On Evaluating the Layout of UML Class Diagrams for
Program Comprehension

Dabo Sun and Kenny Wong
Department of Computing Science
University of Alberta, Canada
{dabo, kenw}@cs.ualberta.ca

Abstract

UML class diagrams are helpful for understanding the
structure of a software system. Algorithms and tools have
been developed to generate UML class diagrams auto-
matically for program understanding purposes. However,
many tools often ignore perceptual factors in the layout of
these diagrams. Therefore, users still have to spend much
time and effort rearranging boxes and lines to make the
diagram understandable. This paper presents key criteria
and guidelines for the effective layout of UML class di-
agrams from the perspective of perceptual theories. Two
UML tools have been analyzed and evaluated to illustrate
how the criteria can be applied to improve the readability
of class diagrams.

Keywords: UML class diagrams, perceptual theory,
aesthetics, graph layout, UML modeling tools.

1 Introduction

The Unified Modeling Language (UML) [4] provides
a graphical representation of a software system which can
be used for both forward engineering and reverse engi-
neering. UML class diagrams describe the classes and
their various relationships such as generalization (inher-
itance), association (aggregation and composition), and
other dependencies. A class diagram illustrates the static
structure of a software system. Therefore, it is helpful for
both modeling and understanding a system.

According to Tilley [30], UML diagrams, as a form of
graphical documentation, can help software engineers to
understand large-scale systems, but their efficacy depends
on three main factors: syntax and semantics of UML, spa-
tial layout of the diagrams, and domain knowledge. In
particular, the spatial layout of UML diagrams plays a cru-
cial role in fostering program understanding. UML tools
have been developed to generate class diagrams automat-
ically from source code. However, few tools can generate

“nice” layouts for the diagrams [12].

Much research has been done for layouts of class di-
agrams. Early work explored graph drawing algorithms
and aesthetics [7, 17]. Some new approaches have been
proposed for graph layout specifically in the UML class
diagram domain. Eiglsperger et al. proposed an algo-
rithm based on the topology-shape-metrics approach for
automatic layout of class diagrams, and it deals well with
class diagrams with little or no structural information [13].
Eichelberger introduced a layout algorithm according to
a large number of aesthetic criteria of UML class dia-
grams [11]. Gutwenger et al. introduced an approach
for visualizing UML class diagrams conforming to a bal-
anced mixture of aesthetic criteria [16]. Dwyer presented
a three-dimensional UML class diagram representation
using the Force Directed algorithm [10].

Purchase and her colleagues analyzed graph layout aes-
thetics in UML diagrams, focusing on user preferences,
and conducted empirical studies of human comprehen-
sion to validate those aesthetic criteria and rank their ef-
fect [23, 24, 25, 27]. They also compared various UML
notations and suggested which notations are more under-
standable [26].

However, since there are so many criteria and some of
them conflict with each other, software engineers and tool
designers are often overwhelmed and confused on choos-
ing the appropriate criteria. Also, we observed that little
research has been done on evaluating the layout function-
ality in existing UML modeling tools. This paper ana-
lyzes and classifies key criteria and guidelines for effec-
tive layout of UML class diagrams from the perspective
of perceptual theories. We illustrate how the criteria can
be applied by analyzing and evaluating the class diagram
layout in two commercial tools: Borland Together [1] and
Rational Rose [2].

The rest of this paper is organized as follows. Section
2 reviews cognitive theory to help understand the class
diagram layout criteria. Section 3 introduces and classifies
those criteria. Section 4 evaluates two UML tools, and

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

section 5 summarizes this paper.

2 Perceptual theory

In this section, we outline several fields in cognitive
science, such as the theory of perception, perceptual orga-
nization, and perceptual segregation. The laws of percep-
tion explain how our visual system identifies objects and
how we put together the basic features to observe a co-
herent, organized world of things and surfaces. From the
software visualization perspective, the principles of per-
ceptual organization provide the basic design rules to or-
ganize multiple artifacts so that users can group related
information and segregate useful information easily and
without ambiguity. Perceptual theory can also be ap-
plied to evaluate the effectiveness of software visualiza-
tion tools [29, 32]. In particular, the perceptual principles
will help us to discover what kind of layout of UML dia-
grams would be more readable and understandable.

