
Int. J. Man-Machine Studies (1985) 23, 459-494

Expertise in debugging computer programs:
A process analysis
IRIS VESSEY
Department of Commerce, University of Queensland, St Lucia, Brisbane,
Australia 4067

(Received I0 March 1985)

This paper reports the results of an exploratory study that investigated expert and
novice debugging processes with the aim of contributing to a general theory of program-
ming expertise. The method used was verbal protocol analysis. Data was collected from
16 programmers employed by the same organization. First, an expert-novice
classification of subjects was derived from information based on subjects' problem
solving processes: the criterion of expertise was the subjects' ability to chunk effectively
the program they were required to debug. Then, significant differences in subjects"
approaches to debugging were used to characterize programmers' debugging strategies.
Comparisons of these strategies with the expert-novice classification showed program-
mer expertise based on chunking ability to be strongly related to debugging strategy.
The following strategic propositions were identified for further testing. 1. (a) Experts
use breadth-first approaches to debugging and, at the same time, adopt a system view
of the problem area; (b) Experts are proficient at chunking programs and hence display
smooth-flowing approaches to debugging. 2. (a) Novices use breadth-first approaches
to debugging but are deficient in their ability to think in system terms; (b) Novices use
depth-first approaches to debugging; (c) Novices are less proficient at chunking pro-
grams and hence display erratic approaches to debugging.

1. Introduction
The spate of recent literature on the cognitive psychology of programming attests to
the growing interest in determining the cognitive principles underlying computer
programming (e.g. see reviews by Shneiderman, 1980; Smith & Green, 1980; Shell,
1981; Pennington, 1982). The study of programming processes is important for two
reasons. Firstly, researchers must control for the knowledge structures that programmers
possess if they wish to measure the effects of factors that influence programmer
performance, namely, factors such as language design, program layout, programming
mode and programming support facilities. Secondly, understanding the knowledge
structures that expert and novice programmers possess is important per se: research
at this level will contribute to a general theory of expertise in programming. It will
therefore aid in such tasks as the design of programming languages, programming
aids, programmer rating instruments, and programmer recruitment and training pro-
cedures.

This study investigated debugging processes with the aim of contributing to a general
theory of programmer expertise# Specifically, it sought to determine differences in the

tDebugging is the process of locating and correcting the error within the program. It differs from the
related activity of testing in that testing reveals the presence of errors; hence, debugging follows testing
(Myers, 1978).

459

0020-7373/85/110459+36503.00/0 O 1985 Academic Press Inc. (London) Limited

4 6 0 I. VESSEY

debugging processes of expert and novice programmers from the community of pro-
gramming professionals. Since it was essential to capture what occurred during problem
solving rather than merely the outcome of problem solving, the process tracing tech-
nique of recording verbal protocol was used as the method of data collection. Sixteen
subjects, eight of whom were classed as experts and eight as novices, debugged a
COBOL program, speaking aloud as they did so. This trace of their problem-solving
was tape-recorded, transcribed, and then analyzed.

The following section (section 2) presents the basic philosophy underlying this
investigation of debugging processes. Section 3 describes the research approach used
in the study--it introduces the task materials, presents three tools for describing problem-
solving processes, and describes the programmer classification methods tested in this
research. The fourth section assesses the classification methods and selects one for
further analysis. It then presents the results of analyzing subjects' debugging processes.
The fifth section discusses the implications of the results for debugging processes and
for the concept of programmer expertise, while the sixth discusses the limitations of
the research. The paper concludes with the contributions the study makes to a theory
of programming expertise and hence provides directions for future research in the area.

2. Conceptual approach to studying expertise
Historically, interest in the field of computer programming focused first on the develop-
ment of programmer rating instruments, and then on factors that influence the program-
ming process. The major outcome of the research into programmer assessment was
the recognition that instruments frequently captured those variables that related to
success in training courses but not those that related to performance on the job (Mayer
& Stalnaker, 1968). Despite this evidence of the complex nature of expert programming
skill, researchers in computer science embarked on numerous studies that attempted
to measure the effects of various programming factors on the ease of programming.
Not surprisingly, the results of those studies were mixed (Shell, 1981; Pennington,
1982). Frequently, the variability among programmers was greater than between the
levels of the experimental variables, suggesting yet again the need to control for some
element of programmer skill.

Many researchers now believe that the uncontrolled variable is the process or
knowledge structures programmers employ during problem solving (Brooks, 1980;
Shell, 1981; Vessey & Weber, 1984). Knowledge structures are cognitive units that
accumulate in long-term memory as a result of experience (Newell & Simon, 1972).
As programmers are exposed to a greater variety of programming situations, both the
number and complexity of knowledge structures in long-term memory increase. Brooks
(1977) suggests that a typical programmer's knowledge base may consist of 50 000
chunks. Hence, the resources potentially available to a programmer in solving a problem
are many and varied. They may well affect a particular programming task to a greater
extent than, say, indentation or the use of flowcharts, and thus lead to the mixed results
of programming practices research. In the same way, the current investigation of expert
and novice debugging processes could also suffer from a clear definition of expert and
novice programmers, resulting in yet another study producing inconclusive results.

To address the problem of the variability in programmers' debugging processes, this
study used two methods of classifying subjects. The first was the traditional e x a n t e

DEBUGGING COMPUTER PROGRAMS 461

method of manager assessment. The second was an ex pos t process approach based
on certain differences in subjects' problem solving processes. The two methods were
then compared to determine the effectiveness of the process approach in reducing the
variability in p rogrammer performance.

2.1. CONTROLLING FOR DEBUGGING PROCESSES
The method used to control for differences in problem-solving processes was based
on the efficiency of debugging processes. The criterion used was the subjects' ability
to chunk programs: the more expert the programmers, the greater will be their chunking
ability. The chunking ability of programmers was measured relative to a model of
debugging functions (Fig. 1). Debugging functions are gross states of behaviour that
programmers exhibit in debugging computer programs. The model shows those
behaviours and the interrelationships between them.t

I Fred Generate
problem i [hyp~ /

1
Evaluote
hypothesis

Represent
code

Debug
program

J Error
I repair

I
I
I

'1 I
I error
I
I

I

Confirm

code code

FIG. 1. Model of debugging functions.

t Vessey (1984, Table 3.1) shows the titerature supporting inclusion of each function represented in Fig. I.

4 6 2 I, VESSEY

Experts will demonstrate chunking ability by displaying a smooth approach to
problem-solving. There will be little need to return to previous debugging functions
or to parts of the program they have already seen. Novices, on the other hand, are
expected to exhibit much more erratic behavior by rechecking clues and by returning
to parts of the program they have already inspected. The ability to chunk during
debugging can be characterized by three debugging efficiency criteria:

(1) the adoption of different debugging functions;
(2) reversion to the top or controlling Debug Program function to check again on

the problem;
(3) change of location within the program.

