

Onion Graphs for Focus+Context Views of UML Class Diagrams

Huzefa Kagdi, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{hkagdi, jmaletic}@cs.kent.edu

Abstract

The paper introduces the use of onion graphs as a
focus+context technique for visualizing large UML class
models. The focus area, which can be manually or
automatically derived, is visualized using the standard
UML notations. The remainder of the model is
abstracted (context) and presented at varying levels of
detail in onion notation. A selective aggregation
technique for achieving the abstractions is presented.
Finally, the technique is demonstrated by examples on
two subsystems of an open source project.

1. Introduction
Developers find UML class models1 useful for

designing systems along with understanding and
maintaining existing systems. During forward
engineering, the specification of class models is often
done via a large number of small UML class diagrams.
Eventually each class diagram of interest may need to be
comprehended in the context of the entire model (i.e., the
union of all the class diagrams). However, in the case of
reverse-engineered class models from existing source, the
situation is quite a bit more problematic. That is, there
are no such small class-diagrams specific to design
features or domain concerns. UML reverse-engineering
environments (including commercial tools) are restricted
to automatic generation of an entire class model from the
given source code. At best they support the automatic
generation of a class diagram from manually selected
classes.

Large systems typically consists of 1000s of classes
and many more relationships. Clearly, viewing the entire
model in a form of a single class diagram is typically of
little use due to cognitive overload [24]. Graph layout
algorithms based on aesthetics criteria such as
minimizing edge-crossings and maximizing symmetry
have proven useful for comprehension of small class

1 In the rest of paper, model or class-model refers to a UML class-
model or a UML class-diagram unless explicitly specified.

diagrams (typically 10-15 classes), however they are
inadequate in dealing with a large information space
particularly in the UML domain [16-20]. Preservation of
aesthetic criteria such as minimizing edge-crossing is a
computationally difficult problem for complex graphs
[11]. A general solution to effectively visualize a large
UML class diagram with layout alone is unlikely.
Therefore, it is desirable and meaningful to investigate
visual abstractions for representing UML class models.
This approach is akin to the work by Munzner on
visualizing large graphs such as the world wide web [14]
and the work on fisheye views by Furnas [8].

Here, we propose a focus+context technique [4] for
UML class models. The focus area is presented in detail
and visualized with standard UML notation. The
remainder of the model (the context) is abstracted at
various levels of detail and presented in onion notation
[22]. The formation of an onion graph from UML
notations and onion notations provides a single view with
a combined focus and context. For example, the onion
graph shown in Figure 6 is one possible view of the
complete UML class diagram shown in Figure 3. Such
combined views may help reduce cognitive overhead by
reducing cluttering due to edges [3]. A series of onion
graphs supports semantic zooming and incremental
exploration [11]. This provides a UML class diagram
browser/explorer that can be considered analogues to
modern file browsers. Furthermore, our investigation is
aimed at designing abstractions that reduce edges. The
motivation behind this is rooted in an observation from
previous unfavorable results for edges and their layouts
in supporting comprehension of large UML class models
[16-20].

The remainder of the paper is organized as follows. In
Section 2, our semantic focus+context technique
including onion notations and a selective aggregation
technique is presented. In Section 3, we present
examples of using this method on two Hippodraw
subsystems. Finally, we present our conclusions in
Section 4.

80

2. A Semantic Focus+Context Technique
UML graphical notations used to denote classes and

various relationships (e.g., generalization and
associations) are well established. Therefore, designing
new graphical notations (i.e., extensions) for representing
visual abstractions2 of the corresponding elements or
relationships is a major challenge (actually a road block).
It is imperative to have visual elements that clearly
preserve the structure and semantics of the considered
UML model elements. Any attempt to deviate from
these “standard” notations imposes a risk of total
rejection or utter confusion. The same applies to a
transformation mechanism employed to reduce the UML
class diagrams to abstract views. The resultant view
must not violate the structure and semantic of the
considered UML model of a system. Therefore, we feel
that the following constrains need to be enforced to
preserve a developer’s mental model, reduce cognitive
load, and preserve the information domain,
• Similarity with UML notations (C1): The

graphical notations for abstracted information must
bear a close resemblance to the UML notations.

• Preservation of UML syntax and semantics (C2):
The abstracted views must preserve the information
about the structure and semantics of a represented
UML class model (or class diagram).