2.1 Theories of perception

It is widely accepted that visualization helps people
to understand information, but how the brain processes,
transforms, and interprets visual stimuli is still unclear.
Various theories of perception have been proposed [22].

Marr’s theory [20]: Cognitive functions are filters that
operate on raw visual stimuli and turn them into informa-
tion.

Gibson’s theory [14]: We shift our attention based on
the structure of the environment and create a cognitive
map to interact with the world.

Gestalt theory [8, 21]: We restructure our perception
in ways that make it unified and coherent. This theory for-
mulates the principles of organization which explain why
some displays are better than others. Perceptual organiza-
tion will be discussed in more detail in the next subsection.

Theory of notation [22]: Many researchers try to find
good notations for visualization which include symbol
systems to create graphs that convey design semantics.

2.2 Perceptual organization

Perceptual organization refers to how objects in the
world that we perceive are located and relate with one an-
other [9]. Research in perceptual organization studies how
small elements are grouped into larger objects [15], which
is important for tool designers to devise an understandable
visualization of a software system. The following are sev-
eral important principles of perceptual organization, most
of which are from the Gestalt Laws [9, 15].

Prignanz (Good Figure): Pragnanz is a German word
which means “suggestive figure”. Therefore, the law of

pragnanz is also called the law of good figure or the law
of simplicity. That is, the images are perceived in such a
way that their structures are as simple as possible. The
figural “goodness” is sensitive to the amount of informa-
tion necessary to describe a figure. Usually, simpler and
more stable figure is considered a “good” figure [28].

Similarity: Similar elements (e.g., common shape or
color) appear to be grouped together.

Continuation: Points tend to belong together if they
result in straight or smoothly curved lines when con-
nected, and lines are grouped together in such a way as
to follow the smoothest path.

Proximity (Nearness): Elements that are close to each
other are grouped together.

Familiarity (Meaningfulness): Elements are more
likely to be grouped together if the groups seem familiar
or meaningful.

Element Connectedness: Elements that are physically
connected are perceived as a unit. In Figure 1, we perceive
three dumbbells rather than some pairs of dots. It is inter-
esting to notice that the dots that are next to each other in
adjoint dumbbells are actually closer and according to the
law of proximity, they should be grouped together. How-
ever, in this case, the law of connectedness overpowers the
law of proximity.

o—e O6—0 o6—°

Figure 1. Element connectedness

2.3 Perceptual segregation

Compared to perceptual organization, research in per-
ceptual segregation basically studies the problem of
“figure-ground segregation” to indicate when objects are
separated [15]. Objects are usually referred to as figures
and the background is called the ground. The fundamental
figure-ground theory was proposed by Gestalt psycholo-
gists who believed that the figure is more like what we are
familiar with and it is more memorable than the ground.
They also stated that the figure is perceived as being in
front of the ground, and the contour of the figure and the
ground more likely belongs to the figure. Experiments
show that the following factors make an object more like
a figure:

Symmetry: Symmetric areas are usually seen as a fig-
ure.

Orientation: Horizontal or vertical orientations have
higher probabilities to be seen as a figure than other ori-
entations.

Contours: Modern theories about figure-ground seg-
regation discovered that contours (i.e. edges) play a very
important role in figure-ground perception [19].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

The perceptual theories unveil how humans perceive
objects and interact with the environment, which may help
us to understand why some kinds of UML diagram layouts
are more readable than the others, so that we can better
evaluate UML tool support.

3 UML class diagram layout criteria

According to Purchase et al. [24], not much research
has been performed on the usability and understandabil-
ity of graph drawing. Eichelberger also points out that
the UML standard lacks a specification for the readability
of the diagrams [12]. As a result, there are no common
agreements on the criteria of readable and understand-
able layout of class diagrams. Our hypothesis is that cri-
teria closely related to the laws of perception cannot be
ignored, otherwise, our perceptual system might not be
able to easily create correct “images” in our minds. Al-
though semantics plays an important role in understand-
ing UML diagrams, effective layout can substantially im-
prove the quality of the diagram by increasing readability.
In this section, we select key criteria from research re-
sults of graph drawing aesthetics [17, 23, 25, 33], various
notation preferences for UML [26], UML layout aesthet-
ics [11, 27], and UML style guidelines [5, 6] which can
be directly related to perceptual principles, and we clas-
sify the criteria according to these principles. Figure 2
shows the classification of the selected criteria.

