EXPERT PROBLEM SOLVING STRATEGIES
FOR PROGRAM COMPREHENSION

Jiirgen Koenemann and Scott P. Robertson

Department of Psychology
Rutgers — The State University of New Jersey
New Brunswick, NJ 08903
koeneman@ paul.rutgers.edu

ABSTRACT

Program comprehension is a complex problem solving pro-
cess. We report on an experiment that studies expert pro-
grammers’ comprehension behavior in the context of mod-
ifying a complex PASCAL program. Our data suggests
that program comprehension is best understood as a goal—
oriented, hypotheses—driven problem-solving process. Pro-
grammers follow a pragmatic as-needed rather than a system-
atic strategy, they restrict their understanding to those parts
of a program they find relevant for a given task, and they
use bottom-up comprehension only for directly relevant code
and in cases of missing, insufficient, or failing hypotheses.
These findings have important consequences for the design
of cognitively adequate computer—aided software engineer-
ing tools.

KEYWORDS

Software Psychology, Program Comprehension, Protocol
Analysis

INTRODUCTION

Yes, code please ... I'll probably go to the com-
ments after that, when I realize that I don’t under-
stand the code. [Subject 08]

A central activity of the software maintenance process is pro-
gram comprehension, the process of understanding program
code unfamiliar to the programmer. The goal of our research
is to provide strong empirical support for the paradigm that
program comprehension is a hypotheses—driven problem-
solving process. Consequently, cognitively adequate user in-
terfaces for computer—aided software engineering tools have
to support these empirically identified processes.

There is a growing body of research on the issue of program
comprehension. Cognitive research since the early 1980°s
has focussed on comprehension strategies, the procedural as-
pect of expertise, as well as on the declarative aspect of how
programming knowledge in general and the program under
consideration in particular are conceptually represented {1,
5, 15, 19, 23, 25, 26].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-383-3/91/0004/0125...$1.50

125

A study by Littman et.al.[17] (see also [16]) identified two
equally dominant comprehension strategies: Programmers
used either a systematic or an as—needed strategy. The former
group used extensive symbolic execution of the data and con-
trol flow between subroutines to gain a detailed understand-
ing of the program prior to modifying the code, whereas the
latter group tried to minimize the understanding of the pro-
gram by localizing those parts of the program that needed
to be changed and studying those parts only. This view of
program comprehension as a hypotheses—driven problem-—
solving process was first put forward by Brooks [3] in his
model of “Beacons” that guide comprehension. Other stud-
ies [27, 28] demonstrated the role of code level beacons for
understanding small, simple programs. Research at MCC on
initial stages of software design ([8, 9, 10, 11, 14]) and com-
prehension [2, 4] also demonstrated the heuristic approach to
software engineering tasks.

In contrast, there is a body of research that views program
listings as a special class of display of information [7] and,
consequently, sees program comprehension to be similar to
(prose) text comprehension, Parsing models of the text com-
prehension literature [13] are adapted for the use with pro-
gramming languages to predict reading times based on the
“micro-structure” of program statecments {6, 18]. Compre-
hension, understanding of the “macrostructure” of program
code, is seen as a bottom-up chunking process [20, 21, 24].
Robertson et.al. [22] show that complete knowledge of the
micro- and macro—-structure of a program is not sufficient to
predict the comprehension behavior of programmers. Here
we show that subjects follow a pragmatic “‘as—needed” strat-
egy rather than a systematic approach, that subjects restrict
their understanding to parts of the code they consider to be
relevant for the task and, thus, gain only a partial under-
standing of the program that might lead to misconceptions
or errors. Tools will have to be developed that facilitate *“as-
needed” strategies and help programmers to avoid some of
its inherent problems.

METHOD

Subjects

Twelve subjects participated in the study and were assigned
randomly to the four different tasks. Subjects knew at least
three programming languages, had programmed for 4 to 15
years (avg. 7.6), had PASCAL experience for at least 4 years,
worked with large programs on a routine basis, and had a for-
mal education in computer science or electrical engineering.

