, but this positive effect was not
significant in Experiment II. Similarly, the effect of the CSD
on T, considering individual questions as another factor
using SAS (proc anova), was highly significant at the 0.0035
level, while its positive effect on T, was not significant in
Experiment II (P-value = 0.1876).

4.4.2 Analysis of Average Correct Response Times (T')

Figs. 5a and 5b graph the average response times only
for correct responses (T9) over all 12 questions, where
Fig. 5a pertains to the Experiment I and Fig. 5b pertains to
Experiment II. Here, the CSD group consistently out-
performed the control group and the positive effects of
CSD, across all 12 questions using a t-test, were highly
significant with P-value < 0.001 for Experiment I and
P-value = 0.0035 for Experiment II. Further, when the
questions were also considered as a factor in the experi-
ment, SAS (proc anova)” showed that the effects of the CSD
on T, were significant with P-values < 0.001 for both
Experiment I and II. It should be noted that these results are
strengthened by the fact that for three questions (6, 7, and
12) in both experiments there were no correct responses
from the control group. The graphs in Fig. 5 select the
average response times for the control group on those
questions.

Before analyzing the data for the differences in number
of correct responses, X, the obvious correlation between the
random variables Ty and T; had to be addressed. The
random variables T, and T are highly correlated because
T, is simply the value of T; when the subject provided a
correct answer to the corresponding question and, as a
result, Ty was the average of only correct response times,
while T; was the mean of all the responses under a question
type. The sample Pearson correlation coefficients between
T, and T; were computed, by SAS, to be r = 0.7062 and

2. All SAS codes used in the analyses of both experiments are available
on request through email to S. Maghsoodloo.

0.4606, respectively for Experiments I and II. These values
were statistically significant for a right-tailed test at the
0.0000575 and 0.0118 probability levels. Although the value
of Pearson correlation for Experiment II was less than 0.50,
its t-statistic (with 22 degrees of freedom)

RZ2 o3

Vi-r?
for testing Hyp: p = 0 versus H;: p > 0 was statistically
significant at the 0.0118 level (see [26]).

A covariance analysis was performed in order to remove
the effect of the concomitant variable T; on Ty. The SAS
outputs in Figs. 6 and 7 show that, under Type III SS, the
value of F statistic for the CSD from Experiment I was 10.65,
which was statistically significant at the 0.37 percent level,
and for Experiment II was 8.32, which was significant at the
0.89 percent level. This implies that without question the
CSD had a statistically significant impact in helping the
subjects to arrive at the correct answer regardless of the
total time they spent to respond to a question.

The number of correct answers per question differed
significantly under both CSD and NOCSD subgroups for
both Experiments I and II. Indeed, the Chi-square statistic
with 11 degrees of freedom for the CSD subgroup of
Experiment I calculated (using a Matlab program) was
X2 = 38.0207, which was highly significant (P-value <
0.001). Therefore, the results of the unbalanced factorial
experiments with CSD and Question Types as factors were
analyzed using SAS (proc glm). Such analyses allowed the
examination of interaction between the CSD and Question
Type. The SAS outputs pertaining to Experiments I and II
are provided in Figs. 8 and 9, respectively. Under Type III
SS, the value of F statistics for the CSD of the Senior-class
was 40.78 and that of the sophomore class was 24.54. These
Fy values are highly significant statistically, with P-values <
0.001. Appendices D and E, under Type III SS, also show
that the effects of question type on T, were significant in
both Experiments I and II (P-values = 0.0043 and 0.0002).

to =
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General Linear Models Procedure