3.1 Law of good figure

C1: Join inheritance arcs. In [24], Purchase et al.
state that inheritance arcs should be joined rather than sep-
arated lines. In Figure 3, (b) is preferable to (a), because
notation (b) is more suggestive of a hierarchy than (a).

D g
R

Figure 3. Notational variations of inheri-
tance

(@)

C2: Represent association. The association name
should be set beside the line, rather than in another asso-
ciation class linked to the line. In Figure 4, people prefer
(a) to (b), because (b) has unnecessary complexity. Also,
the association label should be set around the middle of
the line [26].

C3: Be selective. Showing everything would not be
helpful for understanding, especially for large systems.

correlate

Figure 4. Notational variations of associa-
tion

The large volume and dense information makes diagrams
difficult to read. Selective information is simpler and eas-
ier to group [6].

3.2 Law of similarity

C4: Use colors. Most people are sensitive to differ-
ent colors. Applying colors to different groups of entities
and relationships will help the user to distinguish things
because objects in the same color are more similar and
easier to be distinguished from objects in other colors [5].

3.3 Law of continuation

C5: Minimize edge crossings and bends. The num-
ber of edge crossings and bends should be minimized to
make edges more continuous and easier to follow [33].

3.4 Law of proximity

C6: Center parents or children. A parent node and
its child nodes should be placed as close as possible be-
cause they are closely related. This is supported by the
law of proximity [11].

C7: Reduce length of edges. Edges should not be too
long or too short because they make grouping and separa-
tion hard. This is supported by the law of proximity [27].

3.5 Law of familiarity

C8: Position superclasses above subclasses. A super-
class should be above its subclasses and the inheritance
arrows should be upwards. In Figure 3, (a) and (b) are
preferable to (c) because people usually are familiar with
putting superior objects on top of other objects [26].

3.6 Law of connectedness

C9: Avoid overlapping. Overlapping should be
avoided, i.e., nodes should not overlap other nodes or
edges. There might be two kinds of overlapping: edges
overlapping nodes, and nodes overlapping nodes. We con-
sider edges overlapping edges as edge crossings as de-
scribed in C5. In Figure 5, (a) is confusing because it is

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

To create understandable UML diagrams
(conforming to perceptual principles)

Organizing elements
(perceptual organization)

Separating elements
(perceptual segregation)

Law of good figure

C1: Join inheritance arcs
C2: Represent association
C3: Be selective

Law of similarity

C4: Use colors

Law of continuation

C5: Minimize crossings and bends

Law of proximity

C6: Center parents or children
C7: Reduce length of edges

Law of familarity

C8: Position superclasses
above subclasses

Law of connectedness

C9: Avoid overlapping

Law of symmetry

C10: Improve symmetry

Law of Orientation

C11: Choose vertical or
horizontal orientation
C12: Draw arcs orthogonally
C13: Draw labels horizontally
C14: Apply horizontal arcs for
non-inheritance
relationships

Law of contour

C9: Avoid overlapping

Figure 2. UML Class Diagram Criteria

not clear whether box A is connected to box B or directly
connected to box C. As a result, it could be perceived as
either (b) following the law of connectedness, or (c) fol-
lowing the law of continuation [11]. Probably most people
perceive (a) as (b), as the law of connectedness overpow-
ers he law of continuation in this case.

A
——

B B B
|

C

(a) (b) (c)

Figure 5. Effect of overlapping

3.7 Law of symmetry

C10: Improve symmetry. Symmetry of the diagram
should be maximized, as symmetric areas are usually seen
as a “good figure” [23].

3.8 Law of orientation

C11: Choose vertical or horizontal orientation. In
general, most people prefer the orientation of left to right
and top to bottom. Thus, the UML diagram should be
drawn in vertical and horizonal directions [6].

