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Abstract 

The paper introduces the use of onion graphs as a 
focus+context technique for visualizing large UML class 
models.  The focus area, which can be manually or 
automatically derived, is visualized using the standard 
UML notations.  The remainder of the model is 
abstracted (context) and presented at varying levels of 
detail in onion notation.  A selective aggregation 
technique for achieving the abstractions is presented.  
Finally, the technique is demonstrated by examples on 
two subsystems of an open source project. 

1. Introduction 
Developers find UML class models1 useful for 

designing systems along with understanding and 
maintaining existing systems.  During forward 
engineering, the specification of class models is often 
done via a large number of small UML class diagrams.  
Eventually each class diagram of interest may need to be 
comprehended in the context of the entire model (i.e., the 
union of all the class diagrams).  However, in the case of 
reverse-engineered class models from existing source, the 
situation is quite a bit more problematic.  That is, there 
are no such small class-diagrams specific to design 
features or domain concerns.  UML reverse-engineering 
environments (including commercial tools) are restricted 
to automatic generation of an entire class model from the 
given source code.  At best they support the automatic 
generation of a class diagram from manually selected 
classes. 

Large systems typically consists of 1000s of classes 
and many more relationships.  Clearly, viewing the entire 
model in a form of a single class diagram is typically of 
little use due to cognitive overload [24].  Graph layout 
algorithms based on aesthetics criteria such as 
minimizing edge-crossings and maximizing symmetry 
have proven useful for comprehension of small class 

                                                        
1 In the rest of paper, model or class-model refers to a UML class-
model or a UML class-diagram unless explicitly specified. 

diagrams (typically 10-15 classes), however they are 
inadequate in dealing with a large information space 
particularly in the UML domain [16-20].  Preservation of 
aesthetic criteria such as minimizing edge-crossing is a 
computationally difficult problem for complex graphs 
[11].  A general solution to effectively visualize a large 
UML class diagram with layout alone is unlikely.  
Therefore, it is desirable and meaningful to investigate 
visual abstractions for representing UML class models.  
This approach is akin to the work by Munzner on 
visualizing large graphs such as the world wide web [14] 
and the work on fisheye views by Furnas [8]. 

Here, we propose a focus+context technique [4] for 
UML class models.  The focus area is presented in detail 
and visualized with standard UML notation.  The 
remainder of the model (the context) is abstracted at 
various levels of detail and presented in onion notation 
[22].  The formation of an onion graph from UML 
notations and onion notations provides a single view with 
a combined focus and context.  For example, the onion 
graph shown in Figure 6 is one possible view of the 
complete UML class diagram shown in Figure 3.  Such 
combined views may help reduce cognitive overhead by 
reducing cluttering due to edges [3].  A series of onion 
graphs supports semantic zooming and incremental 
exploration [11].  This provides a UML class diagram 
browser/explorer that can be considered analogues to 
modern file browsers.  Furthermore, our investigation is 
aimed at designing abstractions that reduce edges.  The 
motivation behind this is rooted in an observation from 
previous unfavorable results for edges and their layouts 
in supporting comprehension of large UML class models 
[16-20].   

The remainder of the paper is organized as follows.  In 
Section 2, our semantic focus+context technique 
including onion notations and a selective aggregation 
technique is presented.  In Section 3, we present 
examples of using this method on two Hippodraw 
subsystems.  Finally, we present our conclusions in 
Section 4.  
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2. A Semantic Focus+Context Technique 
UML graphical notations used to denote classes and 

various relationships (e.g., generalization and 
associations) are well established.  Therefore, designing 
new graphical notations (i.e., extensions) for representing 
visual abstractions2 of the corresponding elements or 
relationships is a major challenge (actually a road block).  
It is imperative to have visual elements that clearly 
preserve the structure and semantics of the considered 
UML model elements.  Any attempt to deviate from 
these “standard” notations imposes a risk of total 
rejection or utter confusion.  The same applies to a 
transformation mechanism employed to reduce the UML 
class diagrams to abstract views.  The resultant view 
must not violate the structure and semantic of the 
considered UML model of a system.  Therefore, we feel 
that the following constrains need to be enforced to 
preserve a developer’s mental model, reduce cognitive 
load, and preserve the information domain, 
• Similarity with UML notations (C1): The 

graphical notations for abstracted information must 
bear a close resemblance to the UML notations. 