Avg. # of Pieces of Information Studied
Unique Visits All Visits
Task | C. D. |Ch.| C. | D. | Ch
(43) | (40) | (6)
A I0.0] 27 127 127 [331750
B 113] 40 { 13 (233143} 13
C 70 | 53 [3.0 | 13057} 37
D 67 | 30 |20] 80 |3.0] 3.0
Avg. | 87 T 38 123114341733
C.=Code Listings, D.=Descriptions, Ch.=Charts

Table 1. Usage of Information Sources in Program Compre-
hension Process

Subjects were paid $ 10 per hour for their participation.

Material

The computer program to be modified was a troff-style text
formatting program. The 636 lines long, uncommented, well
structured PASCAL program was adapted from a standard
text on software engineering [12]. It consisted of a short
main program and 39 functions and procedures. For each
procedure or function there existed a code listing and a sep-
arate description of its functionality. In addition, six module
decomposition charts were provided. The program-related
material was complemented by a set of three global program
descriptions.

There were four modification task descriptions, each outlin-
ing the changes to be made on a functional level. Tasks var-
ied in difficulty, required level and scope of program un-
derstanding, and amount of code to be added or changed.
Tasks included a functional addition (boldfacing; task A), en-
hancement (footer/header centering; task B), a functionality
change (underlining; task C), and a default value change (de-
fault footers; task D).

Procedure

Subjects read a summary of the program to be modified and
descriptions of all four modification tasks. Subjects then ver-
balized how they would perform each task. Next, subjects
were given one modificatton and they studied program code
or the documentation units, one piece at any given time, until
they completed the modification. During this phase subjects
were requested to think aloud and to verbalize and explain
their requests for a piece of information. This phase was au-
diotaped and the experimenter recorded the sequence of in-
formation requests. Subjects were advised to do the modifi-
cation in an efficient, structured way.

RESULTS AND DISCUSSION

General Analysis

Subjects took between 15 and 44 minutes to complete the
modification phase of the experiment (Z = 28.25, sd = 7.3).
Modification time was correlated with the number of pieces
of information looked at (r(10) = .73, p < .01).

table 1 details which information sources were used by the
subjects most frequently. Subjects used the code listings
as their main source of information. Subjects did use the
module decomposition charts but rarely made use of the de-
tailed descriptions of each code segment. The comparison
of unique versus all visits reveals that subjects looked on av-
erage only about 1.5 times at any particular code segment

126

Code Existence of Code
Studied not known
Task | % Parts | % Lines | % Parts | % Lines
(of43) | (0of635) | (of 43) | (of 635)
A 233 36.2 186 147
B 264 354 24.8 21.8
C 16.3 19.8 194 17.5
15.5 21.7 333 31.2
Avg, 20.4 283 24.0 21.3

Table 2: Scope of Comprehension Process

or chart and only once at any piece of accompanying docu-
mentation. This suggests that subjects retrieved the desired
information the first time they looked at it.

The very limited overall scope of comprehension is detailed
in Table 2. Subjects studied only a small part of the program
code; on average only one fifth of the procedures and func-
tions, accounting for less than one third of all lines of code
in the program, was visited. None of the subjects studied
more than about half of the code and one subject restricted
himself to one tenth of the code. Furthermore, Table 2 shows
the percentage of procedures and functions that subjects were
totally unaware of since they did not even encounter the cor-
responding calls or references in charts or descriptions. On
average, 24% of all functions or procedures (accounting for
21.3% of the code) were totally missed. Note, that this is
only a lower bound since subjects often glanced over infor-
mation and were, thus, likely to miss existing references to
other code segments as well.