• Level of detail (C3): The transformed views must
provide information varying from the greatest detail
of UML class diagram notations to the abstracted
overview without losing relevant context.

From a bird’s eye view, the proposed technique
consists of three main components: focus area, onion
notations, and selective-aggregation technique. We can
utilize, for example, UML model slicing [12] to
automatically extract a context-free model slice that
forms the focus area. Alternatively, a user can also
manually determine a part of the model to focus. In
order to represent the rest of the model (the context), we
introduce onion notations for the UML class model.
Additionally, we present a selective-aggregation
technique for UML class models that represents the
classes in the context at a varying level of detail. The
overall focus+context view is represented as an onion
graph. Next, our onion notations are presented.

2.1. Onion Notations for UML Class Models

Traditional notations visually represent (any) graph as
nodes connected by edges. Onion notations represent a
graph with nested nodes, i.e., nodes involved in a
relationship [22]. A graph represented with a mixture of
both traditional and onion notations is said to be an onion

2 Abstraction refers to visual abstractions

graph. In our approach, onion notations are used to
present the context information i.e., classes and relations
not included in a focus area. The onion notations
presented here are based on the Hicon approach [22].
The Hicon approach allows for onion notations for
multiple types of relationships. The notations consider
the structural properties of the UML class model and
preserve the semantics defined by those properties. Here,
we use the term structural property to refer to a grouping
of classes or relationships between classes. We divide
the notations in two categories: pure-onion and mix-
onion notations. The pure-onion notations represent
abstractions in which a set of structural properties holds
for all the members in the group (e.g., all the grouped
classes have a generalization relationship). A
representative subset of the pure-onion notations is
shown in Figure 1.

The symbol in Figure 1(a) is used to represent a class
involved in maximum of one relation while the one in
Figure 1(b) is used to represent a class involved in two
relations (may be of same or different type). The 2-
relation class symbol can be similarly generalized to
represent n-relation class. The symbols in the Figure 1(c)
to Figure 1(g) are used to denote abstractions of classes
and the relationships among them. The symbol in Figure
1(c) represents classes that are related via a
generalization relation. Similarly, we define symbols for
other types of UML class diagram relations. Note that
this new notation is directly derived from UML notation.

The mix-onion notations represent abstractions that
are partitioned into disjoint groups such that each group
holds a set of structural properties. Notice that it is valid
for a class to be a member of more than a single partition
as long as it satisfies the structural properties of the
corresponding partitions. Our goal is to preserve both the
structural and semantic information that is present in the
original UML class model. In the case of UML class
diagram, we have to deal with additional information of
layout. That is, ordering and relative positions of
elements are important to preserve the mental-model of a
developer. The mix-onion notations realize this goal. A
subset of mix-onion notations is given in Figure 2.

The symbol in Figure 2(a) is an abstraction of
immediate classes (i.e., leaves) on the left side followed
by generalizations of classes on the right side. Similarly,
we can explain for the notation in Figure 2(b). Figure
2(c) shows a notation representing classes involved in
associations followed by generalizations of classes. The
Figure 2(d) representing empty partitions are particularly
interesting. They satisfy special needs in graphs such as
UML class model. For example, in the case of multiple-
inheritance only a partial reduction may be possible (we
elaborate on this more in Section 3.2). Note that the
choice of a notation for a class representation, such as
ones given in Figure 1(a) and Figure 1(b), is dependent

81

on the level of detail needed. Therefore, we may have a
partition in a notation represent a single class (more
partitions) or a group of classes (less partitions).

Our notation appears to have a deficiency at first
glance. The UML modeling language is a combination
of text and symbols. The name of the UML elements and
other information regarding the structural complexity
(e.g., how deep is the hierarchy?) appears to be lost.
However, our intention is not to represent the entire
UML class model or class diagram in onion notations.
The focus obtained by a context-free slice is represented
in the UML notation and only the context information is
represented in the onion notations. Furthermore, the
purpose of having context-information in the same view
is to facilitate the further exploration and explanation of
the elements in the model.

Figure 1. A Subset of Pure-Onion Notations for the

UML Class Model

Figure 2. A Subset of Mix-Onion Notations for the

UML Class Model

We can now introduce secondary notations [9] of

node-metrics as used in [6]. The width of a symbol is
used to represent the number of classes abstracted and the
height of the symbol is used to represent the number of
levels abstracted along a relation. This technique
provides more context information than is available in a
typical class diagram like representation. In this paper
we map only the structural information to the node-
metrics and not the information external to the domain of

UML class model (e.g., OO metric information
indicating the quality of a design, design patterns, etc).
However, one could easily map such semantic
information to the secondary notations.