The program's DATA DIVISION, modules of the PROCEDURE DIVISION, and the
input and output listings are regarded as "program locations" for the purposes of this
research. Compared to experts, therefore, it is expected that novice programmers will
exhibit more changes in problem-solving functions, more reversals to the Debug Program
function, and more changes of location in the material supplied.

2.2. ASSESSING THE EFFECTIVENESS OF T HE RESULTING
P R O G R A M M E R CLASSIFICATION

Since this method of programmer classification was derived directly from the research
data, it was essential to have a means of assessing its effectiveness in distinguishing
programmer skills. This was achieved in this study by comparing the effects of the
manager and the ex post classifications on two objective performance criteria. The
debugging effectiveness criteria chosen were:

(1) debug time;
(2) the number of errors subjects made.
If this method of classification were to succeed in reducing the variability in these

objective performance factors relative to the manager classification, it would demon-
strate the importance of controlling for problem-solving processes in programming
research. Further, it would lead to better groupings of expert and novice programmers
in this study and would therefore increase the possibility of deriving meaningful results
from the other analyses performed.

3. Research method
The use of a process tracing technique is central to the investigation of problem-solving
processes, i.e. a technique that captures what happens during problem-solving rather
than merely the outcome of problem-solving. Process tracing methods include recording
verbal protocol, monitoring information acquisition, and monitoring eye movements
(Payne, Braunstein & Carroll, 1978). The first of these, recording verbal protocol, was
chosen for use in this study since it results in much more data than the other two
approaches; also the latter two methods demonstrate that problem-solvers reference
data but not that they necessarily use it in problem-solving. That verbal protocol
recording is the preferred method for examining problem-solving processes currently
available, is demonstrated by the number of studies that have used it. Following the
pioneering work of NeweU and Simon (1972) in cryptarithmetic, it has been used in a
variety of domains: physics (Simon & Simon, 1978; Larkin, McDermott, Simon &
Simon, 1980; Larkin, 1981; Chi, Feltovich & Glaser, 1980), mathematics (Anderson,

DEBUGGING COMPUTER PROGRAMS 463

Greeno, Kline & Neves, 1981; Lewis, 1981), financial analysis (Bouwman, 1978, 1983;
Biggs, 1978a, b), software design (Malhotra, Thomas, Carroll & Miller, 1980; Jeffries,
Turner & Poison, 1980), and systems analysis (Vitalari, 1981; Vitalari & Dickson,
1983).

~17
~18
~19
~20

0222
~23
0224
0225
0226

~28
0229
~30
~31
~32
~33
~34
~35
~36
~37
~38
~39

0241
~42
~43
~ 4 4
0245

~47

~49
~ 5 0
~51
~52
~53

~55

~59

~61
~62
~63

~65

~67
~ 6 8
~69
~70
~71

~73

PROCEDURE DIVISION.

t ~r

* THIS MODULE INITIALIZES THE FILES AND THEN DETERMINES WHEN *
* CONTROL BREAKS HAVE OCCURRED AND CAUSES THE APPROPRIATE "
* PROCESSING TO OCCUR. IT ALSO CAUSES THE DETAIL LINES TO *
* BE PRINTED. IT IS ENTERED FROM THE OPERATING SYSTEM AND *
* EXITS TO THE OPERATING SYSTEM *
t

AOOO-CREATE-SALES- REPORT .

OPEN INPUT SALES-INPUT-FILE
OUTPUT SALES-REPORT-FILE.

READ SALES- INPUT-FILE
AT END

MOVE 'NO ' TO MORE-RECOROS.
IF NGRE-RECORDS EQUALS ' YES '

MOVE CUSTOMER-NO-INPUT TO PREVIOUS-CUSTOMER-NUMBER
MOVE SALESMAN-NO- INPUT TO PREV IOUS-SALESMAN-NUMBER
MOVE BRANCH-NO-INPUT TO PREVIOUS-BRANCH-NUMBER
PERFORM AOOI-PROCESS-AND-READ

UNTIL MORE-RECORDS EQUALS 'NO'
PERFORM BOIO-PROCESS -CUSTOMER-CHANGE
PERFORM B020- PROCESS-SAI. ESMAN-C:,ANGE
PERFORM B030- PROC ESS- BRANCH -CHANGE
PERFORM BOIO-PR INT-F I NAL-TOTAL .

CLOSE SALES-INPUT-FILE
SALES-REPORT-FILE.

STOP RUN.

AOO1-PROCESS-ANO-REAO.

IF BRANCH-NU-INPUT MOT - PREVIOUS-BRANCH-NUMBER
PERFORM BOIO-PROCESS -CUSTOWER-CMANGE
PERFORM BO20-PROCESS-SAL ESNAN-CHANGE
PERFORIq B030- PROCESS-BRANCH -CHANGE
MOVE ' YES' TO BRANCH--CHANGE

ELSE
IF SALESMAN-NO-INPUT NOT 9 PREVIOUS-SALES~IIN-NUMBER

PERFORM B010- PROCESS-CUSTOIIER -CHANGE
PERFORM BO20-PROCESS-SAL ESMAN-CHANGE
MOVE ' YES ' TO SALESMAN-CHANGE

ELSE
IF CUSTOI4ER-MO-INPUT MOT = PREVIOUS-CUSTOIIER-NUNBER

PERFORM B010- PROCESS -CUSTOIIER.-CHANGE
MOVE ' YES' TO CUSTOMER-CHANGE.

PERFORM BO~-PROCESS-DETA IL-RECORO$.
READ SALES-INPUT-FILE

AT END
MOVE 'NO' TO NORE-RECORO$.

FIG. 2. Principal modules of the task program.

4 6 4 I. VESSEY

0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
O30O
0301
0302
0303
0304
0305
O3O6
0307
O308
0309
0310
0311
0312
0313
0314
0315
0316
0311
0318
0319
0320
0321
0322
0323
0324
O325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336

* THIS RO~LE IS ENTERED TO PRINT THE DETAIL LINE FOR THE *
* REPORT. IF NECESSARY. IT CAUSES THE HEADINGS TO BE PRINTED *
* AND THEN FORMATS AND PRINTS THE DETAIL LINE. TOTALS ARE ALSO *
* ACCUMULATED. THIS MODULE IS ENTERED FROM THE *
* AOO1-PROCESS-AND-READ MODULE AND EXITS BACK TO IT. *
Ik, ' It

BOOO-PROCESS -DETA IL-RECORDS .

IF LINES-PRINTED IS EQUAL TO PAGE-SIZE OR
IS GREATER THAN PAGE-SIZE OR
FIRST-PAGE

PERFORM CO00-PRINT-HEADINGS
ROVE PREVIOUS-BRANCH-NUMBER TO BRANCH-NO-REPORT
MOVE PREVIOUS-SALESMAN-NUMBER TO SALESMAN-NO-REPORT
ROVE PREVIOUS-CUSTOMER-NUMBER TO CUSTO~ER-NG-REPORT.