Dependent Variable: T,

Source DF Sum of Squares Mean Square F, value Pr > F
Model 2 22941287169.3007 11470643584.6503 21.07 0.0001
Error 21 11431359804.0325 544350466.858694
Total 23 34372646973.3333
R-Square C.V. Root MSE T, Mean
0.667429 30.37662 23331.31944102 76806.83333333
Source DF Type I SS Mean Square FO Value Pr > F
Ccsb 1 16489759504.1666 16489759504.1666 30.29 0.0001
T1 1 6451527665.13409 6451527665.13409 11.85 0.0024
Source DF Type III SS Mean Square Fo Value Pr > F
CSD 1 5798325039.48273 5798325039.48273 10.65 0.0037
T1 1 6451527665.13409 6451527665.13409 11.85 0.0024
T for HO: Pr > |T| Std Error of
Parameter  DF Estimate Parameter=0 Estimate
INTERCEPT 1 18352.53193 1.59 0.1266 11535.85372
CSD 1 35140.62485 3.26 0.0037 10767.06912
Tl = Covariate 0.54796 3.44 0.0024 0.15917
* DF = Degrees of Freedom.
Fig. 6. The analysis of covariance for Experiment | using T; as the covariate.
General Linear Models Procedure
Dependent Variable: T2
Source DF Sum of Squares Mean Square Fy Value Pr > F
Model 2 12605816829.2928 6302908414.64644 8.11 0.0025
Error 21 16324052365.2071 777335826.91462
Total 23 28929869194.5000
R-Square C.V. Root MSE T, Mean
0.435737 35.95277 27880.74294051 77548.25000000
Source DF Type I SS Mean Square F, Value Pr > F
CsD 1 9486417962 .66666 9486417962.66666000 12.20 0.0022
T1 1 3119398866.62622 3119398866.62622000 4.01 0.0582
Source DF Type IITI SS Mean Square F, value Pr > F
CcsD 1 6468552392.13576 6468552392.13576 8.32 0.0089
T1 1 3119398866.62622 3119398866.62622 4.01 0.0582
T for HO: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 1 31589.25325 2.06 0.0516 15304.93637
CsD 1 33901.68621 2.88 0.0089 11752.27897
T1 0.43419 2.00 0.0582 0.21674

Fig. 7. The analysis of covariance for Experiment Il using T, as the covariate.
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General Linear Models Procedure

Dependent Variable: T,

Source DF Sum of Squares Mean Square F, Value Pr > F
Model 23 181072784154.379 7872729745.84259 5.20 0.0001
Error 140 212158899632.571 1515420711.66122
Total 163 393231683786.951
R-Square C.V. Root MSE T, Mean
0.460474 56.29950 38928.40494628 69145.20731707
Source DF Type I SS Mean Square F, Value Pr > F
CSb 1 94894341388.7551 94894341388.75510 62.62 0.0001
QTYPE 11 54461392059.8969 4951035641.80881 3.27 0.0005
CSD*QTYPE 11 31717050705.7274 2883368245.97522 1.90 0.0437
Source DF Type III SS Mean Square F, Value Pr > F
(V)] 1 61797801660.3405 61797801660.3405 40.78 0.0001
QTYPE 11 44014812173.9986 4001346561.2726 2.64 0.0043
CSD*QTYPE 11 31717050705.7274 2883368245.9752 1.90 0.0437
Fig. 8. The factorial analysis of correct response times, Ts, from Experiment .
General Linear Models Procedure
Dependent Variable: T,
Source DF Sum of Squares Mean Square F, Value Pr > F
Model 23 154007119238.836 6695961706.03636 5.01 0.0001
Error 163 217837942693.334 1336429096.27812
Corrected 186 371845061932.171
R-Square C.V. Root MSE T, Mean
0.414170 57.82092 36557.20306968 63224.87700535
Source DF Type I SS Mean Square F, Value Pr > F
CSD 1 70104969056.7829 70104969056.7829 52.46 0.0001
QTYPE 11 64699361772.1058 5881760161.1005 4.40 0.0001
CSD*QTYPE 11 19202788409.9478 1745708037.2680 1.31 0.2251
Source DF Type IIT SS Mean Square F, Value Pr > F
CSD 1 32795481187.7509 32795481187.75090 24.54 0.0001
QTYPE 11 51490586326.2791 4680962393,29810 3.50 0.0002
CSD*QTYPE 11 19202788409.9477 1745708037.26798 1.31 0.2251

Fig. 9. The factorial analysis of correct response times, T, factorial, from Experiment II.

However, the interaction effect between CSD and Question
Type, CSDxQtype, was significant only in the Experiment I
at the 4.372 percent level. In summary, the SAS outputs in
Appendices D and E clearly show the enormous impact of
the CSD in aiding the subject to arrive at the correct
response in shortest amount of time.