In summary, the onion notations satisfy the conditions
C1 (preservation of UML syntax and semantics) and C2
(close similarity with UML symbols). However, it is
further required that the classes and their relationships in
a given UML class model are mapped to the appropriate
onion notations. To address this issue, we present a
selective aggregation technique.

2.2. A Selective-Aggregation Technique

Our focus+context technique takes as input the UML
class model (or diagram) and produces views in the form
of onion graph as determined by the selective-
aggregation technique. We apply reduction only to the
context part of the view and the focus is preserved as it is
(unless the focus is explicitly changed by a user). The
whole technique is defined formally as follows,

Let M = (E, R, Γ) be a UML class model. The focus
F is the computed context-free model slice or user
selected subset. Thus, we have,

F = Scf(M, Ccf) = M’ = (E’, R’, Γ’).
Therefore, the context in the model CMF with respect

to a given focus F is the remainder of the classes and
relations in the model that are not in focus F. Thus, we
have, CMF = M/M’ = (E/E’, R/R’, Γ/Γ’).

Once we have the context CMF, the selective-
aggregation technique is basically a view-transformation
technique where the UML class diagram is transformed
to an onion graph representation. Therefore, we need a
mechanism, i.e., criteria and operations to select classes
that can be reduced to an abstraction and map the
obtained reduction/abstraction to appropriate onion
notations. Moreover, the selective-aggregation technique
must satisfy the additional constrain of never producing a
view that violates the underlying semantics given to
classes by the relations and the assumptions of the
developer (e.g., layout in case of class diagram).

The operations of the selective-aggregation technique
are based on the traversal of the graph. A UML class
model is a directed graph (more precisely a multi-graph).
However, it is interesting to examine the directionality of
the relations (e.g., bidirectional in case of binary-
associations and derived-to-base directionality in case of
generalizations). The most important point here is the
directionality implied by a particular UML relation is
semantic (e.g., order in which the classes collaborate or
provide reuse) and not navigational. Therefore, we are at
liberty to base our navigation technique on the semantics
or the underlying undirected graph.

In our approach, the navigation is based on the
breadth-first traversal of the underlying graph starting at

82

the leaves. By doing so, we induce the parent and sibling
relations between classes based on their traversal order,
and classify each class as an internal or a leaf node.
Furthermore, on account of the multi-graph nature of
UML class model, we distinguish between siblings as
pure-siblings and mix-siblings. The pure-siblings are the
classes that have all the identical parents while the mix-
siblings are the classes that have at least one but not all
parents identical. We now define two orthogonal
reduction-operations.

The sibling-order compaction operates on pure-
siblings and reduces them to pure-onion and/or mix-
onion notations. The number of nodes in the graph is
reduced and at the same time the abstraction of nodes
increases as a result of a successful operation. In other
words, the goal of this operation is to decrease the overall
width of the context part of the onion graph.

The level-order compaction operates on both the pure-
siblings and mix-siblings at a given level and reduces
them to pure-onion and/or mix-onion notations. The
number of levels in the graph reduces and the abstraction
level increases as a result of a successful operation. In
other words, the goal of this operation is to decrease the
overall height of the context part of the onion-graph.
However, not all the leaf-nodes are reduced. If a leaf-
node has either pure-siblings or mix-siblings that are
internal nodes, it is ignored by the level-order
compaction until the internal-nodes become leaf-nodes
by successive operations.

The reduction operators reduce siblings and abstract
them in the onion notations. The onion notation used to
represent a reduction or aggregation is chosen such that it
satisfies the underlying semantics of the classes or the
relations. The mapping function needs only the
information about the type of node (e.g., pure-onion and
mix-onion) and the relations (e.g., generalization and
association) involved in the reduction. Therefore, the
semantics of the relations as implied by the directionality
is always preserved in the onion notations and are not
sacrificed for the ease of navigation and reduction.