IF BRANCH-CHANGE EOUALS ' YES'
ROVE BRANCH-NO-INPUT TO BRANCH-NO-REPORT
ROVE SALESMAN-NG-INPUT TO SALESMAN-NO-REPORT
ROVE CUSTOMER-NG-INPUT TO CUSTOMER-NG-REPORT
MOVE ' NO ' TO BRANCH-CMANGE

ELSE
IF SALESMAN-CHANGE EQUALS 'YES'

ROVE SALESMAN-NO-INPUT TO SALESMAN-NO-REPORT
ROVE CUSTOMER-NO-INPUT TO CUSTOMER-NO-REPORT
ROVE 'NO' TO SALESMAN-CHANGE

ELSE
IF CUSTOMER-CHANGE EQUALS 'YES'

MOVE CUSTOMER-NO-INPUT TO CUSTOMER-NO-REPORT
ROVE 'NO' TO CUSTOHER-CHANGE.

ROVE DESCRIPTION-INPUT TO DESCRIPTION-REPORT.
ROVE SALES-INPUT TO SALES-REPORT.
ADO SALES-INPUT TO CUSTOMER-TOTAL-ACCUN

SALESMAN-TOTAL-ACCUM
B~U~NCH-TOTAL-ACCUM
F INAL-TOTAL-ACCU~I.

WRITE SALES-REPURT-LINE FROM DETAIL-LINE
AFTER PROPER-SPACING.

ADO PROPER-SPACING TO LINES-PRINTED.
ROVE 1 TO PROPER-SPACING.
ROVE SPACES TO DETAIL-LINE.

d r Q l k . ~ t t t t t t ~ , t ~ ' ~ k ~ r Q ~ W ~ t t ~ l l l t t t ~ l k W e ~ r ~ Q ~ r ~ d r l ~ l k t ~ Q t t ~ Q ~ t t ~ t ~ t ~

* THIS MODULE IS ENTEREO TO PROCESS A CHANGE IN CUSTOMER *
, COMPkI~ AREA ANO COUNTER. IT IS ENTERED FROM THE *
* AOOI-PROCESS-AND-READ ROIXILE AND ON COMPLETION FROM THE *
, AOOO-CREATE-SALES -REPORT MODULE. *
t t

8010-PROCESS-CUSTONER-CHANGE.

ROVE CUSTOMER-TOTAL-ACCUM TO CUSTOMER-TOTAL-CUSTOT.

FIG. 2. Continued.

DEBUGGING COMPUTER PROGRAMS 465

0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348

PERFORN BO11- PROC ESS-CUSTORER-D ISCOUNT.
ROVE CUSTOHER-DISC-ACCUH TO CUSTOIqER-TOTAL-DISTOT.
WRITE SALES-REPORT-LINE FROM CUSTOi'IER-TOTAL-LINE

AFTER ADVANCING Z LINES.
ROVE ZEROS TO CUSTONER-TOTAL-ACCUN.
ADO CUSTOOIER-DISC-ACCUH 11) SALESHAN-DISC-ACCUN.
ROVE ZEROS TO CUSTI~ER-OISC-ACCUN.
ROVE CUSTOIER-NO-INPUT TO PREVIOUS-CUSTORER-NUNBER.
ADO Z TO LINES-PRINTED.
ROVE 2 TO PROPER-SPACING.

FiG. 2. Continued.

3.1. TASK
The program used was a straightforward COBOL sales reporting program with control
breaks on branch number, salesperson number, and customer number. A simple
application domain was used so that differences in application domain knowledge
would not be a variable in the study. This permitted the investigation of debugging
expertise alone. The program was fully structured. Figure 2 shows the first four modules
of the program source code, while Fig. 3a shows the correct program output.

The error introduced was a logic error, a type commonly found in practice (Youngs,
1974; Gould & Drongowski, 1974; Gould, 1975; Sheppard, Curtis, Milliman & Love,
1979). No syntactic errors were present. As a basis for determining whether the task
was sufficiently difficult to ditterentiate between experts and novices, the "same" bug
was introduced at ditferent locations in the program. Atwood and Ramsey (1978)
report that an error both lower in the propositional hierarchy and lower in the program
structure is more difficult to detect and correct than a similar error higher in the
program structure.t Two versions of the program were produced with one error in
each version. The module changed in the study is B000-PROCESS-DETAIL-
RECORDS (see Fig. 2). The correct program logic is as follows:

0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308

IF B R A N C H - C H A N G E EQUALS 'YES'
MOVE B R A N C H - N O - I N P U T TO B R A N C H - N O - R E P O R T
MOVE S A L E S M A N - N O - I N P U T TO SALESMAN-NO-REPORT
MOVE C U S T O M E R - N O - I N P U T TO C U S T O M E R - N O - R E P O R T
MOVE ' N O ' TO B R A N C H - C H A N G E

ELSE
IF S A L E S M A N - C H A N G E EQUALS 'YES'

MOVE S A L E S M A N - N O - I N P U T TO SALESMAN-NO-REPORT
MOVE C U S T O M E R - N O - I N P U T TO C U S T O M E R - N O - R E P O R T
MOVE 'NO ' TO S A L E S M A N - C H A N G E

ELSE
IF C U S T O M E R - C H A N G E EQUALS 'YES'

MOVE C U S T O M E R - N O - I N P U T TO C U S T O M E R - N O - R E P O R T
MOVE ' N O ' TO C U S T O M E R - C H A N G E .

t The term "propositional hierarchy" refers to the embedding or nesting of clauses in a sentence structure
(Kintsch & van Dijk, 1978).

466 ~. VESSEY

15/10/81

BRANCH
NO

100

SALESMAN CUSTOMER
NO NO

1225 32911

40015

SALES REPORT PAGE 1

PRODUCT SALES DISCOUNTED
DESCRIPTION AMOUNT AMOUNT

AUDIO INTERFACE 500.00
KEYBOARD 100.00
POWER SUPPLY 50.00

650.00* 585.00*

CRT INTERFACE 75.00
FLOPPY CONTROLLER 125.00
POWER TRANSFORMER 50.00

250.00" 250.00"

TOTAL SALESMAN NO 1225 900.(X)** 835.00"*

4199 24151 4K RAN 330.00
ROM MEMORY 30.00

360.00" 342.00*

TOTAL SALESMAN NO 4199 360.00 ~' 342.00"*

TOTAL BRANCH NO 100 1,260.00"** 1,177.00 *'t~

1321 10954 PRINTER MECHANISM 220.00
THERMAL PRINTER 80.00
DIGITAL CLOCK 625.00
CHARACTER GENERATOR 550.00

1,475.00 t 1,253.75"

TOTAL SALESIqAN NO 1321 1,475.00 ~t'* 1,253.75 t'*

9832 18349 DISPLAY LEDS 155.00
VIDEO BOARD 195.00

350.00" 332.50*

TOTAL .Td~LESIqAN NO 9B32 350.00 * t 332.50 t~

TOTAL BRANCH NO 200 1,825.00"** 1,586.25"**

FINAL TOTAL $3,085.00 * t * * $2,763.25 * t *~
(a)

FIG. 3. (a) Correct program output. (b) Program output with high-level bug. (c) Program output with
low-level bug.