4.4.3 Analysis of the Number of Correct Responses (X)
Figs. 10a and 10b graph the total number of correct
responses per question, X, for the two experiments. Again,
the performance gains of the CSD subgroups are sig-
nificant: For Experiment I, 45.18 percent of the CSD
subgroup’s responses were correct, while only 25.88
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Fig. 10. Number of correct responses. (a) Experiment I: The difference pcsp — Pnocsp = 0.1930 was highly significant (P-value < 0.001).
(b) Experiment |I: The difference pcsp — Pnocsp = 0-2133 was highly significant (P-value < 0.001).

percent of the control subgroup’s responses were correct.
For Experiment II, 41.33 percent of the responses from the
CSD subgroup were correct, while 20 percent of the
responses from the NOCSD subgroup were correct, across
all 12 questions. The standard errors of the difference
between these two proportions, under the null hypothesis
Hy : pcsp = pnocsp, were computed to be se(Pegp —
Prxocsp) = 0.0448 and 0.0375 for Experiments I and II,
respectively. The sample sizes used to compute these
standard errors were ncsp = nnocsp = 19 x 12 = 228 for
Experiment I, and n =12 x 25 =300 for Experiment IIL
These led to a P-value = 2xP(Z > 4.3053) < 0.001 for
Experiment I and a P-value = 2xP(Z > 5.6662) ) < 0.001 for
Experiment II. These very small P-values strongly reject
the null hypothesis Hy : pcsp = pyocsp, implying that the
differences between the two proportions of correct
responses were statistically very significant for both
experiments.

Comparisons were also made between the Senior
(Experiment I) and Sophomore (Experiment II) classes with
regard to the variable T; (CSD; average time versus CSDy,
and NOCSD; versus NOCSDy;), variable Ty (CSD; versus
CSDy, and NOCSDy versus NOCSDyy), and Xy versus Xiyy.
However, none of the differences were found to be
statistically or practically significant, implying that experi-
ence level had no significant impact on the utility of CSD in
helping the reader comprehend a program control flow
structure more readily.

5 CONCLUSIONS AND EVALUATION

Several conclusions can be drawn from the above results. A
fundamental conclusion that is obvious from an analysis of
the results is that the CSD had a highly significant positive
effect on subject performance during the comprehension
activity. Other conclusions, though, suggest not only
strengths of the CSD, but also possible limitations of both
the visualization as well as the experimental method
employed.

The positive effect of the CSD on subject performance
was the least strong for the T; measure (average time to

respond), with statistically significant results only in one of
the two experiments. However, since T, is only a measure
of time without regard to correctness, it shouldn’t be used
in isolation. Correctness is more important than time and,
thus, must always be taken into account when interpreting
results. For example, on the questions where the control
group outperformed the CSD group with respect to T, that
is where the control group responded more quickly on
average than the CSD group, the control group was much
less likely to answer correctly.

Interpretation of the results regarding T (average time
taken to respond correctly) are much more useful than those
regarding T, since T, is a measure of time with respect to
correctness. When correctness is considered, the CSD group
consistently responded more quickly than the control
group, with highly significant statistical differences. There
are only two exceptions to this. In Experiment 2, the control
group performed slightly better than the CSD group on
questions 8 and 11. However, this must be considered in
light of the fact that the CSD group was roughly twice as
likely as the control group to answer those two questions
correctly.

When correctness was considered independently of time,
as in the X measure, the CSD again consistently out-
performed the control group, with high statistical signifi-
cance. In both experiments, the CSD group averaged almost
twice as many correct responses as the control group. This
result, along with the covariance analysis of the effect of T
on T, implies that the CSD had a highly significant effect in
helping the subjects respond correctly to the questions,
regardless of the total time taken to respond.

These strongly positive effects of the CSD on subject
performance can be ascribed to fundamental attributes of
the diagram. The source code used in the experiment
contained relatively large control structures that contained
several levels of nesting and spanned many lines, thus
decreasing the visibility of control structures and control
flow paths. Since the CSD clearly delineated each control
structure and provided context and continuity for the
nested constructs, comprehension efficiency was in-
creased. Other studies [10], [5] have found that good
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typography and other semantic cues can increase com-
prehension. Since the CSD adds visual cues for control
constructs in addition to existing typographic conventions
and familiar indentation, the diagram can facilitate
comprehension processes and, thus, demonstrate superior
performance to plain text.