C12: Draw arcs orthogonally. Nodes and edges
should be arranged to an orthogonal grid, i.e., maximize
the number of orthogonal edges [23].

C13: Draw labels horizontally. All the labels should
be placed horizontally so that they can be read easily [24].

C14: Apply horizontal arcs for non-inheritance re-
lationships. The common convention is to place relation-
ships horizontally with the exception of inheritance [5].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

3.9 Law of contour

C9: Avoid overlapping. As discussed before, nodes
should not overlap other nodes partly because overlapping
destroys the contours of objects, making them difficult to
recognize.

3.10 Applying the layout criteria

Applying the layout criteria can improve the under-
standability of UML diagrams. However, we should no-
tice that some criteria conflict with each other. For exam-
ple, avoiding edge crossings and minimizing bends can-
not both be achieved, and minimizing crossings and bends
(C5) is very hard if only vertical or horizontal orienta-
tions are allowed (C11). Battista et al. state that it is
very difficult to deal with all of the criteria algorithmi-
cally at the same time [7]. Thus tradeoffs should be well
considered. Although the priority of implementing these
criteria might differ from application to application, there
is some general agreement on the relative importance of
each criterion, especially in the UML diagram domain.
Himsolt’s work on evaluating graph layout algorithms in-
dicated that improving symmetry (C10), and minimizing
crossings and bends (C5) are very important [18]. Pur-
chase investigated the prioritization of five graph draw-
ing aesthetics, and proved that the priority (from strong
to weak) is minimizing crossings (C5), minimizing bends
(C5), maximizing symmetry (C10), maximizing orthog-
onality (C12), and maximizing the minimum angles be-
tween edges [23]. Purchase studied the aesthetics prioriti-
zation for UML class diagrams and ranked eight aesthetics
(from strong to weak): minimizing crossings (C5), mini-
mizing bends (C5), horizontal labels (C2), joining inheri-
tance arcs (C1), narrower diagram, orthogonality (C12),
no font variation, and directional indicators [24].

Furthermore, the criteria do not take semantics of the
depicted design into account. Purchase et al. point out
that semantics such as domain knowledge should be con-
sidered for grouping in class diagram layout [27].

Our objective of classifying various layout criteria is to
provide guidelines for designing and evaluating software
visualization. In this paper, the classification of the UML
layout criteria based on various perceptual principles is to
provide guidelines for both UML users and tool designers.
A user should try to conform to these criteria to produce
clear and understandable diagrams. For UML tool design-
ers, these criteria should be carefully considered to lay out
UML diagrams (both automatically and manually).

4 Tool evaluation

In this section, we analyze and evaluate the class dia-
gram layout functionality of two commercial UML tools,

Rational Rose [2] and Borland Together [1], based on
the layout criteria we discussed in the previous section.
We consider two subject systems. The first one is a
Thermometer application using a small Java framework
that implements the Model/View/Controller (MVC) de-
sign pattern [31]. Figure 6 shows how Wampler draws
the class diagrams of the framework and an application
that uses it. The second software system is part of the JU-
nit testing framework [3]. We selected 28 classes from
two packages: junit.framework and junit.tests.framework
to check Rose and Together on a larger model.

4.1 Evaluating Wampler’s diagram

Before we evaluate Rose and Together, it is interest-
ing to evaluate the class diagram drawn by Wampler in
Figure 6. Note that he separates the framework and appli-
cation diagrams to better express the design semantics.

e Good figure: The diagrams join inheritance arcs (C1)
and they use the concise association representation (C2),
but it would be better if the association labels are putin the
middle of the arcs, e.g. update between WmvcView and
WmvcModel. The diagrams do not show all the detailed
information of the classes, which conforms to selectivity
(C3).

o Similarity: The diagrams do not use color to group
classes (C4).

e Continuation: There are no line crossings or bends in
the diagrams (C5).

e Proximity: In the diagrams, the superclass and its sub-
classes are placed closely (C6) and the length of the edges
are very reasonable (C7).

o Familiarity: The superclass is placed above its sub-
classes (C8).

e Connectedness: Edges do not overlap any other nodes
in the diagrams (C9).

e Symmetry: Both diagrams have good symmetry (C10).
e Orientation: All the edges are either vertical or hori-
zontal (C11) and arcs are drawn orthogonally (C12). All
the labels are horizontal (C13). However, there are quite
a few non-inheritance relationships that use vertical arcs
violating C14.

e Contour: No nodes overlap (C9).