We claim that the small amount of code studied results from
an opportunistic relevance strategy: Subjects study code or
documentation only if they believe that the code is relevant
for the task. We can separate three different levels of rele-
vance: Directly relevant are those code segments that have to
be modified or that are used for copy—editing purposes. This
code is the common core for all subjects that solve the same
tasks. Since this direct relevance is task dependent, subjects
with different tasks study different parts of the program. For
example, the underlining procedure underln was studied
by all subjects with boldfacing/underlining tasks, but by none
of the other subjects, whereas putt 1, the procedure that put
out footers and headers, was studied by 5 out of 6 subjects
performing a footer related modification, but by none of the
other subjects.

The second category is intermediate relevant code. This
group includes those code segments that are perceived to in-
teract with relevant code. Subjects study intermediate rele-
vant code if they discover the interaction and if they judge
that the interaction needs to be understood. Intermediate rel-
evant code is studied less frequently and in less detail than
directly relevant code.

The third group of code (and documentation) is of straregic
relevance in that it guides the comprehension process. This
code is rarely comprehended in detail but serves mainly to
locate or detect directly or intermediate relevant code, that is,
it acts as a pointer towards other relevant parts of the code.
Prototypical examples are charts which were used by subjects
to locate procedure names and documentation that was used
to determine the calling procedures for a given code segment;
e.g. all subjects studied the code or chart of main and the
procedure command,

We also found that a quarter of all procedures and functions
were not looked at by any subject. Most of these were low

level procedures like max, min, or isdigit, suggesting
that subjects had common knowledge about the functionality
of these procedures and, thus, saw no necessity to look at the
code in detail or judged them as irrelevant. However, some
of these code segments were indeed complex and important
domain-specific procedures.

These data qualifies the finding that a systematic strategy
plays an important role for comprehension [17]. Our data
show that subjects did not employ a systematic comprehen-
sion strategy but focussed on a small subset of the code. This
finding gives strong support to the dominance of “as-needed”
strategies, “need” being predominantly determined by the
modification goals of the programmer. We attribute these
differences to the fact that our program was significantly
larger in size. With increasing program size and complex-
ity, any comprehensive strategy will become cost prohibitive
and systematic in-depth comprehension will be restricted to
few relevant code segments. In agreement with Letovsky
and Soloway [16] we found that subjects employing the “as—
needed” strategy performed generally well but failed to no-
tice some delocalized interactions. However, most of the
missed interactions would have become immediately evident
if subjects were given the opportunity to test their modifica-
tions online.

Differences in relevance make some types of information
more important during particular phases in the comprehen-
sion process. Figure 1 shows the varying usage of informa-
tion over the course of the comprehension process. Each sub-
ject’s process is broken down into quartiles. The vertical axis
shows the distribution of types of information studied. The
percentages given are averages for all subjects. As expected,
information of mainly strategic relevance, namely charts and
the global descriptions, was of importance at the beginning
of the comprehension process. Global descriptions were ei-
ther looked at first or not at all. The usage of charts decreased
linearly over time, F (1, 11) = 36.05,p < .001. Conversely,
code use increases linearly over the span of the comprehen-
sion process, F(1,11) = 33.00,p < .001. Descriptions of
code segments fluctuate and their use reached the peak in the
third quartile. This may be due to the usage of descriptions
as pointers to the call structure of the program (strategic rel-
evance)in the beginning and in addition for clarification in
cases where subjects failed to understand the code itself.

One might argue that our findings are an effect of the pro-
cedure of manually presenting one piece of information at
any given time and on request only. Whereas we agree that
the chosen method constitutes some deviation from a real-
istic setting we would like to point out that all subjects re-
ported after the experiment that they felt they had performed
the modification in their “normal” way and that they were
not hampered by the chosen method. Furthermore, the pro-
cedure was quite similar to a software environment in which
subjects view one code segment at any given moment and
switch between segments using editor commands that refer
to code segments by name.