An examination of the data from both experiments with
respect to T; and T, (Figs. 4 and 5) reveals that the
performance gap between the control group and the CSD
group narrows over the 12 questions. That is, the
performance gains of the CSD are more pronounced in
earlier questions than in later questions. Since the order of
the questions was random and since there are instances of
the same question type distributed evenly throughout the
order (see Section 2.2), this effect cannot be attributed to the
questions themselves. The observed trend must be a
learning effect that accumulates as the experiments pro-
ceed, that is, as the subjects become more familiar and
comfortable with the experimental task. This suggests that
the beneficial effect of the CSD with respect to response
speed may in fact decrease with task repetition. It is
important to note, however, that this trend does not exist in
the X measure (Fig. 10). That is, the beneficial effect of the
CSD with respect to response correctness is persistent and
does not diminish with task repetition. Further experimen-
tation is needed to completely describe and explain this
effect, however.

A close examination of the results relative to the
X measure reveals a possible limitation of the CSD.
Considering question 4 in isolation, the CSD group
performed roughly two to three times better than the
control group with respect to time (T; and Ts), but with
approximately one half of the correctness (X). That is, the
CSD group was on average twice as fast as the control
group on question 4, but responded with twice as many
incorrect answers. The increased average speed suggests
that the CSD group was confident of their incorrect
answers. This immediately raises the concern that the
CSD was misleading the subjects to make an incorrect
response for this question. Question 4 asked the subjects to
enumerate the loops present in the source code. One of the
loops was a for-loop written completely on one line and, as
a result, its CSD representation was not as visually distinct
as a multiline loop. Subjects in the CSD group were most
likely scanning the source code for the CSD loop symbol
(see Appendix A) and were thus mislead by the single line
loop that did not appear to have the same CSD symbol as
the multiline loops. Subjects in the control group were most
likely scanning the source code for the various loop
keywords (for, while, do) and were thus not mislead by a
loop that appeared on a single line. While this is a potential
shortcoming of the CSD, the effect is likely to be observed in
relatively rare situations and is thus not a major limitation
of the diagram.

There are also limitations of the data analysis and
experimental method that must be addressed. T; was
averaged over correct and incorrect responses. It has been
suggested that distinct cognitive processes occur in each of
these conditions. The data analysis did not try to measure

TABLE 1
Summary of Experimental Results

Experiment I Experiment I1

P-value
Overall 0.0216 >0.05
T questions
1 Question as a 0.0035 > 0.05
factor : :
Overall <0.001 0.0035
_ questions
T :
Question as a <0.001 <0.001
factor ’ ’
Difference in
X proportion of <0.001 <0.001
correct responses

this effect or account for it in any way. Thus, this is a
possible limitation of the results involving Tj.

Other studies have shown that individual differences
among subjects can account for a large amount of the
variance in performance. The experimental design
addressed this by ensuring that the control group and the
CSD group were performance balanced with respect to each
other. However, a repeated measures design is perhaps
more appropriate and, thus, its absence could be considered
a limitation.

6 SumMmARY AND FUTURE WORK

This work has directly addressed the effectiveness of
software visualization in comprehension tasks. Specifically,
the CSD was shown to have a highly significant positive
effect on subject performance in experimental tasks, from
the standpoint of both shortening response times and
increasing correctness. Table 1 summarizes the statistical
significance of the results with respect to average time to
respond (T), average time to respond correctly (T5), and
number of correct responses (X). The practical significance
of these results is strengthened by the fact that the
experimental task focused a code reading and comprehen-
sion activity that is common to most, if not all, source code
comprehension tasks and most cognitive models of pro-
gram comprehension. Thus, these results should be applic-
able to a variety of specific software engineering contexts
and tasks.