The high-level bug was introduced into the program by removing line 299, which resets
the branch-change flag, and the low-level bug by removing line 308, which resets the
customer-change flag, and placing the period at the end of line 307. Figures 3b and c
present the outputs from the program with the high bug and the low bug, respectively.
Eight programmers (four classified as experts and four as novices) debugged each
program version. They were given the program listing, a copy of some input data, and
the associated output, both correct and incorrect.

3.2. PROCEDURE

Subjects undertook program debugging, speaking aloud as they did so. Their verbaliz-
ations were tape-recorded. Subjects first debugged a practice program so they would

DEBUGGING COMPUTER PROGRAMS

15/10/81

BRANCH SALESMAN CUSTOMER
NO NO NO

100 1225 32911

40015

4199 24151

200 1321 10954
200 1321 10954
200 1321 10954
200 1321 10954

200 9832 18349
200 9832 18349

SALES REPORT

PRODUCT SALES
DESCRIPTION NOUNT

AUOIO INTERFACE 500.00
KEYBOARD 100.00
POMER SUPPLY 50.00

650.00*

CRT INTERFACE 75.00
FLOPPY CONTROLLER 125.00
PO~ER TRANSFORMER SO.O0

250.00"

TOTAl. SALESMAN NO 1225 9OU.00 ~

4KRNI 330.00
ROll IEIql)RY 30.00

360.00*

TOTAL SALESMAN NO 4199 360.00**

TOTAL BRANCH NO 100 1,260.00"**

PRINTER NECHANISM 220.00
THERMAL PRINTER 80.00
DIGITAL CLOCK 625.00
CHARACTER GENERATOR 550.00

1,475.00"

TOTAL SALESIqAN NO 1321 1,475.00"*

DISPLAY LEDS 155.00
VIDEO BOARD 195.00

3SO.OU*

TOTAL ,TC~LESMAN NO 9832 350.00 ~

TOTAL MIANCH NO 3)0 1,825.00"**

FINAL TOTAL
(b)

FIG. 3. Continued.

$3,065.00;;;;

467

PAGE 1

DISCOUNTED
A/fOUNT

585.00*

250.130"

835.00"*

342.00*

342.00'*

1,117.00"**

1,253.75'*

1,253.75**

332.50*

332.50**

1,586.2$ ~ *

$2,753.25****

be familiar both with the procedure and with verbalizing while debugging. The protocol
data was transcribed by a secretary from tape to paper in the form of a series of short,
numbered phrases. According to Newell and Simon (1972, p. 166), each phrase should
correspond to a naive assessment of what constitutes a single task assertion or reference
by the subject. Breaking protocols into small phrases allows a series of relatively
unambiguous "measurements" of what information the subject had at a particular time.

3.3. VERBAL PROTOCOL ENCODING
The basis for examining problem-solving processes is the episode: a group of task
assertions related to the same goal or objective (Newell & Simon, 1972, p. 84). A
subject's protocol consists of a sequence of such episodes, each associated with the

468

15/10/81

glL4NCH
NO

100

ZOO

$ALESNAN CUSTO~IER
NO NO

1225 32911

40015
40015
40015

4199 24151
24151

1321 10954
10954
10954
10954

9632 18349
18349

SALES REPORT

PROOUCT
DESCRIPTION

AUDIO INTERFACE
KEYBOARD
POMER SUPPLY

CRT INTERFACE
FLOPPY CONTROLLER
PO~ER TRANSFORMER

TOTAL SALESI,~N NO 1225

4K RAM
It~ HEMORY

TOTAL $ALESNAN NO 4199

SALES
AMOUNT

500.00
1(30.00

50.00

650.00"

75.00
125.00
50.00

250.00"

900.00**

330.~
~ . ~

~ 0 . ~

~0.00"*

TOTAL BRANCH NO 100 1,250.00***

PRINTER I~CHANISN 2ZO.O0
~ERMAL PRIRIT.R 80.00
DIGITAL CLOCK 625.00
CHARACTER GENERATOR 550.00

1,475.00"

TOTAL SALESMAN NO 1321 1,475.00 ~

DISPLAY LEOS 155.00
VIDEO BOARD 195.00

350.00"

TOTAL SALESMAN NO 9832 350.00 ~

TOTAL BRANCH NO 200 1,825.00***

I. VESSEY

PAGE I

DISCOONTEO
AMOUNT

585.00*

250.00*

835.00**

342.00*

342.00"*

1 ,177.1X~

1,253.75*

1,2S3.75**

FINAL TOTAL $3,085.O0 " ' ~
(c)

FIG. 3. Continued.

fulfillment of a specific goal. Hence, the representation of a subject's protocol in
episode form captures the goal-oriented behaviour of the subject and the sequence in
which it occurs. It can be used, therefore, as the backbone for the representation of
the problem-solving process. The episode outline is the technique used to define the
episode sequence of a protocol. From the episode outline a strategy diagram can be
derived. This is a higher level abstraction and conceptualization designed to reflect
the strategies that programmers use in debugging. The strategy diagram is again
abstracted to formulate a debugging process model. These three techniques are used
here to represent the debugging process. The recording of the debugging processes of
subject NH1 is used for illustration purposes in this paper. Subjects are identified by
codes. The first character identifies the subject as either an expert or a novice according

332.50*

332.50**

1.586.25 ~ *

$2,753.25:;;=

D E B U G G I N G C O M P U T E R P R O G R A M S 469

to the ex post classification. The second character identifies the program bug as either
a high-level or a low-level bug. Subjects are further identified, within thse classes, with
a numeric character. This subject debugged the program with the high-level bug. The
complete set of subject process descriptions, including the three figures and a verbal
description for each subject, appears in Vessey (1984, Chapter 7 and Appendix E).

3.3.1. Episode outline
Figure 4 presents subject NHI's episode outline. Episodes are determined by the
relevance of a given task assertion to the goal in question. New episodes are identified,
therefore, by explicit statement of a goal, implicitly by a stated desire to find or to get

(I) Cornpore outputs

(2) Evaluate data
division

(3) Examine A000

(4) Examine A001 -~

(7) Examine BO00 -~

(9) Explore BOO0
(.~ hypoth e sis)

(10) Explore branch-
number- input/
detail- l ine

(11) Evaluate
problern/BOO0
(-)'hypothesis)

(5) Examine B010 -~ (6) Explore customer-
total-line

(8) Evaluate problem
(--~ hypothesis)

-> (12) Explore branch-
number-report

(13) Examine BO00 -). (14) Locate error -~ (15) Repair errar .-- 1

~ . (1 6) Confirm error

(17) Examine BOIO

(t8} Examine A001 -~ (19) Examine BOlO

(20) Evaluate ,~ (21) Examine AO01/-~
problem/output BOO0

I~) (23) Repair error --~ (24) Confirm error

FIG. 4. Episode outline of subject NHI .