• Preservation of UML syntax and semantics (C2): 
The abstracted views must preserve the information 
about the structure and semantics of a represented 
UML class model (or class diagram). 

• Level of detail (C3): The transformed views must 
provide information varying from the greatest detail 
of UML class diagram notations to the abstracted 
overview without losing relevant context. 

From a bird’s eye view, the proposed technique 
consists of three main components: focus area, onion 
notations, and selective-aggregation technique.  We can 
utilize, for example, UML model slicing [12] to 
automatically extract a context-free model slice that 
forms the focus area.  Alternatively, a user can also 
manually determine a part of the model to focus.  In 
order to represent the rest of the model (the context), we 
introduce onion notations for the UML class model.  
Additionally, we present a selective-aggregation 
technique for UML class models that represents the 
classes in the context at a varying level of detail.  The 
overall focus+context view is represented as an onion 
graph.  Next, our onion notations are presented. 

2.1. Onion Notations for UML Class Models 

Traditional notations visually represent (any) graph as 
nodes connected by edges.  Onion notations represent a 
graph with nested nodes, i.e., nodes involved in a 
relationship [22].  A graph represented with a mixture of 
both traditional and onion notations is said to be an onion 
                                                        
2 Abstraction refers to visual abstractions 

graph.  In our approach, onion notations are used to 
present the context information i.e., classes and relations 
not included in a focus area.  The onion notations 
presented here are based on the Hicon approach [22].  
The Hicon approach allows for onion notations for 
multiple types of relationships.  The notations consider 
the structural properties of the UML class model and 
preserve the semantics defined by those properties.  Here, 
we use the term structural property to refer to a grouping 
of classes or relationships between classes.  We divide 
the notations in two categories: pure-onion and mix-
onion notations.  The pure-onion notations represent 
abstractions in which a set of structural properties holds 
for all the members in the group (e.g., all the grouped 
classes have a generalization relationship).  A 
representative subset of the pure-onion notations is 
shown in Figure 1. 

The symbol in Figure 1(a) is used to represent a class 
involved in maximum of one relation while the one in 
Figure 1(b) is used to represent a class involved in two 
relations (may be of same or different type).  The 2-
relation class symbol can be similarly generalized to 
represent n-relation class.  The symbols in the Figure 1(c) 
to Figure 1(g) are used to denote abstractions of classes 
and the relationships among them.  The symbol in Figure 
1(c) represents classes that are related via a 
generalization relation.  Similarly, we define symbols for 
other types of UML class diagram relations.  Note that 
this new notation is directly derived from UML notation. 

The mix-onion notations represent abstractions that 
are partitioned into disjoint groups such that each group 
holds a set of structural properties.  Notice that it is valid 
for a class to be a member of more than a single partition 
as long as it satisfies the structural properties of the 
corresponding partitions.  Our goal is to preserve both the 
structural and semantic information that is present in the 
original UML class model.  In the case of UML class 
diagram, we have to deal with additional information of 
layout. That is, ordering and relative positions of 
elements are important to preserve the mental-model of a 
developer.  The mix-onion notations realize this goal.  A 
subset of mix-onion notations is given in Figure 2. 