Detailed Analysis of One Modification Task

We will now focus on one particular task, the automatic cen-
tering of headers and footers (Task C). This modification re-
quired the insertion of code into the procedure puttl or
the insertion of identical code in the two calling procedures
puthead and put foot. Figure 2 depicts the comprehen-
sion process for each of the three subjects solving this task.
Groups of code segments and documentation are listed on the
vertical axis in a partial order that reflects the call structure of

127

100
E a0
3 80
‘g 70 - Code Listing
S 60 o Charts
g 50 -4 Globat Descr.
5 40 & Code Descr.
‘c % Al Non-Code
%’ 30
g- 20
}3' 10
® o4 "

2
Comprehension Process By Quartile

Figure 1: Shifts in Information Usage During Program Com-
prehension

3

the program. The horizontal axis represents time. The shape
of the symbols depicts the information type.

Subjects uniformly exhibited a focussed top—down process.
They first got an overview of the program by studying the
global descriptions and proceeded with the goal to search for
the directly relevant code that printed footers and headers.

One thing I want to do a little bit is hop down
looking at the program, But I think I'll stop in
main, just to get a, an idea of which path I should
take next. [Subject 13]

I’d like to just have an overview of the capa-
bilities of the program, so that I understand what
I'm getting into. I mean, I-I, I assume that, that my
employer wants me to do it right and not fast. If he
wants me to do it fast, I could ask you maybe for
the module chart, guess where headers and footers
are done, and try to dive right in. But I feel more
comfortable to have an over—overview of program
functionality, even though most of this information
I won’t use directly.[Subject 07]

How did subjects decide whether a particular code segment
was of direct, intermediate, or strategic relevance? Sub-
jects hypothesized relevance based on the comprehension of
the program already achieved and based on their knowledge
about the task domain and programming in general. Sub-
jects used procedure and variable names to infer functional-
ity. The names chosen for the formatter program consisted of
mostly abbreviated or condensed function descriptions, e.g.
getcmd for getcommand. Subjects in all tasks demon-
strated great ability to decode these names.

Define footer title. Uh, th—that explains the, the
name of put £ 1 and the use of the word title every-
where, Cause I guess using title is a sub — a special
line. [Subject 10}

Um. text. leadbl - lead balloon, who
knows what that is? — leading blanks, OK, there
we go. [Subject OR]

Furthermore, subjects expected consistency in the use of
names, New variables or procedures introduced by the sub-
jects were named following the given naming format. While
looking for code subjects guessed correctly the names of pro-
cedures they had not seen,

M~
— 0o [1)
PURS R E
5 ocovo '
% o0 0 . =
frarfiie-Agh-Agh. Y
O 200
2228 -
c
QQ
" : -
c v O
£ © ©
(S S =

z
5
2
z

o
=
E

E
g

=
oS
o
e
—
5
=)
=X
i
E
z

:

n
-
L]
£
-]

others

Ll
2
Q.
'5.
z
p
=
=]
(&)

Global Program Descriptio
CONST, TYPE, VAR Decl.

MAIN Program

Figure 2: Comprehension Process for Solving Task C

128

Can I make a guess that there’s a, that there’s a
companion routine called puthead. Even though
I’'m not sure where it’s called from? And I don’t
really care? [Subject 13]

So let me look at put foot first. [...] I think
it puts out the page footer. And I’'m also guess-
ing. I haven’t seen anything called puthead yet.
[...] Youknow, cause you like to believe other pro-
grammers are rational and , uh-Oh, it’s not gonna
— It looks like it may not matter anyway because
they’re both done by separate team called puttl.
I don’t know they’re both done by putt1, but on
line 350 it says putt 1 footer current page. And I
would guess ifI look at puthead, I'll see puttl
header current page. [Subject 07]

After subjects failed to find directly relevant code, subjects
backed up to the calling routines and/or charts. Subjects then
hypothesized that the procedure page was printing out a
page footer and was starting a new page since that is the use
of a page command from the user’s perspective (steps 8-12):

I'm guessing that page is the function which
handles that page feed which is where we’re gonna
have to hook a header into. [Subject 05]

1 think it’s gonna be somewhere under page,
um, where it generates the header and footer. [Sub-
ject 071