(22) Locate error "7

4 7 0 I. VESSEY

a certain item or piece of information, or by a subject focusing attention on another
part of the program (e.g. see Newell & Simon, 1972, pp. 283-287). There are two
types of relationships between episodes. Dependency-directed relationships, where the
second episode occurs as a direct result of the first, are shown diagrammatically via
horizontal connections between episodes. For example, there is a dependency-directed
association between episodes 4 and 5, and episodes 5 and 6 in Fig. 4 (Shrobe, 1979).
Chronological relationships are denoted by vertical connections. This indicates that
one episode follows the other in time, but does not occur as a direct result of the first
episode. Dependency often can be identified when the subject refers to the same data
item or feature of the PROCEDURE DIVISION in consecutive episodes.

Most episodes follow each other in time without being otherwise related. Dependency
relationships usually occur when the subject checks on a data item in the WORKING-
STORAGE SECTION that has aroused curiosity while examining the PROCEDURE
DIVISION. Often the sequence of events preceding finding, correcting, and confirming
the error is also dependent in nature (see episodes 13-16 and 20-24 in Fig. 4).
Dependency also arises when the subject's evaluation of the situation results in the

A. Determine problem

compare correct and incorrect outputs
 9 repeated applications of:

'get next item from incorrect output'
'compare with corresponding item from correct output'

 9 if not the same, then
'list differences'

B. Gain familiarity with program

scan program listing
 9 repeated applications of:

'examine next program section (module)'
'examine specific module'
'explore specific W-S item'
'evaluate problem (-~ hypothesis)'

C. Repair error

Locate error
Repair error
Confirm error
Examine specific module

D. Gain familiarity with program

=can procedure division
 9 repeated applications of:

'examine tpacific module'
'evaluate the problem'

E. Repair error

Locate error
Repair error
Confirm era'or

FIG. 5. Strategy diagram of subject NHI .

DEBUGGING COMPUTER PROGRAMS 471

statement of a hypothesis. The hypothesis usually does not direct further investigation
nor does it appear to be used in the following episode. This situation is denoted by a
vertical connection from the episode prior to the evaluation. Episodes 7, 8 and 9 in
Fig. 4 illustrate this situation. Breaks in subjects' episode outlines, represented by short
horizontal lines, indicate subjects made incorrect repairs that they presented to the
researcher as the solution to the problem. Subject NH1 presented an incorrect repair
following episode 17.

3.3.2. Strategy diagram
Figure 5 shows subject NHI ' s strategy diagram. It shows five major problem-solving
phases and is derived from the episode outline by identifying groups of consecutive
episodes having a similar overall or strategic goal. For example, a number of episodes
may be concerned with examining the functions of a number of modules; the associated
strategic goal may be to determine the function or the structure of the program. The
strategy diagram, then, illustrates subjects' problem-solving approaches in terms of the
sequence of strategic goals they set themselves.

The strategy diagram also defines the hierarchy of sub-goals implicit in the fulfillment
of each strategic goal. Strategic goals are put into operation by means of tactical goals
that specify how a strategic goal is to be fulfilled. At the lowest level of detail, tactical
goals translate into operational goals, which are those identified in episodes. Table 1
shows the types of goals programmers set themselves in debugging. There are four
major or strategic goals: (1) to determine the problem with the program; (2) to gain
familiarity with the function and structure of the program; (3) to explore program

TABLE 1
Hierarchy of subject goals

Strategic goal Tactical goal Operational goal

Determine problem Compare correct and Get next item from
incorrect outputs incorrect output

Gain familiarity

Explore program structure
and function (program
control)

Repair error

Examine program listing
Examine program control

Explore procedure
division processing

Mentally process data
through program

Locate error
Repair error
Confirm error

Compare with corresponding
item from correct output

List differences
Examine initial comments
Examine next program section

(module)
Examine specific program

section (module)
Evaluate problem
Explore specific module
Explore specific working-storage

item
Explore control structure
Process next module in

execution sequence
Evaluate problem
Locate code in error
Amend code in error

472 i. VESSEY

execution and /o r program control; and (4) to repair (and confirm) the error. Strategic
goals 1 and 4 appear in all subjects' protocols. Goals 2 and 3 both occur frequently
in the protocols, although some protocols are best characterized by either gaining
familiarity with the program or exploring the program alone. The sequence in which
subjects set goals 1 and either 2 or 3 differ. Except when subjects make errors, goal 4
is, of necessity, the last in the problem-solving sequence. Subjects in this study used
similar tactical and operational goals when pursuing a given strategy, the only difference
being one of degree when subjects followed a more or a less active approach to gaining
familiarity with the program and exploring the program.t

3.3.3. Debugging process model
Figure 6 presents NHI ' s debugging process model. It is a still more generalized
representation of a subjectrs approach to problem-solving. Unlike the episode outline,
it is no longer strictly sequential. Instead, it shows the flow of problem-solving at a
higher level. It employs the same four major elements, phases or building blocks used
in the strategy diagram, together with a fifth, evaluate problem. The evaluate problem
phase is used to signal the statement of a hypothesis about the error. Subjects
sometimes engage in evaluation which does not lead, however, to the statement of a
hypothesis. This situation usually arises as a result of an exploration phase and is,
therefore, difficult to distinguish from it; it arises less frequently from gaining familiarity
with the program. Hence, exploration also includes evaluation not leading to the
explicit statement of a hypothesis. It is apparent that, although evaluation phases are
added explicitly to the model, the model is a further generalization from the strategy
diagram of the subject's approach to problem solving. It is a pictorial representation
showing at a glance similarities and differences in the methods used.

3.4. SUBJECTS
The subjects who participated in this research were practising programmers from the
State Government Computer Centre, Brisbane, Queensland. With one exception all
the programmers had spent their entire programming careers at the State Government
Computer Centre. One person had spent 2 years at another government institution
and, at the time of the study, had been employed by the Centre for 15 months.
Thus the subjects had homogeneous backgrounds.

3.5, ASSESSING DEBUGGING EXPERTISE
This study used two methods to assess programmer expertise, an ex ante method and
an exploratory ex post method. This approach permitted comparison of the effectiveness
of the two methods in distinguishing the more from the less skilled programmers.