The symbol in Figure 2(a) is an abstraction of 
immediate classes (i.e., leaves) on the left side followed 
by generalizations of classes on the right side.  Similarly, 
we can explain for the notation in Figure 2(b).  Figure 
2(c) shows a notation representing classes involved in 
associations followed by generalizations of classes.  The 
Figure 2(d) representing empty partitions are particularly 
interesting.  They satisfy special needs in graphs such as 
UML class model.  For example, in the case of multiple-
inheritance only a partial reduction may be possible (we 
elaborate on this more in Section 3.2).  Note that the 
choice of a notation for a class representation, such as 
ones given in Figure 1(a) and Figure 1(b), is dependent 
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on the level of detail needed.  Therefore, we may have a 
partition in a notation represent a single class (more 
partitions) or a group of classes (less partitions).   

Our notation appears to have a deficiency at first 
glance.  The UML modeling language is a combination 
of text and symbols.  The name of the UML elements and 
other information regarding the structural complexity 
(e.g., how deep is the hierarchy?) appears to be lost.  
However, our intention is not to represent the entire 
UML class model or class diagram in onion notations.  
The focus obtained by a context-free slice is represented 
in the UML notation and only the context information is 
represented in the onion notations.  Furthermore, the 
purpose of having context-information in the same view 
is to facilitate the further exploration and explanation of 
the elements in the model. 

 

 
Figure 1.  A Subset of Pure-Onion Notations for the 

UML Class Model 
 

 
Figure 2.  A Subset of Mix-Onion Notations for the 

UML Class Model 
 
We can now introduce secondary notations [9] of 

node-metrics as used in [6].  The width of a symbol is 
used to represent the number of classes abstracted and the 
height of the symbol is used to represent the number of 
levels abstracted along a relation.  This technique 
provides more context information than is available in a 
typical class diagram like representation.  In this paper 
we map only the structural information to the node-
metrics and not the information external to the domain of 

UML class model (e.g., OO metric information 
indicating the quality of a design, design patterns, etc).  
However, one could easily map such semantic 
information to the secondary notations. 

In summary, the onion notations satisfy the conditions 
C1 (preservation of UML syntax and semantics) and C2 
(close similarity with UML symbols).  However, it is 
further required that the classes and their relationships in 
a given UML class model are mapped to the appropriate 
onion notations.  To address this issue, we present a 
selective aggregation technique. 

2.2. A Selective-Aggregation Technique 

Our focus+context technique takes as input the UML 
class model (or diagram) and produces views in the form 
of onion graph as determined by the selective-
aggregation technique.  We apply reduction only to the 
context part of the view and the focus is preserved as it is 
(unless the focus is explicitly changed by a user).  The 
whole technique is defined formally as follows, 

Let M = (E, R, Γ) be a UML class model.  The focus 
F is the computed context-free model slice or user 
selected subset.  Thus, we have, 

F = Scf(M, Ccf) = M’ = (E’, R’, Γ’). 
Therefore, the context in the model CMF with respect 

to a given focus F is the remainder of the classes and 
relations in the model that are not in focus F.  Thus, we 
have, CMF = M/M’ = (E/E’, R/R’, Γ/Γ’). 

Once we have the context CMF, the selective-
aggregation technique is basically a view-transformation 
technique where the UML class diagram is transformed 
to an onion graph representation.  Therefore, we need a 
mechanism, i.e., criteria and operations to select classes 
that can be reduced to an abstraction and map the 
obtained reduction/abstraction to appropriate onion 
notations.  Moreover, the selective-aggregation technique 
must satisfy the additional constrain of never producing a 
view that violates the underlying semantics given to 
classes by the relations and the assumptions of the 
developer (e.g., layout in case of class diagram). 

The operations of the selective-aggregation technique 
are based on the traversal of the graph.  A UML class 
model is a directed graph (more precisely a multi-graph).  
However, it is interesting to examine the directionality of 
the relations (e.g., bidirectional in case of binary-
associations and derived-to-base directionality in case of 
generalizations).  The most important point here is the 
directionality implied by a particular UML relation is 
semantic (e.g., order in which the classes collaborate or 
provide reuse) and not navigational.  Therefore, we are at 
liberty to base our navigation technique on the semantics 
or the underlying undirected graph. 