The evaluation results show that Wampler’s diagrams
conform to most of the criteria, especially to those im-
portant criteria (C1, C2, C5, C9, and C10) as discussed
in Subsection 3.10. This is consistent with our experi-
ence that students appreciate Wampler’s diagrams when
we present them in a senior software engineering course.

4.2 Tool overview

Rational Rose is a visual modeling tool for the design
and analysis of object-oriented software systems. Rose

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

1 WmvcApp

+getApp() : WmvcApp
+getContentPanel() : JPanel
+getMenuBar(} : JMenuBar
-+getModel{) : WmvcModel
+getToolBar() : JToolBar
+setModel{ WmvcModel!) : void

JToolBar

JPanel

[l

1.0 1
draw-in WmvcView |update WmvcModel

#notify Views() : void

Thermometer

Gets commands ~ p----- !
from menu and toolbar i
i
i
0.
WmvcExecutor WmvcController modify

F

(WmvcMenultemCtl] WmchhkMenuItemCllJ WmveTBButtonCtl
I |
1 [

— — e
] +setTemp(nowTemp : it) : void

| —
Fahrenhert and WmvcController |
Celsius ~"|Up, Down butions

2 1 1
TemperatureView —I l MainView ThermometerModel
2

Figure 6. Class diagrams of Thermometer application, by Wampler

provides powerful functions for working with UML dia-
grams. It also supports reverse engineering various kinds
of systems such as C++, Enterprise JavaBeans (EJBs),
Java, etc. The version we evaluated is Rose Enterprise
Edition, release 2003.06.13.402.000, on Windows 2000.

Together ControlCenter is an integrated environment
for UML modeling and source code management. It also
provides reverse engineering functions, which can syn-
chronize class diagrams with the source code. The ver-
sion we evaluated is Together ControlCenter, version 6.2,
2997, on Solaris 9.

Both Rose and Together can generate and lay out UML
class diagrams automatically from source code.

4.3 Evaluating Rose

Figure 7 and 8 show the UML class diagrams of the
MVC and JUnit frameworks generated by Rose. We try
to evaluate whether the automatic layout of the class di-
agram generated by Rose conforms to the layout criteria.
Also, we explore the support for manual adjustment of the
diagrams.

e Good figure: Rose does not support joining multiple
inheritance arcs (C1). It uses a clear and concise associ-
ation representation, but labels are usually not placed at
the middle of the line (C2). To support selectivity, Rose
can render a subset of the classes, show, hide and delete
elements, and filter relationships (C3).

e Similarity: Rose has a useful color filling function
which allows the user to change the color of selected
nodes or arcs (C4)

e Continuation: The generated diagram effectively re-
duces line crossings and bends. There is only one crossing
and one bend in Figure 7 (C5).

VimveChidMentemGl

Figure 7. Class diagram of Thermometer ap-
plication, by Rose

e Proximity: Some subclasses are a little too far from
their superclasses. For example, class Thermometer
should be closer to its superclass WmvcApp (C6). In gen-
eral the lengths of edges are reasonable in Rose (C7).

o Familiarity: Rose has a rectilinear line style where in-
heritance arrows are mostly upwards, conforming to peo-
ple’s preference (C8).

e Connectedness: Labels often overlap with the lines and
many lines overlap with nodes in large diagrams which
makes the diagram harder to read, see Figure 8 (C9).

o Symmetry: Rose diagrams are laid out in balance
(C10).

e Orientation: In the rectilinear line style (not shown),
lines are either vertical or horizontal (C11) and edges are

YF]',F.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05) COMPUTER
1092-8138/05 $ 20.00 IEEE SOCIETY

orthogonal (C12). In Rose, all labels are placed horizon-
tally (C13), but many non-inheritance relationships are
also vertical (C14).

e Contour: Nodes overlap in very large diagrams (exam-
ples not shown) (C9).