3.5.1. An ex ante programmer classification
Manager assessment was the initial (or ex ante) method used to obtain a set of eight
experts and eight novices for the study (Reilly et al., 1975). This method was chosen
primarily on the basis of face validity and convenience. Managers at the State Govern-

t" A study by Gould (1975) suggests, however, that this may not always be the case. Gould reports that
his subjects used one of two tactics to determine the problem with the program: (l) they examined the
output for clues to the problem (the tactic used by all subjects in the current study); (2) they examined the
source listing directly.

DEBUGGING COMPUTER PROGRAMS 473

(
I

Start)
DETERMINE]
PROBLEM

EXPLO RE
specific W-S item

I

GAIN FAMILIARITY ~._..~=~
with program

EVALUATE
problem I -1

EVALUATE I
problem

EXPLORE I specific
w-S item

l ~ " ,,

GA,N FAM,LIAR
with,proqram , I l

REPAI'R I I and confirm
error

I
I
I

GAIN FAMILIARITY
with program

I EVALUATE I problem/
output I

(.~176
I GAIN FAMILIARITY ~ . ~ REPAIR

>1 with AOOI/BOOO and confirm
i error

FIG. 6. Model of debugging process of subject NH1.

merit Computer Centre (the person first contacted and subsequently others at slightly
lower managerial levels) assessed programmers who agreed to be subjects. After an
initial discussion of what constituted expertise, it became apparent that the manager's
main criterion was the length of time the person had held a programming position;
that is, experience rather than ability.

3.5.2. An ex post programmer classification
The ex post classification method used in this study was derived from the debugging
efficiency criteria presented in section 2.1. Eight programmers were categorized as

474 L VESSEY

experts and eight as novices according to these criteria, based on a ranking procedure.
Since the level of the program bug influenced the number of program position changes
programmers exhibited, four programmers who debugged the program with the high
bug and four who debugged the program with the low bug were classified as experts
in this study; the others were classified as novices.

Table 2 presents the subject classifications based on these three variables as well as
the resultant overall designation of the programmer as either an expert or a novice.

TABLE 2
Subject classifications on three debugging performance variables and overall designation

Function Program debug Position
Subject changes reversals changes Classification

EH1 E E E Expert
EH2 E E E Expert
EH3 N E E Expert
EH4 E E E Expert
NH1 N N N Novice
NH2 N N N Novice
NH3 - - N N Novice
NH4 N N N Novice
ELI E E E Expert
EL2 - - E N (Expert)
EL3 E E E Expert
EL4 E E E Expert
NL1 N N N Novice
NL2 E N N Novice
NL3 N N N Novice
NL3 N N E Novice

The final classification was derived by assigning subjects to the most frequent class.
The three variables classified subjects as experts and novices remarkably consistently.
In 11 of the 16 cases, all three variables produced the same classification, while three
subjects were rated as either expert or novice on a 2 : 1 basis. Of the two subjects whose
problem solving demonstrated an equal number of function changes across the expert-
novice boundary, one was rated twice as a novice on the other variables and so was
designated a novice. The other subject, EL2, presented a problem in classification.
Since a ranking procedure was used throughout and EL2 was borderline, he was
classified as an expert to maintain the balance of eight subjects classed as experts and
eight as novices. (This classification also maintained equal numbers on bug type.)

4. Data analysis
Table 3 shows basic subject and task information: the length of work experience, the
expert novice classifications and the level of the bug the subject was required to detect
and correct, the time taken, the number of words uttered during the experiment, and
the verbalization rate in words per second. Note that the subject who accomplished
the task in the shortest time and spoke at the fastest rate had only 2 weeks' experience
as a practising programmer.

D E B U G G I N G COMPUTER PROGRAMS 475

,-1 , .~

<

r~

~ ~ o ~ o ~ o ~ ~o o ~ o ~ o ~ ~o

~ 0 0 0 0 ~ 0 0 0 0
m ~ m m Z Z Z Z ~ m ~ Z Z Z Z

m Z ~ Z Z ~ Z ~ Z ~ Z Z Z

~ m m Z Z Z Z m m m m Z Z Z Z

476 I, VESSEV

Three types of analyses were carried out using the verbal data. Firstly, the two
programmer classifications were analyzed according to the debugging effectiveness
criteria to determine which method should be used for further investigation of debug-
ging processes. Secondly, using this classification, subjects' debugging processes were
examined to determine the effects of programmer skill and level of the program bug.
Third, independent of the expert-novice classification, a macro analysis was performed
that identified strategic decisions the programmers faced in debugging. Programmers
were then characterized according to the strategic decisions they made. The expert
and novice programmers determined by the first analysis were then compared with the
groups of programmers following certain strategic paths derived from the third analysis.
This comparison permitted identification of the debugging strategies used by those
programmers classified as experts and those classified as novices in this study.

All quantitative data was analyzed using ANOVA and ANCOVA procedures (Nie,
Hull, Jenkins, Steinbrenner & Bent, 1975). In all cases there were two factors, the
programmer classification and the level of the program bug. The ANCOVA procedure
was used when the dependent variable was time. Here, verbalization rate was predicted
to have an etIect on the outcome; hence it was used as the covariate in the analyses.

4.1. IDENTIFYING EXPERTS AND NOVICES
Table 3 shows that the two programmer classifications assessed in this study classified
only 10 of the 16 subjects in the same way. The performance of the two methods was
assessed using the debugging efgectiveness criteria (debug time and the number of
errors subjects made) presented in section 2.2.

The ex post programmer classification, which controlled for the chunking ability of
programmers, accounted for 73.7% of the variation in debug time compared with
36.1% for the manager classification. The mean debug times according to the ex post
classification were 15 rain 40 s for experts compared with 28 min 3 s for novices, while
the corresponding times for the manager classification were 20 min 24 s for experts
and 23 min 19 s for novices. Further, the ex post classification classified all (five)
programmers who made incorrect changes to the program as novices, while the
managers classified four of the five programmers as novices. Hence, the ex post
classification, based on information derived from the verbal protocols, proved to be
a better measure of programmer skill for this task than manager assessment.

These results support the concept on which the ex post programmer classification
is based, namely, that subjects' problem solving processes result in significant variability
in performance that is difficult to capture except by explicit recognition of those
processes. Further, this result shows that one of the factors that contributes to the
variability in subjects' problem solving processes is the chunking ability of program-
mers. The ex post programmer classification, then, was the method used for the
succeeding analysis.

4.2. ANALYSIS OF EXPERT AND NOVICE DEBUGGING PROCESSES
The data analysis is presented in terms of variables relating to the outcome or efficiency
of debugging, the methods programmers used, and their task-oriented or solution
behaviour. The analysis is both quantitative and qualitative in nature.

D E B U G G I N G COMPUTER PROGRAMS 477

4.2.1. Outcome variables
Table 4 shows several variables related to the outcome or overall conduct of the
problem-solving process. Table 5 presents the results of the statistical analysis (ANOVA
or ANCOVA) on those variables that are quantifiable.