..let me look at the description for the code
that’s called page. I'm now assuming that the
header and footer strings have got read into those
variables, and are gonna be used by the page func-
tion.[Subject 13]

All subjects reached the code listing for the put foot pro-
cedure in step 13. They than either studied the parallel pro-
cedure puthead or proceeded to the code for puttl that
had to be modified. Subjects began the coding of the modi-
fication as soon as they reached directly relevant code. The
length of this last step in the comprehension process varied.
All subjects looked up at least one value in the global declara-
tions. The extra steps by Subject 05 resulted from a copy—edit
episode, a common strategy employed by many subjects.

Can I see the description on itoc? Because
it looks like that’s what’s doing the the, the ac-
tual conversion of the number. And maybe I can
see how they are finding—checking the width of
that number. You know, maybe I can borrow their
code...[Subject 05]

Throughout, subjects made relatively little use of the pro-
vided documentation. The protocols suggest documentation
was mainly used in the case of breakdowns in the compre-
hension process and for strategic purposes, namely the iden-
tification of calling procedures.

Yes, code please [...] I’ll probably go to the
comments after that, when I realize that I don’t un-
derstand the code. [Subject 08]

I'll look at the description first. [laughs] I'm
getting a little bit more, um, conservative here ...

I mightactually have to look at some documen-
tation soon ... Did I miss —? Must have missed the
call [...] I seem to have lost the command parser.
I’m gonna have to look at the documentation on ,
uh, main and getline. [Subject 06]

Where did that come from? Must be missing
something when looking at the command code,
so let’s take a look at the functional description of
command ...[Subject 02]

The only documentation frequently used were charts due to
their strategic relevance. The abstraction to procedure and
function names and their call structure supported the sub-
jects’ strategy of finding particular procedures by searching
for their names. Thus, charts were looked at often early on,
but once the relevant code segments had been located (after
step 13), charts were no longer used.

CONCLUSION

The modification of a large program is a complex problem—
solving task. We discussed how subjects generate hypotheses
about the functionality of code and how procedure and vari-
able names are used as “beacons” to build new, revised, or
refined hypotheses during the comprehension process. We
were, thus, able to demonstrate that program comprehension
proceeds mainly in a top—down fashion and that bottom-up
methods of comprehension, the integration of single code
units into meaningful frames, were only used in cases of
missing or failing hypotheses and locally for directly rele-
vant code units. We found only two instances across all four
tasks in which subjects actually simulated intensively the ex-
ecution of the code in order to understand a code segment.

No subject followed a systematic strategy of comprehension.
The goal of modifying the program according to the task at
hand was the major factor that determined the scope of the
comprehension process. Subjects spent a major part of their
time searching for code segments relevant to the modification
task and no time understanding parts of the program that were
perceived to be of little or no relevance,

These findings suggest that tools like the DESIRE system [2]
that are based on a paradigm of programming as a design task,
utilize the reuse of existing code and allow the expression
and refinement of and reasoning about abstract concepts and
constraints, are the right approach towards the development
of an “intelligent” programmer assistant.

Subjects reported that they were constrained by the fact that
they could only view one piece of information at any given
time and that switching between two pieces of information
had a high “cost”, This suggests that multi-window envi-
ronments that allow programmers to view different informa-
tion sources simultaneously and large windows that facilitate
speedy scanning of large portions of code are highly desir-
able.

The extensive browsing behavior of subjects and the scan-
ning of charts and code for relevant procedure names should
be supported by graphical browsers and by intelligent search
functions, utilizing online documentation, that allow the pro-
grammer to use functional categories in queries to retrieve
procedure names.

A second arca with large potential for support is the process
of reusing existing code that has to be copy—edited. For ex-
ample, a system should support the declaration and initial-
ization of variables. A tool that would allow the user to es-
tablish the correspondence between a new piece of code and

129

an existing piece of code (e.g. “bfval” is like “ulval”) and
that find other occurrences of that code segment and ask the
user whether analogous code should be added for those oc-
currences as well would be helpful in supporting reuse and
might reduce the numbers of errors made.