In our approach, the navigation is based on the 
breadth-first traversal of the underlying graph starting at 
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the leaves.  By doing so, we induce the parent and sibling 
relations between classes based on their traversal order, 
and classify each class as an internal or a leaf node.  
Furthermore, on account of the multi-graph nature of 
UML class model, we distinguish between siblings as 
pure-siblings and mix-siblings.  The pure-siblings are the 
classes that have all the identical parents while the mix-
siblings are the classes that have at least one but not all 
parents identical.  We now define two orthogonal 
reduction-operations. 

The sibling-order compaction operates on pure-
siblings and reduces them to pure-onion and/or mix-
onion notations.  The number of nodes in the graph is 
reduced and at the same time the abstraction of nodes 
increases as a result of a successful operation.  In other 
words, the goal of this operation is to decrease the overall 
width of the context part of the onion graph. 

The level-order compaction operates on both the pure-
siblings and mix-siblings at a given level and reduces 
them to pure-onion and/or mix-onion notations.  The 
number of levels in the graph reduces and the abstraction 
level increases as a result of a successful operation.  In 
other words, the goal of this operation is to decrease the 
overall height of the context part of the onion-graph.  
However, not all the leaf-nodes are reduced.  If a leaf-
node has either pure-siblings or mix-siblings that are 
internal nodes, it is ignored by the level-order 
compaction until the internal-nodes become leaf-nodes 
by successive operations. 

The reduction operators reduce siblings and abstract 
them in the onion notations.  The onion notation used to 
represent a reduction or aggregation is chosen such that it 
satisfies the underlying semantics of the classes or the 
relations.  The mapping function needs only the 
information about the type of node (e.g., pure-onion and 
mix-onion) and the relations (e.g., generalization and 
association) involved in the reduction.  Therefore, the 
semantics of the relations as implied by the directionality 
is always preserved in the onion notations and are not 
sacrificed for the ease of navigation and reduction. 

The breadth-first traversal augments each node with 
information about its parents and its leaf or internal 
status.  The reduction technique proceeds in a bottom-up 
fashion staring with leaves and moving towards the 
root(s).  The sibling-order compaction consists of many 
atomic operations.  A single such operation considers as 
operands only the leaf-nodes.  Thus, the sibling-order 
compaction is also recursive and consists of multiple 
reduction operations.  Similar explanation follows for the 
level-order compaction but with one additional function.  
The level-order compaction is also responsible for 
updating the status of the onion-notation node used to 
represent the abstraction.  As the level-order compaction 
reduces the levels in the graph, some of the nodes that are 
internal may turn into leaf nodes.  The arities of a single 

sibling-order and level-order operators are specified by 
the control variables scdegree and lcdegree respectively. 

A number of intermediate focus+context views can be 
generated after each atomic operator or the completion of 
the entire sibling-order or level-order compaction.  This 
decision depends on the trade-off between the level of 
detail in each view and the number of views. 

3. Illustrations 
We conducted a primary investigation on an open 

source data analysis tool, Hippodraw (version 1.12.9).  
Hippdraw is an application written in C++ and consists 
of about 238 classes.  The documentation for Hippodraw 
does not contain UML class diagrams.  We reverse-
engineered the UML class model from the C++ code-
base with the help of a visual modeling tool, Visual 
Paradigm (version 4.1).  This tool does reverse engineer 
generalizations well but other relationships are not well 
supported.  Here, we demonstrate our semantic 
focus+context technique on two subsystems: transforms 
and projectors.  The directory transforms exhibits 
instances of single-inheritance while the directory 
projectors exhibits instances of multiple-inheritance.  