TABLE 4
Debugging processes--outcome variables

Subjects

No. of Average time
Total Time to major No. of per
Time* Errort phases episodes episode

High Bug

Low Bug

Expels
EH1 11:00 9:32 3 18 0:40
EH2 17:47 15:15 3 15 1:11
EH3 14:43 10:30 4 20 0:44
EH4 15:40 10:11 3 12 1:18
Novices
NH1 20:50 19:18 5 24 0:52
NH2 19:33 17:39 4 21 0:55
NH3 21:40 20:25 5 27 0:48
NH4 17:20 16:19 7 22 0:47

Expels
ELI 19:23 18:49 5 20 0:58
EL2 25:29 16:04 5 30 0:51
EL3 8:40 6:53 4 17 0:30
EL4 12:40 12:19 4 9 1:24
Novices
NL1 38:44 13:32 6 33 1:10
NL2 31:38 30:23 8 26 1:13
NL3 36:46 35:01 10 31 1:11
NL4 37:54 37:49 7 31 1:13

* All time measures are presented as minutes and seconds.
t The "time to error" was measured by the formula:

number of phrases to error • total time
total number of phrases

Total debug time. Total debug time refers to the time taken both to discover the error
and subsequently to confirm it. Both the skill level and the bug level significantly
affected debug time (R 2= 0.737). Novices took longer, to debug programs in general
than experts (P < 0.001) and programmers took longer to correct programs with low
bugs than with high bugs (P = 0.001). In addition, there were two interaction effects.
As expected, novices took longer to debug the program with the low bug than the high
bug and novices took longer than experts for the low bug. This result suggests that
the programmer classification method based on subjects' chunking ability, together
with bug level, is effective in distinguishing the more able from the less able pro-
grammers.

478 L VESSEY

TABLE 5
Statistical results derived from selected outcome variables

Dependent EN Bug Interaction
variable effects effects effects R 2

Total time 0.000 0.001 0.009 0.737
N > E L > H N > E for L

L > H fo rN
Time to error 0-005 0.572

N > E
No. of major phases 0.001 0.006 0.712

N > E L > H
No. of episodes 0.003 0.570

N > E
Average time per episode 0-125

Time to discover the error. This variable refers to the length of time subjects took to
articulate the error, but does not include the time to confirm the error. The variable
was significant only for the expert-novice classification (P = 0.005, R 2 = 0.572). Novices
take longer both to discover the error and to discover and confirm the error. This result
suggests there may be little difference between programmers in the time to confirm
errors.

However, the result for bug level is different from that for total debug time, i.e. time
to discover the error is not significantly higher for the low-level bug, as would be
expected. The significant result for total debug time probably arises because of the
time subject NL1 (with the low bug) required to confirm the error. He found the error
in 13 min 32 s but then took almost twice that period to reassure himself that he was
correct (25 min 12 s). This result indicates that subject NL1 had not created an adequate
model of the program's function and structure prior to indicating the error; he simply
did not know how the program worked and could not confirm the error at that time
in terms of his internal model of the program. (This aspect is considered further under
Outcome variables: system thinking.)

Number of major phases. The number of major problem-solving phases, obtained from
the subject's strategy diagrams, varied with both the ex post skill classification and the
bug level (R2=0.712). Novices engaged in more major phases in debugging than
experts (P= 0.001), and subjects as a whole engaged in more major phases for low
than for high bugs (P = 0.006). This result is consistent with the number of errors that
subjects made in debugging the programs. When making a correction, they entered a
repair phase and when told they were not correct, they again resumed their analysis
of program structure. In this way, they entered into at least one and probably two
more major problem-solving phases. Since the ex post classification classified all
programmers who made errors as novices, it follows that novices engage in more gross
phases than experts during debugging.

Number of episodes. Novices required more episodes than experts to solve the problem
(P = 0 . 0 0 3 , R2=0.570). However, the level of the program bug had no effect on the
number of episodes. The result for the skill classification relates both to total debug

D E B U G G I N G C O M P U T E R P R O G R A M S 479

time and to the average episode time. Since novices took longer in general to debug
than experts and since the average episode length did not vary (see next subheading),
it follows that novices engaged in more problem-solving episodes than experts.

Average time per episode. Neither the programmer classification nor the bug level
significantly affected the average time expended per episode. Experts and novices spent
similar amounts of time in examining individual aspects of the problem, and program-
mers in general engaged in problem-solving episodes of similar length, irrespective of
whether they were debugging programs with high or low bugs.

4.2.2. Method variables
Table 6 shows variables relating to the method or process subjects used in debugging.
Table 7 presents the results of the statistical analysis performed on quantitative
variables. One of the most significant outcomes of the process analysis is the realization
that all subjects' debugging processes can be described in terms of five major problem
solving phases: problem determination, gaining familiarity with the program,
exploration of particular aspects, evaluation leading to the statement of a hypothesis
and, finally, error repair. The debugging process model, the third technique for
recording processes, reflects the type and sequence of phases in which individual
subjects engaged. Every protocol does not necessarily display all phases, and certain
phases may occur several times during problem-solving. All protocols include, however,
both problem determination and error repair phases.

Module examination procedure. Subjects approached the essential task of ascertaining
the program structure principally in one of two ways. In the first approach they read
through at least the first three modules, A000-CREATE-SALES-REPORT, A001-
PROCESS-AND-READ, and B000-PROCESS-DETAIL-RECORDS, in sequence as
they appeared in the listing (seven subjects). The second approach was to examine
the modules in execution sequence, i.e. A000-CREATE-SALES-REPORT, followed
by A001-PROCESS-AND-READ, and then by B010-PROCESS-CUSTOMER-
CHANGE (six subjects). Two subjects, EH4 and NH3, engaged in the most active
search process and started their investigation of the program structure by looking for
the module where they believed the error to be: B000-PROCESS-DETAIL-RECORDS.
From then on, however, their approaches differed. Subject EH4 found the error by
reference to module B000-PROCESS-DETAIL-RECORDS alone; he then worked
backwards through the program listing, referencing first module A001-PROCESS-
AND-READ and then A000-CREATE-SALES-REPORT, in order to confirm it. NH3,
on the other hand, first followed an execution sequence by glancing briefly at module
C000-PRINT-HEADINGS; the third module he referenced was A000-CREATE-
SALES-REPORT. The remaining subject, NH4, did not follow a pattern for module
examination. He looked first at A000-CREATE-SALES-REPORT, reading out the
PERFORM statements for modules A001-PROCESS-AND-READ, B010-PROCESS-
CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-CHANGE, and B030-
PROCESS-BRANCH-CHANGE (activated when the main body of processing has
concluded), interspersed with two references to the WORKING-STORAGE SEC-
TION. Next he examined B000-PROCESS-DETAIL-RECORDS.