The breadth-first traversal augments each node with
information about its parents and its leaf or internal
status. The reduction technique proceeds in a bottom-up
fashion staring with leaves and moving towards the
root(s). The sibling-order compaction consists of many
atomic operations. A single such operation considers as
operands only the leaf-nodes. Thus, the sibling-order
compaction is also recursive and consists of multiple
reduction operations. Similar explanation follows for the
level-order compaction but with one additional function.
The level-order compaction is also responsible for
updating the status of the onion-notation node used to
represent the abstraction. As the level-order compaction
reduces the levels in the graph, some of the nodes that are
internal may turn into leaf nodes. The arities of a single

sibling-order and level-order operators are specified by
the control variables scdegree and lcdegree respectively.

A number of intermediate focus+context views can be
generated after each atomic operator or the completion of
the entire sibling-order or level-order compaction. This
decision depends on the trade-off between the level of
detail in each view and the number of views.

3. Illustrations
We conducted a primary investigation on an open

source data analysis tool, Hippodraw (version 1.12.9).
Hippdraw is an application written in C++ and consists
of about 238 classes. The documentation for Hippodraw
does not contain UML class diagrams. We reverse-
engineered the UML class model from the C++ code-
base with the help of a visual modeling tool, Visual
Paradigm (version 4.1). This tool does reverse engineer
generalizations well but other relationships are not well
supported. Here, we demonstrate our semantic
focus+context technique on two subsystems: transforms
and projectors. The directory transforms exhibits
instances of single-inheritance while the directory
projectors exhibits instances of multiple-inheritance.

Figure 3. A Partial UML Class Diagram of
Transforms – Single Inheritance

Reverse-engineering with Visual Paradigm results in

a UML class model. It also supports automatic UML
class diagram generation given manually selected classes.
Furthermore, it supports a few automatic layout
algorithms. Different UML class diagrams consisting of
all the classes and generalizations were constructed for
both the transforms and projectors cases. In both the
cases, a hierarchical layout algorithm was applied.
Therefore, in the examples we impose an additional
constrain of preserving the original layout i.e., the
relative positions of nodes and edges. The onion
notations and the figures here were generated using with
Microsoft Visio as this produced cleaner diagrams.

83

3.1. Onion Graphs of Transforms – Single
Inheritance

A partial UML class diagram for the transforms
modules is shown in Figure 3. Let us consider that a
developer is considering a task of extending the
functionality of the XYZTransfrom class. Therefore, the
first simple, but helpful, activity is the comprehension of
the entire inheritance hierarchy of the XYZTransfrom
class. Only the base classes and generalizations of the
XYZTransfrom class are required to be in detail (focus)
and all the other elements are considered as context.

Using a straightforward formulation we can
automatically compute a context-free slice of the
inheritance hierarchy. Alternatively, this selection could
be done manually. This becomes the focus F and the rest
of the elements in the class diagram form the context
CMF with respect to the focus F. Now, we present a
series of views obtained by the application of the
selective-aggregation technique.

Figure 4. A View after the First Sibling-Order

Compaction for Transforms.

The default focus+context view of the transforms

module shows no selective-aggregation. The elements in
focus are displayed in the UML notations and the
elements in the context are displayed in the onion
notations. We present only those views that are obtained
after the entire sibling-order or level-order reduction due
to space-constraint. The first view obtained after sibling-
order reduction is shown in Figure 4. All the leaf-nodes
are reduced to pure-onion notations. The width of the
onion notations indicates the number of siblings that are
abstracted. In this case two siblings were merged in each
case and are represented by pure-onion notations. The
scale for node-metrics representation is linear and varies
across views. This is due to continuous reduction of the
visualization space needed for the context information.
However, the scale must suffice to make a perceivable
distinction in any given view.

The next step in the reduction process produces a
level-order compaction. The pure-onion notations are
used to represent this compaction. This reduction
occurred along the generalization dimension. The
semantics of the reduction as well as the UML semantics
of generalizations are preserved by the chosen notations.
Notice that some internal nodes become leaves on
account of this operation. The height of the nodes
reflects the number of levels reduced. Also, the first leaf
node on the level two is not abstracted. It waits for the
left internal-node to become a leaf. The view obtained
after this compaction is shown in Figure 5.

Figure 5. A View after the First Level-Order

Compaction for Transforms.

Figure 6. A View after the Second Sibling-Order

Compaction for Transforms.

The next view is interesting as it introduces mix-onion

notations. The leaves in Figure 5 are of different types
i.e., representing different abstracted information. For
example, the lower-left onion node is an abstraction of
generalizations among the classes while the one to its
right is not. In this case, they cannot be combined and
represented by a pure-onion notation as semantics are to
be preserved. Therefore, a mix-onion node represents
them (see Figure 6).