 

 
Figure 3.  A Partial UML Class Diagram of 
Transforms – Single Inheritance 

 
Reverse-engineering with Visual Paradigm results in 

a UML class model.  It also supports automatic UML 
class diagram generation given manually selected classes.  
Furthermore, it supports a few automatic layout 
algorithms.  Different UML class diagrams consisting of 
all the classes and generalizations were constructed for 
both the transforms and projectors cases.  In both the 
cases, a hierarchical layout algorithm was applied.  
Therefore, in the examples we impose an additional 
constrain of preserving the original layout i.e., the 
relative positions of nodes and edges.  The onion 
notations and the figures here were generated using with 
Microsoft Visio as this produced cleaner diagrams. 
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3.1. Onion Graphs of Transforms – Single 
Inheritance 

A partial UML class diagram for the transforms 
modules is shown in Figure 3.  Let us consider that a 
developer is considering a task of extending the 
functionality of the XYZTransfrom class.  Therefore, the 
first simple, but helpful, activity is the comprehension of 
the entire inheritance hierarchy of the XYZTransfrom 
class.  Only the base classes and generalizations of the 
XYZTransfrom class are required to be in detail (focus) 
and all the other elements are considered as context.   

Using a straightforward formulation we can 
automatically compute a context-free slice of the 
inheritance hierarchy.  Alternatively, this selection could 
be done manually.  This becomes the focus F and the rest 
of the elements in the class diagram form the context 
CMF with respect to the focus F.  Now, we present a 
series of views obtained by the application of the 
selective-aggregation technique.   

 

 
Figure 4.  A View after the First Sibling-Order 

Compaction for Transforms. 
 
The default focus+context view of the transforms 

module shows no selective-aggregation.  The elements in 
focus are displayed in the UML notations and the 
elements in the context are displayed in the onion 
notations.  We present only those views that are obtained 
after the entire sibling-order or level-order reduction due 
to space-constraint.  The first view obtained after sibling-
order reduction is shown in Figure 4.  All the leaf-nodes 
are reduced to pure-onion notations.  The width of the 
onion notations indicates the number of siblings that are 
abstracted.  In this case two siblings were merged in each 
case and are represented by pure-onion notations.  The 
scale for node-metrics representation is linear and varies 
across views.  This is due to continuous reduction of the 
visualization space needed for the context information.  
However, the scale must suffice to make a perceivable 
distinction in any given view. 

The next step in the reduction process produces a 
level-order compaction.  The pure-onion notations are 
used to represent this compaction.  This reduction 
occurred along the generalization dimension.  The 
semantics of the reduction as well as the UML semantics 
of generalizations are preserved by the chosen notations.  
Notice that some internal nodes become leaves on 
account of this operation.  The height of the nodes 
reflects the number of levels reduced.  Also, the first leaf 
node on the level two is not abstracted.  It waits for the 
left internal-node to become a leaf.  The view obtained 
after this compaction is shown in Figure 5. 
 

 
Figure 5.  A View after the First Level-Order 

Compaction for Transforms. 
 

 
Figure 6.  A View after the Second Sibling-Order 

Compaction for Transforms.  
 
The next view is interesting as it introduces mix-onion 

notations.  The leaves in Figure 5 are of different types 
i.e., representing different abstracted information.  For 
example, the lower-left onion node is an abstraction of 
generalizations among the classes while the one to its 
right is not.  In this case, they cannot be combined and 
represented by a pure-onion notation as semantics are to 
be preserved.  Therefore, a mix-onion node represents 
them (see Figure 6). 

In the second level-order compaction, the reduction is 
applicable only to the lower-left leaf node.  The other leaf 

84



  

 

node is already at the root parent position.  The 
generalization relation, under reduction, holds for both 
the partitions of the lower-left leaf node.  Therefore, this 
level is reduced to a pure-onion notation.   

The additional visualization space gained can be better 
utilized for elements under focus.  For example, a set of 
relevant public operations of the classes in focus can be 
shown.  Notice that the final sibling-order compaction is 
possible as both the leaf nodes are in pure-onion 
notations and thus the context is now abstracted in a 
single onion node (this view not shown with a figure).    