Documentation was mainly seen as the last resort and only
consulted, with the exception of flow-charts, when other
methods of comprehension failed. Many subjects reported
that they had bad experiences with useless documentation
and even a single instance of misleading code description
during the experiment caused one subject to neglect descrip-
tions thereafter. Subjects try to avoid the extra effort of study-
ing documentation if they believe that the information can be
obtained directly from the code. On the other hand, subjects
do use documentation when they know that code itself does
not provide the desired information, e.g., in situations where
a subject wants to find all calling procedures for a called sub-
routine. These findings suggest that documentation should
be tailored to include only those pieces of information that
are not directly obtainable from the code, e.g. the names of
calling procedures. To minimize the cost of looking at doc-
umentation, it should be readily available. This favors the
inclusion of documentation in the code itself via comments
and the selection of self-explanatory variable and procedure
names. Multi-window environments that allow the parallel
display of code and documentation might also encourage the
use of documentation. The core issue is why much docu-
mentation is perceived as useless. The (modification) task on
hand determines the scope and focus of comprehension, For
one modification it might be sufficient to know how a piece
of code works while for a different modification the question
of why this implementation was chosen is of great impor-
tance. If program comprehension is understood as design re-
construction, documentation should facilitate this process by
revealing parts of the original design process that cannot be
easily reconstructed from the resulting code. For example,
it might be documented why a particular encoding has been
chosen from a set of alternatives. This perspective gives rise
to two types of documentation: design history documenta-
tion, allowing a programmer to examine the decision pro-
cesses that resulted in the original design and anticipatory
documentation, documentation is created explicitly to sup-
port (likely) future modifications.

ACKNOWLEDGEMENTS

This work is sponsored in part by the Office of Naval Re-
search, Perceptual Science Program Contract N00014-86~
K-0876. We thank the three anonymous reviewers for their
valuable comments and Chris Jarocha-Ernst for helping with
the preparation of the document.

REFERENCES

1. B. Adelson. Problem solving and the development of
abstract categories in programming languages. Memory
& Cognition, 9:422-433, 1981,

Ted J. Biggerstaff. Design recovery for maintenance
and reuse. {EEE Computer, 22(7):36—47, 1989.

. Ruven E. Brooks. Towards a theory of the comprehen-
sion of computer programs. International Journal of
Man-Machine Studies, 18:543-554, 1983,

. B, Curtis, S.B. Sheppard, J. Kruesi-Bailey, and
D. Boehm-Davis. Experimental evaluation of software

10.

11.

12.

13.

14.

15.

16.

. Raymonde Guindon.

specification formats. Journal of Systems and Software,
9(2):167-207, 1990.

. Francoise Detienne and Elliot Soloway. An empi-

rically-derived control structure for the process of pro-
gram understanding. [International Journal of Man-
Machine Studies, 33(3):323~342, September 1990,

. Jennifer Dyck and Brent Auernheimer, Comprehension

of pascal statements by novices and expert program-
mers. Poster presented at the Human Factors in Com-
puting Systems CHI-89 Conference, Austin, TX, 1989.

. D.J. Gilmore and T. R. Green. Comprehension and

recall of miniture programs. International Journal of
Man-Machine Studies, 21:31-48, 1984,

Software design tasks as ill-
structured problems, software design as an opportunis-
tic process. Technical Report STP-214-88, Microelec-
tronics and Computer Technology Corporation, 1988.

- Raymonde Guindon. The process of knowledge discov-

ery in system design. Technical Report STP-166-89,
Microelectronics and Computer Technology Corpora-
tion, 1989.