Although the positive effect of the CSD on T; was
statistically significant in Experiment I but not in Experi-
ment II, this particular measure is not likely to be of
practical importance. Increased speed is desirable only
when paired with increased (or at least no worse)
correctness. Thus, the measures of greatest interest are T,
and X. In each case, the CSD was shown to have a highly
significant positive effect on subject performance. This
positive impact remained highly significant even when
removing the effect of the concomitant variable T, on Ts.
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Fig. 11. CSD symbols for sequential control.

Indeed, the result with perhaps the greatest practical
importance and the most relevance to current software
engineering research and practice is that the CSD had a
significant impact on the subjects” ability to arrive at the
correct answer to a question, regardless of the length of time
taken to respond. This suggests that the CSD could be a
valuable tool in code reading tasks. Since code reading and
comprehension activities are so widespread in the software
life cycle, the CSD has the potential to be a valuable aid to
software professionals. Indeed, Basili [7] has acknowledged
code reading as a fundamental, crucial technology for
achieving quality software, and the only analysis technol-
ogy that can be applied throughout the software life cycle.
Other research has also suggested that increasing the
effectiveness of code reading could have a positive impact
on the effectiveness of life cycle activities such as software
inspections [35].

Since the subjects in Experiment I were seniors and
graduate students, reasonably expert in the experimental
task, and the subjects in Experiment II were sophomores,
and certainly novices at the experimental task, the issue of
novice versus expert performance could also be addressed.
Existing research on this issue with respect to software
visualization has produced conflicting results and infer-
ences. Some researchers have suggested, in personal
correspondence, that novices rather than experts should

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,
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achieve a greater performance gain with the CSD since it
would help offset their unfamiliarity with the conventional
(plain text) representation. Other research [31] suggests that
the increased graphical readership skills of experts would
allow that group to enjoy a greater performance gain that
novices. A comparison of the groups in Experiments I and
II, however, suggest that the reader’s experience level had
no significant impact on the utility of the CSD in increasing
performance in the experimental task.

Follow-up experiments are planned within a larger
research program that will build on these results and will
further explore the human performance benefits offered by
certain software visualizations. Specifically, experiments are
planned to assess the possible benefit afforded by the CSD in
the context of particular reading techniques and technolo-
gies [7] and in particular tasks such as software inspections
performed by practicing software professionals [35].

A robust experimental framework is needed to measure
the impact of software visualizations on the overall soft-
ware process in terms of productivity and quality, thus,
directly addressing the open question as to the relative
effectiveness of visualizations on production software. This
is an important research question since the utility of
software visualization has yet to be convincingly demon-
strated in an industrial setting. An experimental evaluation
of visualizations such as the CSD within a best practices
development environment on production software should
stimulate organizations to modify their software develop-
ment processes to include those visualizations which, based
on the experimental results, indicate the potential for
substantial gains in productivity and reliability.

Continued empirical research is clearly needed. While
this work has shown promising results, it is crucial that the
research be systematically scaled and extended into large-
scale industrial settings. A robust experimental research
program, building directly on this work, will allow
researchers to address many open questions and thereby

}—011 (@ { =it () { it (c1) | —switch (i) {
Sl); E':Sl(); i 81(); case 1 :
s2(); s2(); ib—s2(); s();
| } 1 1 <« L break;
qelse { (else if (c2) { Q—case 2 :
»':ss(); (8303 l:s();
. s4(); L— s4(); <+ break;
-} } default :
Selse { <>—l7 s();
— s50); 4
b= s6();
-}
(@) (b) (c) (d)
Fig. 12. CSD symbols for selection constructs.
|wh11e (c) { H o l—ﬁfor (i1 =0; i < n; i++){
51() | | sl() | H: s1();
| ] s2();
| U whlle (C) | U}
(a) (b) (c)

Fig. 13. CSD symbols for iteration constructs.
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——try {
— s10);

}
—_—
[1] catch (E1 e) {

— s2();
L}
——
mcatch (E2 e) {
L

— s30);
L}
finally {
— s40);
L}

— s5();

Fig. 14. CSD symbols for exception handling.

make significant contributions to the software engineering
community.