In general, Rose has good diagram layout and edge lay-
out such as normal, rectilinear, oblique, and toggle. How-
ever, overlapping happens, especially in large diagrams.
Rose only supports one UML presentation style. It would
be helpful if it could support standard UML presentation
style (e.g., use + and - to represent public and private at-
tributes or methods) rather than using Rose’s own icons
and symbols. There is not much support for the user to
manually adjust diagrams. Some problems are not hard to
adjust; e.g., the user can drag and drop association labels
to the middle of edges and remove overlapping. But the
inability to join inheritance arcs is time consuming to fix.
Also, it is tedious to arrange the non-inheritance relation-
ships horizontally.

4.4 Evaluating Together

Together provides various diagram options and there
are two main styles of link representation: direct and rec-
tilinear as shown in Figure 9 and 10. The figures represent
the UML class diagrams of the Thermometer application
and JUnit framework generated by Together. Similarly,
we examine Together’s class diagram layout by the layout
criteria.

e Good figure: Together nicely joins multiple inheritance
arcs in the rectilinear link representation (C1). Together
does not generate association labels (C2), but it has a pow-

Figure 9. Class diagram of Thermometer ap-
plication (direct links), by Together

erful “show/hide” function by using regular expressions to
support selectivity (C3).

o Similarity: Together supports coloring selected nodes
and arcs (C4).

e Continuation: Together avoids crossings and bends ef-
fectively (C5).

o Proximity Some subclasses are a bit too far from their
superclasses. In Figure 9, class ThermometerModel is far
from WmvcModel (C6). The lengths of edges are reason-
able (C7)

o Familiarity: The inheritance direction is same as Rose,
which is consistent with user preferences (C8).

e Connectedness: Together avoids overlapping between
arcs and nodes, even in large diagrams (C9).

o Symmetry: Together generates reasonably symmetric

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Figure 10. Class diagram of JUnit framework, by Together

subgraphs (C10).

¢ Orientation: Together orients nodes well (arcs are laid
out either horizontally/vertically or nearly so) (C11). To-
gether allows the user to choose between straight line
and orthogonal representations (C12). Together does not
generate association labels (C13). Together depicts some
non-inheritance relationships horizontally, but others ver-
tically (C14).

e Contour Nodes do not overlap, even in very large dia-
grams (more than 100 classes) (C8).

As listed above, Together provides various functions
to adjust the layout of class diagrams both automatically
and manually, such as supporting line styles (straight or
orthogonal), providing regular expression match on what
to show/hide, etc. Another useful feature is that Together
keeps consistency between the source code and the class
diagrams. Together separates different relationships by
using different kinds and colors of arcs: by default, black
edges represent inheritance, blue lines indicate associa-

tion, and green dashed lines depict interface implementa-
tion. There is one defect found in the Thermometer class
diagram: in Figure 9, we can find two association lines
between class Thermometer and TemperatureView. This
violates the law of good figure and will decrease the read-
ability of the diagram if there are too many redundant arcs.
It would be better to use multiplicity labels on associations
to avoid multiple association arcs.

The layout defects found in Together are usually easy
to fix manually: the subclasses can be moved nearer to
their superclasses by dragging. The symmetry can also be
increased by moving some nodes and arcs.

Table 1 summarizes the evaluation of Rose and To-
gether.

4.5 Discussions

By evaluating the layout of class diagrams in Rose and
Together, we demonstrate that criteria based on perceptual

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Table 1. Evaluation summary

Criteria Wampler Rose Together

C1: Joining inheritance arcs Yes Manually Automatically

C2: Association representation Good Labels not centered No label generated

C3: Selectivity Good Selective generation & filtering Powerful show/hide

C4: Using colors N/A Support Support

CS5: Minimizing crossings and bends ~ Yes Yes Yes

C6: Centering parents or children Yes Not all Not all

C7: Reducing length of edges Yes Reasonable Some lines could be shorter
C8: Inheritance direction Appropriate Appropriate Appropriate

C9: Avoiding overlapping Yes Happens in large diagrams No overlapping

C10: Symmetry Good Well arranged Reasonable

C11: Orientation Good Various choices Conforms to user preference
C12: Orthogonality Yes Support Support