Raymonde Guindon. What knowledge is exploited
by experts during software system design. Interna-
tional Journal of Man-Machine Studies, 33(3):279-
304, September 1990,

Raymonde Guindon, Herbert Krasner, and Bill Curtis,
Breakdown and processing during the early activities
of software design by professionals. In Gerry Olsen,
Eliot Soloway, and Sylvia Sheppard, editors, Empiri-
cal Studies of Programmers. Second Workshop. Ablex
Publishing, 1987.

Brian W. Kernighan and P. J. Plauger. Programming
Tools in Pascal. Addison-Wesley, Reading, MA, 1981.

Walter Kintsch. The Representation of Meaning in
Memory. Erlbaum, Hillsdale, NJ, 1974,

Herb Krasner, Bill Curtis, and Neil Iscoe. Communica-
tion breakdowns and boundary spanning activities on
large programming projects. In Gary M. Olson, Sylvia
Sheppard, and Elliot Soloway, editors, Empirical Stud-
ies of Programmers. Second Workshop, pages 47-64,
Norwood, NJ, 1987. Ablex Publishing.

Stanley Letovsky. Cognitive processes in program
comprehension. In Elliot Soloway and Sitharama Iyen-
gar, editors, Empirical Studies of Programmers. First
Workshop, pages 58-79, Norwood, NJ, 1986, Ablex
Publishing.

Stanley Letovsky and Elliot Soloway. Delocalized
plans and program comprehension. IEEE Software,
3(3):41-49, 1986.

130

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

David C. Littman, Jeannine Pinto, Stanley Letovsky,
and Elliot Soloway. Mental models and software main-
tenance. In Elliot Soloway and Sitharama Iyengar, ed-
itors, Empirical Studies of Programmers. First Work-
shop, pages 80-98, Norwood, NJ, 1986. Ablex Publish-
ing,.

Richard E. Mayer. A psychology of learning basic.
Communications of the ACM, 22:589-594, 1979.

G. M. Olson, Sylvia Sheppard, and Elliot Soloway, edi-
tors. Empirical Studies of Programmers: Second Work-
shop, Norwood, NJ, 1987. Ablex Publishing.

Nancy Pennington. Comprehension strategies in pro-
gramming. In Gary M. Olson, Sylvia Sheppard, and
Elliot Soloway, editors, Empirical Studies of Program-
mers. Second Workshop, pages 100-113, Norwood, NJ,
1987. Ablex Publishing.

Nancy Pennington. Stimulus structures and mental rep-
resentations in expert comprehension of computer pro-
grams. Cognitive Psychology, 19:295-341, 1987,

Scott P. Robertson, Erle F. Davis, Kyoto Okabe, and
D. Fitz-Randolf. Program comprehension beyond the
line. In D. Diaper, D. Gilmore, G. Cockton, and
B. Shackel, editors, Proceedings of the 3rd Interna-
tional Conference on Human—Computer-Interaction,
Interact-90, pages 959-970. Elsevier Publ., 1990.

Ben Shneiderman. Software Psychology: Human Fac-
tors in Computer and Information Systems. Winthrop
Publishers, Cambridge, 1980.

Ben Shneiderman and Richard E. Mayer. Syntac-

tic/semantic interactions in programmer behavior. a

model and some experimental results. International

.égtstm%l 09f Computer and Information Sciences, 8:219—
, 1979,

Elliot Soloway and Kate Ehrlich. Empirical studies of
programming knowledge. IEEE Transactions on Soft-
ware Engineering, SE-10(5), September 1984,

Elliot Soloway and Sitharama Iyengar, editors. Em-
pirical Studies of Programmers, Norwood, NJ, 1986.
Ablex Publishing.

Susan Wiedenbeck, Processes in computer program
comprehension. In Elliot Soloway and Sitharama Iyen-
gar, editors, Empirical Studies of Programmers. First

Workshop, pages 48-57, Norwood, NJ, 1986. Ablex
Publishing,

Susan Wiedenbeck and Jean Scholtz. Beacons and ini-
tial program comprehension. Poster presented at CHI
Human Factors in Computer Systems, 1989.