APPENDIX A
THE CONTROL STRUCTURE DIAGRAM FOR JAVA

The CSD provides graphical representations for all major
control constructs in Java, as well as Ada 95, C, and C++,
including sequence, selection, iteration, and exception
handling. Data declarations as well as module-level
constructs such as classes and methods also have repre-
sentations in the CSD. This appendix illustrates the major
CSD elements for Java, as used in the experiments reported
in this paper. The GRASP family of editors can be used to
automatically generate CSDs for any of the supported
languages. GRASP editors are available for download at
http:/ /www .eng.auburn.edu/grasp.

Sequential control is the most basic, and its graphical
symbols appear in the CSD for most other control
constructs. The individual statements in sequence are
located at the end of horizontal stems hung from a vertical
spine (). There is one vertical spine for each syntactical
level of sequential control. Figs. 11a and 11b illustrate
purely sequential CSDs. Notice that the compound state-
ment in Fig. 11b begins a new syntactical level and, thus,
adds a vertical spine to the CSD.

The diamond symbol (¢) indicates a point of decision in
the control flow, that is, a selection control structure. A solid
stem (—) from the right side of the diamond indicates the
control path to be followed when the condition is true,
while a dashed spine (}) from the bottom of the diamond

public abstract class X {

abstract void f();

(a)

} }

Fig. 16. CSD symbols for classes and methods.

public void £();
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Fig. 15. CSD unit symbols.

indicates the alternate false path. Notice that the sequential
CSD forms are, of course, present within the selection
structures. Figs. 12a, 12b, 12¢, and 12d illustrate the four
basic forms of selection in Java. The switch statement in
Fig. 12d employs left arrows (< ) and right arrows (¢ ) to
indicate immediate transfers of control; the left arrow in the
case of a break statement that ends execution in the switch
and the right arrow in the case of the immediate jump to the
appropriate case clause (as opposed to the top-to-bottom
evaluation semantics of the if-else-if).

Iterative statements are depicted by a graphic symbol
that loops upon itself but is broken at the syntactic point at
which control may exit the loop. Thus, the pre-test while
and for loop CSDs in Figs. 13a, 13b, and 13c, respectively,
are broken at the top and the posttest do loop CSD in
Fig. 13b is broken at the bottom. The vertical length of the
loop CSD indicates the syntactic extent of the iterative
statement.

Exception handlers in Java are implemented with try-
catch-finally statements. Statements in the try block are
executed sequentially until an exception is raised, at which
point control is immediately transferred to at most one of
the associated catch blocks. If none of the catch blocks can
handle the exception, control propagates back to the calling
unit. After either 1) the try block exits normally, or 2) a local
catch block is executed, control transfers to the finally block.
Obviously, much of this exception handling semantics is
dynamic and thus cannot be represented in a static
visualization such as the CSD. However, the CSD does
convey the static control relationships among the try, catch,
and finally blocks. Notice in Fig. 14 that the try and finally
blocks are represented as sequential CSDs attached to the
same vertical spine. The catch blocks are not attached to the
vertical spine, indicating that they are not part of the normal
sequential flow, and they are further distinguished by the
exception unit symbol ().

Module-level constructs such as classes, interfaces, and
methods are each represented by a combination of unit
symbols, horizontal boxes, and vertical spines. Unit
symbols, based on [9] and shown in Fig. 15, are used to
indicate the type of construct present. Optional horizontal
boxes, both double- and single-width, are used to visually
delimit the header or specification portion of the construct.

interface Y { public class Z {

ipublic void £()3
}

(b) (c)
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I—. Object 02 = f();

(b)

® Object ol;
(@)

Fig. 17. CSD data declaration symbol.

A vertical spine visually delimits the syntactical scope of the
construct. The CSDs (with optional box notation) for classes,
both concrete and abstract, as well as interfaces are

illustrated in Figs. 16a, 16b, and 16c.
Data declarations also have graphical representations in

the CSD. Fig. 17a illustrates a simple declaration of a
reference variable in a declarative section of a Java module.
Since statements are illegal in declarative section, there is no
stem or spine to indicate control flow. Only the data symbol
(w) is present. Java allows variables to be declared in
statement sections as well as declarative sections, however.
Fig. 17b illustrates the declaration of an object as part of an
executable statement. Since this declaration is part of a
control structure, the data symbol is attached to a stem and

spine ().
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