C13: Horizontal labels Yes Yes Draw manually

C14: Horizontal relationships Partially Rarely Partially

principles provide valuable guidelines to aid users and tool
designers to produce clear and readable class diagrams.
Rose and Together conform to most of the criteria that
we categorized, but there are still features to be improved.
Since the overall results show that Together can generate a
better layout in general, we discuss how layout in Together
can be further improved. Our suggestions should also be
applicable to Rose.

e Since it is a hard task to take all the layout criteria
into account, it would be helpful to allow the user to
adjust the parameters of some layout algorithms so
that the layout can be rearranged automatically to the
user’s satisfaction. For example, the user should be
able to balance crossings, bends, orthogonality, and
vertical and horizontal arcs.

e Certain constraints should be applied in manual ad-
justment. For example, suppose the user needs to
move the position of a subclass to satisfy some cri-
teria, it would be useful if other sibling subclasses
would move automatically to open up needed space
or close up any gaps accordingly.

o The Gestalt theory states that the whole is more than
the sum of its parts [9, 28]. Therefore, it is useful to
add a separate overview window showing the whole
diagram, which will help users to locate themselves
within the graph and reduce perceptual overhead.

e The tool should support the ability to repeat past
manual layout adjustments to save the user from te-
dious work and to reinforce past perceptions.

As UML (tool) users, it is also important to apply the
UML layout criteria as guidelines to produce more un-

derstandable diagrams for both design, maintenance, and
communication purposes. Learning how to use UML
tools effectively, especially making the best use of au-
tomatic, semi-automatic, and manual layout support will
save time and effort.

5 Conclusions

UML class diagrams are useful for both forward engi-
neering and reverse engineering as they describe the static
structure of a software system. However, how to evaluate
the effectiveness of the layout of class diagrams has been
a long term issue. Generally speaking, software visual-
ization tools need more reliable evaluation criteria such as
perceptual principles rather than only following intuitions
of the tool designers.

In this paper, we present a classification of graph layout
criteria, especially for UML class diagrams according to
the laws of perceptual theories. These selected criteria are
close to human perceptual principles, so they cannot be ig-
nored. The evaluation of two commercial UML modeling
tools, Rose and Together, not only reveal the advantages
and limitation of the tools, but also convince us that per-
ceptual factors are important for devising diagram design
guidelines and evaluating software visualization tools in
general. Tradeoffs of applying layout criteria and sugges-
tions of tool improvement are also presented.

For future work, we would like to apply perceptual
theories to other kinds of UML diagrams such as the se-
quence diagram. Meanwhile, we would like to investigate
how the progress in modern human perception can be ap-
plied in program comprehension research. Our objective
is to apply these theories to building a set of tests for ef-
fective software visualization.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

References

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

Borland Together. http://www.borland.com/together/.
IBM Rational Software. http://www-
306.ibm.com/software/rational/.

JUnit web site. http://www.junit.org/index.htm.

UML resource page. http://www.uml.org/.
S. W. Ambler. Modeling Style
http://www.agilemodeling.com/style/.

S. W. Ambler. The Elements of UML Style. Cambridge
University Press, 2003.

G. D. Battista, P. Eades, R. Tamassia, and 1. G. Tol-
lis. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

J. G. Benjafield. Cognition. Prentice Hall, 1992.

K. R. Boff, L. Kaufman, and J. P. Thomas. Handbook of
Perception and Human Performance. Volume II. Cognitive
Processes and Performance. Wiley-Interscience Publica-
tion, 1986.

T. Dwyer. Three dimensional UML using force directed
layout. In CRPITS '01: Australian Symposium on Infor-
mation Visualisation, pages 77-85. Australian Computer
Society, Inc., 2001.

H. Eichelberger. Aesthetics of class diagrams. In VIS-
SOFT 02: Proceedings of the st International Workshop
on Visualizing Software for Understanding and Analysis,
page 23. IEEE Computer Society, 2002.

H. Eichelberger. Nice class diagrams admit good design?
In SoftVis '03: Proceedings of the 2003 ACM Symposium
on Software Visualization, pages 159-168. ACM Press,
2003.