3.2. Onion Graphs of Projectors – Multiple 
Inheritance  

A partial UML class diagram for the projectors 
module is shown in Figure 7.  Here, we have a case of 
multiple-inheritance.  We give numeric labels to all the 
classes in this diagram3 to facilitate discussion.  Let us 
assume that the classes labeled 12, 13, and 18 are in the 
focus area.  Therefore, the rest of the context forms an 
input to the selective-aggregation technique.  

 

 
Figure 7.  A Partial UML Class-diagram for 

Projectors– Multiple-Inheritance 
 
The first step is the sibling-order compaction.  The 

classes derived from multiple parents do not 
automatically become mix-siblings.  In Figure 7 we have 
4 classes (labeled 8, 9, 15, and 17) involved in multiple-
inheritance.  However, 8 and 9 are pure-siblings as both 
of their parents are identical.  Also, some of the pure-
siblings may be ignored for reduction on the basis of 
preserving the layout of the original diagram.  Such is the 
case, for example, with pure-siblings 3 and 5.  Therefore, 
only the siblings 8 and 9 are abstracted into a pure-onion 
node.  The view obtained after this step is not shown.   

                                                        
3 These labels are not part of the onion notations. 

The next level-order compaction operates on the onion 
graph obtained after the sibling-order compaction.  The 
view obtained after the first sibling-order compaction is 
similar to the previous one except that nodes 8 and 9 are 
merged and represented by a single pure-onion node 
(labeled 8 for simplicity).  At this stage, the leaf-nodes 
are 3, 5, 8, 10, 11, 14, 15, 16, and 17.  Leaf-nodes 3 and 5 
have siblings from the parent 1 that are internal nodes.  
Leaf node 8 has siblings from the parent 2 that are 
internal nodes.  Therefore, it does not participate in the 
level-order compaction.  Nodes 10, 11, 14, 15, 16, and 17 
are leaf-nodes with no internal siblings.  Therefore, they 
take part in the level-order compaction.  

 
Figure 8.  A View Obtained after the First Level-

Order Compaction for Projectors. 
 

 
Figure 9.  A View Obtained after the Second Level-

Order Compaction for Projectors.  
 
The parent node 6 and its children 14 and 15 in Figure 

7 are merged into a pure-onion node.  The pure-onion 
node for this operation is labeled 6 in Figure 8 and 
marked as a leaf-node.  Notice that nodes 14 and 15 are 
mix-siblings, however the other parent 4 of the node 15 
also participates in this reduction.  Therefore, nodes 14 
and 15 are abstracted into a pure-onion node 6.  Similar 
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actions occur for the parent node 7, and a pure-onion 
node 7 in Figure 8 represents the abstraction.  The 
reduction operation that deserves the most explanation is 
one involving parent node 4 in Figure 7.  Notice that the 
child node 8 cannot participate in this reduction, 
however, all the other children of node 4 can.  Therefore, 
the abstracted node does not become a leaf after the 
reduction (see Figure 8).  Furthermore, a pure-onion 
notation cannot represent the abstraction due to a need to 
preserve the relation semantics.  Therefore, a mix-onion 
notation labeled 4 in Figure 8 represents this reduction 
(large middle node).  Notice, that this node preserves the 
semantics of the relationship with other nodes and the 
layout. 

The second sibling-order compaction operates on the 
onion graph presented in Figure 8.  The leaf-node 
siblings 6 and 7 are merged and represented by a pure-
onion node.  No other sibling-order compaction is 
possible.  The second level-order compaction operates on 
the onion graph obtained after the second sibling-order 
compaction.  The onion graph obtained after this 
reduction is shown in Figure 9.  Similarly, other 
reductions follow and are not discussed here. 