In the second level-order compaction, the reduction is
applicable only to the lower-left leaf node. The other leaf

84

node is already at the root parent position. The
generalization relation, under reduction, holds for both
the partitions of the lower-left leaf node. Therefore, this
level is reduced to a pure-onion notation.

The additional visualization space gained can be better
utilized for elements under focus. For example, a set of
relevant public operations of the classes in focus can be
shown. Notice that the final sibling-order compaction is
possible as both the leaf nodes are in pure-onion
notations and thus the context is now abstracted in a
single onion node (this view not shown with a figure).

3.2. Onion Graphs of Projectors – Multiple
Inheritance

A partial UML class diagram for the projectors
module is shown in Figure 7. Here, we have a case of
multiple-inheritance. We give numeric labels to all the
classes in this diagram3 to facilitate discussion. Let us
assume that the classes labeled 12, 13, and 18 are in the
focus area. Therefore, the rest of the context forms an
input to the selective-aggregation technique.

Figure 7. A Partial UML Class-diagram for

Projectors– Multiple-Inheritance

The first step is the sibling-order compaction. The

classes derived from multiple parents do not
automatically become mix-siblings. In Figure 7 we have
4 classes (labeled 8, 9, 15, and 17) involved in multiple-
inheritance. However, 8 and 9 are pure-siblings as both
of their parents are identical. Also, some of the pure-
siblings may be ignored for reduction on the basis of
preserving the layout of the original diagram. Such is the
case, for example, with pure-siblings 3 and 5. Therefore,
only the siblings 8 and 9 are abstracted into a pure-onion
node. The view obtained after this step is not shown.

3 These labels are not part of the onion notations.

The next level-order compaction operates on the onion
graph obtained after the sibling-order compaction. The
view obtained after the first sibling-order compaction is
similar to the previous one except that nodes 8 and 9 are
merged and represented by a single pure-onion node
(labeled 8 for simplicity). At this stage, the leaf-nodes
are 3, 5, 8, 10, 11, 14, 15, 16, and 17. Leaf-nodes 3 and 5
have siblings from the parent 1 that are internal nodes.
Leaf node 8 has siblings from the parent 2 that are
internal nodes. Therefore, it does not participate in the
level-order compaction. Nodes 10, 11, 14, 15, 16, and 17
are leaf-nodes with no internal siblings. Therefore, they
take part in the level-order compaction.

Figure 8. A View Obtained after the First Level-

Order Compaction for Projectors.

Figure 9. A View Obtained after the Second Level-

Order Compaction for Projectors.

The parent node 6 and its children 14 and 15 in Figure

7 are merged into a pure-onion node. The pure-onion
node for this operation is labeled 6 in Figure 8 and
marked as a leaf-node. Notice that nodes 14 and 15 are
mix-siblings, however the other parent 4 of the node 15
also participates in this reduction. Therefore, nodes 14
and 15 are abstracted into a pure-onion node 6. Similar

85

actions occur for the parent node 7, and a pure-onion
node 7 in Figure 8 represents the abstraction. The
reduction operation that deserves the most explanation is
one involving parent node 4 in Figure 7. Notice that the
child node 8 cannot participate in this reduction,
however, all the other children of node 4 can. Therefore,
the abstracted node does not become a leaf after the
reduction (see Figure 8). Furthermore, a pure-onion
notation cannot represent the abstraction due to a need to
preserve the relation semantics. Therefore, a mix-onion
notation labeled 4 in Figure 8 represents this reduction
(large middle node). Notice, that this node preserves the
semantics of the relationship with other nodes and the
layout.

The second sibling-order compaction operates on the
onion graph presented in Figure 8. The leaf-node
siblings 6 and 7 are merged and represented by a pure-
onion node. No other sibling-order compaction is
possible. The second level-order compaction operates on
the onion graph obtained after the second sibling-order
compaction. The onion graph obtained after this
reduction is shown in Figure 9. Similarly, other
reductions follow and are not discussed here.

4. Related Work
Broadly the research efforts on visualizing UML class

diagrams can be put into three major categories: layout
algorithms and abstracted views. Each is discussed
separately.