M. Eiglsperger, M. Kaufmann, and M. Siebenhaller. A
topology-shape-metrics approach for the automatic layout
of UML class diagrams. In SoftVis *03: Proceedings of the
2003 ACM Symposium on Software Visualization, pages
189-198. ACM Press, 2003.

J. J. Gibson. The Ecological Approach to Visual Percep-
tion. Boston: Houghton Mifflin, 1979.

B. E. Goldstein. Sensation and Perception. Wadsworth-
Thomson Learning, 6th edition, 2002.

C. Gutwenger, M. Jiinger, K. Klein, J. Kupke, S. Leipert,
and P. Mutzel. A new approach for visualizing UML
class diagrams. In SoftVis '03: Proceedings of the 2003
ACM Symposium on Software Visualization, pages 179—
188. ACM Press, 2003.

I. Herman, G. Melanon, and M. S. Marshall. Graph vi-
sualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24—43, 2000.

M. Himsolt. Comparing and evaluating layout algorithms
within GraphEd. Journal of Visual Language and Com-
puting, 6(3):255-273, 1995.

R. Kimchi, M. Behrmann, and C. R. Olson. Perceptual Or-
ganization in Vision: Behavioral and Neural Perspectives.
Lawrence Erlbaum, 2003.

D. Marr. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Informa-
tion. W H Freeman, 1982.

Guidelines.

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

P. Moore and C. Fitz. Gestalt theory and instructional de-
sign. Journal of Technical Writing and Communication,
23(2):137-157, 1993.

M. Petre, A. Blackwell, and T. Green. Cognitive questions
in software visualisation. [Invited chapter in: Stasko, J.,
Domingue, J., Brown, M., and Price, B. (Eds.), Software
Visualization: Programming as a Multimedia Experience.
MIT Press., pages 453-480, 1998.

H. C. Purchase. Which aesthetic has the greatest effect on
human understanding? In GD ’97: Proceedings of the 5th
International Symposium on Graph Drawing, pages 248—
261. Springer-Verlag, 1997.

H. C. Purchase, J.-A. Allder, and D. A. Carrington. User
preference of graph layout aesthetics: A UML study. In
GD ’00: Proceedings of the Sth International Symposium
on Graph Drawing, pages 5-18. Springer-Verlag, 2001.
H. C. Purchase, R. F. Cohen, and M. James. Validating
graph drawing aesthetics. In GD ’95: Proceedings of the
Symposium on Graph Drawing, pages 435-446. Springer-
Verlag, 1996.

H. C. Purchase, L. Colpoys, M. McGill, D. Carrington,
and C. Britton. UML class diagram syntax: an empiri-
cal study of comprehension. In CRPITS '01: Australian
Symposium on Information Visualisation, pages 113-120.
Australian Computer Society, Inc., 2001.

H. C. Purchase, M. McGill, L. Colpoys, and D. Carring-
ton. Graph drawing aesthetics and the comprehension
of UML class diagrams: an empirical study. In CRPITS
’01: Australian Symposium on Information Visualisation,
pages 129-137. Australian Computer Society, Inc., 2001.
H. R. Schiffman. Sensation and Perception: An Integrated
Approach. John Wiley & Sons, 5Sth edition, 2001.

D. Sun and K. Wong. On understanding software tool
adoption using perceptual theories. In ACSE '04: Proceed-
ings of the Fourth International Workshop on Adoption-
Centric Software Engineering, pages 51-55. Institution of
Electrical Engineers, 2004.

S. Tilley and S. Huang. A qualitative assessment of the ef-
ficacy of UML diagrams as a form of graphical documen-
tation in aiding program understanding. In SIGDOC ’03:
Proceedings of the 21st Annual International Conference
on Documentation, pages 184—-191. ACM Press, 2003.

B. E. Wampler. The Essence of Object-Oriented Pro-
gramming with Java and UML. Addison Wesley, 2002.
http://www.objectcentral.com/oobook/book-code.zip.

C. Ware. Information Visualization: Perception for De-
sign. Morgan Kaufmann Publishers, 2000.

C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cogni-
tive measurements of graph aesthetics. Information Visu-
alization, 1(2):103-110, 2002.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