4. Related Work 
Broadly the research efforts on visualizing UML class 

diagrams can be put into three major categories: layout 
algorithms and abstracted views.  Each is discussed 
separately.  

4.1. Layout 

A widely investigated approach is to address UML 
class model visualization as a pure-graph layout problem.  
An excellent source describing the graph-drawing 
algorithms is [2].  In [11] various graph-layout 
algorithms are examined with regards to scalability, 
aesthetic criteria, and cognitive factors.  Researchers tried 
to identify aesthetic criteria that are most important for 
human perception with the goal of reducing the cognitive 
cost in performing a certain task [17, 25].  Minimizing 
edge-crossing and bends, and maximizing symmetry are 
identified to be the important aesthetic criteria for general 
graphs [18].  In another study path-length, path-
continuity, and minimizing edge-crossings were 
recognized as essential criteria [25]. 

For UML class diagrams specific studies, subjects 
showed preference for fewer bends and crosses, shorter 
edge lengths, and an orthogonal structure [16].  However, 
it remains inconclusive as to which aesthetic criteria 
(with an exception of minimizing bends) are important 
for UML class diagram comprehension and future studies 
that considers semantic grouping of nodes and using 
secondary notations (e.g., color) [9] are suggested [19]. 

A UML class diagram layout algorithm, producing a 
balance of various aesthetic criteria and emphasizing the 
visibility of a particular structure via secondary notations, 
is presented in [10].  The quality of a design in the layout 
algorithm is presented in [6].  Also, there exist algorithms 
that incorporate other semantic information such as 
design patterns and architectural importance [1, 7]. 

4.2. Abstractions 

Another abstraction-based approach, focus+context 
technique is applied to various graph-like structures [8, 
11, 13, 21].  The most closely related work in context of 
UML class model is [15].   Our approach differs from the 
above work at the grass-root level.  Our main motivation 
is reduction or elimination of selective edges (in context) 
while providing the semantic focus in UML notations.  
The work in [15] strives to achieve visual-space 
efficiency (possibly at the loss of pruned information 
below the lowest DOI value).  Furthermore, our approach 
is not limited to a single class in the initial focus area but 
can contain multiple classes and relationships that are 
developer specified.  The original layout is not preserved 
in the above work; rather it is continuously changing at 
each point of aggregation. 

Another approach for abstracting UML class diagram 
is presented in [5].  The goal of this approach is to derive 
direct relationships between a given list of classes, and 
filter remaining elements.  The intermediate classes and 
relations between a pair of classes are abstracted and 
represented by a single relation.  In contrast, our goal is 
to provide a portion of class diagram in the context of the 
entire class diagram. 

The nested graph view is an alternative for visually 
representing relations between nodes in a graph.  Such a 
representation consists of nodes within a node.  Note that 
a node may embody an abstracted graph.  The SHrIMP 
tool [23] is an excellent representative utilizing nested 
graph in the domain of software visualization (though not 
applied in the domain of UML class models). 

5. Conclusions and Future Work 
A novel approach for focus+context views of UML 

class diagrams was presented.  The combined view 
provides the focus and details in UML notation while the 
context information is presented in the form of onion 
notations.  Furthermore, the views preserve the structure 
and semantics of the model from the UML as well as the 
developer’s perspectives.  We demonstrated the 
technique by a set of examples.  Our visualization 
technique does achieve edge reduction, however formally 
assessing context information will require a user study.  
Anecdotally, during various informal discussions, a 
number of experienced UML users gave opinions that 
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support the notations usefulness.  Additionally, a claim 
can be made that the previous research on fisheye and 
other context+focus views directly supports our 
hypothesis.  However, the degree to which one can 
abstract into onion notation in the domain of UML is of 
great interest with respect to automation. 

In the future, we plan to conduct user studies to 
validate our conjecture regarding context information.  
Also, we are developing tools (plug-ins to open source 
UML tools) to support automatic transformation of the 
UML class models in onion graphs. 
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