4.1. Layout

A widely investigated approach is to address UML
class model visualization as a pure-graph layout problem.
An excellent source describing the graph-drawing
algorithms is [2]. In [11] various graph-layout
algorithms are examined with regards to scalability,
aesthetic criteria, and cognitive factors. Researchers tried
to identify aesthetic criteria that are most important for
human perception with the goal of reducing the cognitive
cost in performing a certain task [17, 25]. Minimizing
edge-crossing and bends, and maximizing symmetry are
identified to be the important aesthetic criteria for general
graphs [18]. In another study path-length, path-
continuity, and minimizing edge-crossings were
recognized as essential criteria [25].

For UML class diagrams specific studies, subjects
showed preference for fewer bends and crosses, shorter
edge lengths, and an orthogonal structure [16]. However,
it remains inconclusive as to which aesthetic criteria
(with an exception of minimizing bends) are important
for UML class diagram comprehension and future studies
that considers semantic grouping of nodes and using
secondary notations (e.g., color) [9] are suggested [19].

A UML class diagram layout algorithm, producing a
balance of various aesthetic criteria and emphasizing the
visibility of a particular structure via secondary notations,
is presented in [10]. The quality of a design in the layout
algorithm is presented in [6]. Also, there exist algorithms
that incorporate other semantic information such as
design patterns and architectural importance [1, 7].

4.2. Abstractions

Another abstraction-based approach, focus+context
technique is applied to various graph-like structures [8,
11, 13, 21]. The most closely related work in context of
UML class model is [15]. Our approach differs from the
above work at the grass-root level. Our main motivation
is reduction or elimination of selective edges (in context)
while providing the semantic focus in UML notations.
The work in [15] strives to achieve visual-space
efficiency (possibly at the loss of pruned information
below the lowest DOI value). Furthermore, our approach
is not limited to a single class in the initial focus area but
can contain multiple classes and relationships that are
developer specified. The original layout is not preserved
in the above work; rather it is continuously changing at
each point of aggregation.

Another approach for abstracting UML class diagram
is presented in [5]. The goal of this approach is to derive
direct relationships between a given list of classes, and
filter remaining elements. The intermediate classes and
relations between a pair of classes are abstracted and
represented by a single relation. In contrast, our goal is
to provide a portion of class diagram in the context of the
entire class diagram.

The nested graph view is an alternative for visually
representing relations between nodes in a graph. Such a
representation consists of nodes within a node. Note that
a node may embody an abstracted graph. The SHrIMP
tool [23] is an excellent representative utilizing nested
graph in the domain of software visualization (though not
applied in the domain of UML class models).

5. Conclusions and Future Work
A novel approach for focus+context views of UML

class diagrams was presented. The combined view
provides the focus and details in UML notation while the
context information is presented in the form of onion
notations. Furthermore, the views preserve the structure
and semantics of the model from the UML as well as the
developer’s perspectives. We demonstrated the
technique by a set of examples. Our visualization
technique does achieve edge reduction, however formally
assessing context information will require a user study.
Anecdotally, during various informal discussions, a
number of experienced UML users gave opinions that

86

support the notations usefulness. Additionally, a claim
can be made that the previous research on fisheye and
other context+focus views directly supports our
hypothesis. However, the degree to which one can
abstract into onion notation in the domain of UML is of
great interest with respect to automation.

In the future, we plan to conduct user studies to
validate our conjecture regarding context information.
Also, we are developing tools (plug-ins to open source
UML tools) to support automatic transformation of the
UML class models in onion graphs.

6. References
[1] Andriyevska, O., Dragan, N., Simoes, B., and Maletic, J. I.,
"Evaluating UML Class Diagram Layout based on
Architectural Importance", in Proceedings of 3rd IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT'05), Budapest,
Hungary, September, 25 2005, pp. 317-326.

[2] Battista, G., Eades, P., Tamassia, R., and Tollis, I., Graph
Drawing Algorithms for the Visualization of Graphs, Prentive
Hall, 1999.

[3] Bertin, J., Graphics and Graphic Info Processing, De
Gruyter, 1981.

[4] Card, S. K., Mackinlay, J., and Shneiderman, B., Readings
in Information Visualization Using Vision to Think, San
Francisco, CA, Morgan Kaufmann, 1999.

[5] Egyed, A., "Automated Abstractions of Class Diagrams",
ACM Transactions on Software Engineering and Methodology
(TOSEM), 11, 4, October 2002, pp. 449-491.

[6] Eichelberger, H., "Nice class diagrams admit good design? "
in Proceedings of ACM symposium on Software visualization,
San Diego, California, 2003, pp. 159-168.

[7] Eichelberger, H. and Gudenberg, J., W., "UML Class
Diagrams – State of the Art in Layout Techniques", in
Proceedings of Visualizing Software for Understanding and
Analysis (VISSOFT'03), Amsterdam, Sept. 22 2003, pp. 30-34.

[8] Furnas, G. W., "Generalized Fisheye Views", in
Proceedings of Human Factors in Computing Systems, Boston,
MA, 1986, pp. 16-23.

[9] Green, T. and Blackwell, A., "Thinking about visual
programs", Thinking with Diagrams, IEE Digest No: 96/010,
1996.

[10] Gutwenger, C., Junger, M., Klein, K., Kupke, J., Leipert,
S., and Mutzel, P., "A new approach for visualizing UML class
diagrams ", in Proceedings of ACM symposium on Software
visualization, San Diego, California, 2003, pp. 179-188.

[11] Herman, I., Melancon, G., and Marshall, S. M., "Graph
Visualization and Navigation in Information Visualization: A
Survey", IEEE Transaction on Visualization and Computer
Graphics, 6, 1, January/March 2000, pp. 24-43.

[12] Kagdi, H., Maletic, J. I., and Sutton, A., "Context-Free
Slicing of UML Class Models ", in Proceedings of 21st IEEE
International Conference on Software Maintenance (ICSM'05),
Budapest, September, 25-30 2005, pp. 635-638.

[13] Lamping, J., Rao, R., and Pirolli, P., "A focus+context
technique based on hyperbolic geometry for visualizing large
hierarchies", in Proceedings of ACM Conference on Human
Factors in Computing Systems, 1995, pp. 401-408.

[14] Munzner, T., "Visualizing the Structure of the World Wide
Web in 3D Hyperbolic Space", in Proceedings VRML '95, San
Diego, 1995.

[15] Musial, B. and Jacobs, T., "Application of Focus + Context
to UML", in Proceedings Australian symposium on Information
visualisation, Adelaide, Australia, January 01 2003, pp. 75-80.

[16] Purchase, H., "Effective information visualisation: a study
of graph drawing aesthetics and algorithms", Interacting with
Computers, 13, 2, December 2000, pp. 147-162.

[17] Purchase, H., McGill, M., Colpoys, L., and Carrington, D.,
"Graph Drawing Aesthetics and the Comprehension of UML
Class Diagrams: An Empirical Study", in Proceedings of
Australian Symposium on Information Visualisation, Sydney,
Australia, 2001, pp. 129 - 137.

[18] Purchase, H. C., "Which Aesthetic has the Greatest Effect
on Human Understanding? " in Proceedings of 5th International
Symposium on Graph Drawing, Springer-Verlag, 1997, pp.
248-261.

[19] Purchase, H. C., Allder, J.-A., and Carrington, D. A., "User
Preference of Graph Layout Aesthetics: A UML Study ", in
Proceedings of 8th International Symposium on Graph
Drawing, Springer-Verlag, 2001, pp. 5-18.

[20] Purchase, H. C., Cohen, R. F., and James, M., "Validating
Graph Drawing Aesthetics", in Proceedings of Graph Drawing
'95, Passau, Germany, September 20-22 1995, pp. 435-446.

[21] Rao, R. and Card, S. K., "The Table Lens: Merging
graphical and symbolic representations in an interactive
focus+context visualization for tabular information", in
Proceedings of ACM Conference on Human Factors in
Computing Systems (CHI'94), 1994, pp. 318-322, 481-482.

[22] Sindre, G., Gulla, B., and Jokstad, H., "Onion Graphs:
Aesthetics and Layout", in Proceedings of IEEE Symposium on
Visual Languages, Norway, August 01 1993, pp. 287-291.

[23] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of International Workshop on
Program Comprehension (IWPC'01), Toronto, Ontario, Canada,
May 12-13 2001, pp. 111-112.

[24] Ware, C., Information Visualization. Perception for
Design, Morgan Kaufmann Publishers, 2000.

[25] Ware, C., Purchase, H., Colpoys, L., and McGill, M.,
"Cognitive Measurements of Graph Aesthetics", Information
Visualization, 1, 2, June 2002, pp. 103-10.

87

	Text5: 1-4244-0600-5/07/$20.00 ã2007 IEEE