Since the module examination procedure investigates only the sequence in which
subjects approach the early stages of the task, few differences would be expected for

4 8 0 I. V E S S E Y

m

~o o

~ o 0 ~ . ~

N~N.fi 9 ~ ~

~ e'q ~s

~ . ~ . ~ ~ ~ ~.~.~ ~ . ~
m m m ~ m Z Z Z Z Z ~ m ~ m Z Z Z Z

a~

o

~o

~ - " ~ ' < ~ ~ _ ~ . ~ o o
m ~ o o ~ W ~ , ~, ~5 0 ~ " ~ II o o o .~

DEBUGGING COMPUTER PROGRAMS

TABLE 7
Statistical results derived from selected method variables

481

Dependent EN Bug
variable effects effects R 2

No. of different modules examined

No. of times B000 examined

No. of DD items examined

0.045 0.299
N > E
0.007 0.023 0.578
N > E L > H

0.104

bug level. There are differences, however, in the methods used by experts vis-fi-vis
novices. Table 8 summarizes the results. Experts, in general, are more relaxed about
debugging (situation-dependent-problem solving). They are content to read through
the program as it unfolds. Again, this is an illustration of the high-level problem-solving
that so often appears to characterize the behaviour of experts. Novices, on the other
hand, prefer to assess how the program executes sooner than experts.

TABLE 8
Summary of module examination procedure

Procedure Experts Novices

Lexical 5 2
Execution 2 4
Solution 1 1
Indeterminate 1

Familiarity before problem determination. Three subjects (EL1, EL2, and EL3), all
classed as experts in this study, gained some familiarity with the program before
comparing the correct and incorrect outputs to discover the problem with the program.
Subject EL3 read the introductory comments only (one episode, 9.80% of total phrases).
Subject ELI read the initial comments, reviewed the FILE and WORKING-STORAGE
SECTIONs of the DATA DIVISION, and then read the comments relating to the first
two modules (A000-CREATE-SALES-REPORT and A001-PROCESS-AND-READ).
This initial familiarization involved four episodes and amounted to 15.56% of the
total phrases uttered. Subject EL2 engaged in an extended initial familiarization phase
that consumed 14 episodes representing 32.93 % of the complete problem solving effort.
He looked first at the DATA DIVISION, then at modules A000-CREATE-SALES-
REPORT, A001-PROCESS-AND-READ, and B000-PROCESS-DETAIL-RECORDS.
While perusing the PROCEDURE DIVISION, he frequently referred to items in the
WORKING-STORAGE SECTION.

Familiarity and exploration before error. Most subjects (with the exception of those
discussed in the previous section) first assessed the problem with the program by
examining the correct and incorrect outputs, generally on a line-by-line basis. This
was usually followed by a familiarization phase where subjects read through parts of

482 I. VESSEY

the program to discover what it was doing. If subjects did not detect the error by
simply reading through the program, they usually engaged in active exploration of the
program in the form of mental execution. Exploration reveals information on the
execution sequence and on the values of data and control variables.

The protocols of NH3 and EH4 contain no familiarization phase, while that of EH1
was very short and is classed as exploration only. Certain subjects found the error
without engaging in exploration, i.e. active searching for certain structures in accordance
with a hypothesis, implicit or explicit, or mentally executing the program to determine
how it was functioning. These include (in the sequence in which they appear in Table
6) EH2, EH3, NH1, NH4, EL3, NL3, and NL4. Of these, subjects NH1, NL3 and
NL4 had considerable difficulty in finding the error. The remaining subjects, those
who did not find the error after reading through the relevant modules once or twice,
turned to exploration, most frequently in the form of mental execution of the program
(NH2, EL4, ELI, EL2, NL1, and NL2). They generally concentrated on control aspects
such as resetting the previous numbers and the values of the change flags.

TAULE 9
Summary of familiarity and exploration phases before error detection

Phases Experts Novices

High bug Familiarity 2 2
Exploration 2 1
Familiarity and Exploration 0 1

Low bug Familiarity 1 2
Exploration 0 0
Familiarity and Exploration 3 2

Table 9 summarizes the use of familiarity and exploration phases before bug detection
for both the skill classification and bug level. No consistent patterns of differences
between groups can be identified.

Number of different modules examined. One of the criteria for derivation of the ex post
programmer classification used in this study was that novices could not chunk programs
as efficiently as experts. They would engage, therefore, in more erratic problem-solving
behaviour than experts, illustrated by the frequency of their changes of reference
positions in the program. Since low bugs incurred more position changes than high
bugs, confirming the greater difficulty of locating and correcting the program with the
low bug, bug level was controlled in deriving the classification. Inherent in this
classification, therefore, is the fact that novices make changes more frequently than
experts in the material they reference.

In the process analysis, the variable investigated is the number of different modules
that programmers reference in debugging. Only a few modules are relevant to under-
standing the program structure. Modules A001-PROCESS-AND-READ and B000-
PROCESS-DETAIL-RECORDS are those in which the flags are set and unset; in
subordinate modules B010-PROCESS-CUSTOMER-CHANGE, B020-PROCESS-
SALESMAN-CHANGE, and B030-PROCESS-BRANCH-CHANGE, the "previous"

D E B U G G I N G C O M P U T E R P R O G R A M S 483

numbers are reset for matching purposes. These three sets of modules perform all
control functions in the program. As long as the problem is characterized as a control
problem, these are the modules where the error(s) might be expected to occur. The
only other possibility is that DETAIL-LINE is not cleared before printing. As noted
previously, however, closer examination would show that the problem is not uniform,
i.e. it does not occur all the time, and so cannot be one of clearing DETAIL-LINE.
Also, one would logically expect that clearing DETAIL-LINE would be accomplished
within module B000, which carries the title B000-PROCESS-DETAIL-RECORDS.
Hence, it is not essential to reference modules other than the controlling module
A000-CREATE-SALES-REPORT, A001-PROCESS-AND-READ, B000-PROCESS-
DETAIL-RECORDS, and the three "change" modules. The number of different
modules that programmers reference can therefore be regarded as a measure of the
confidence that programmers have in looking at what they consider to be the relevant
modules. Hence, it is expected that the less confident programmers (novices) will
reference more modules than the more confident programmers (experts). This reasoning
is supported by the result: novices examine more modules than experts (P = 0.045,
R 2=0.299). Bug level has no effect on the number of modules that programmers
reference.

Number of times BOO0 was examined. The module in error is B000-PROCESS-DETAIL-
RECORDS. Novices reference module B000-PROCESS-DETAIL-RECORDS sig-
nificantly more often than experts (P=0 .007) and programmers reference B000-
PROCESS-DETAIL-RECORDS more often for low-level bugs than for high-level bugs
(P = 0.023, R 2 = 0.578). These results are similar to those for the number of different
modules that programmers examine. They demonstrate lesser ability to grasp the control
relationships established in the program and the interrelationships between modules.

Number of DATA DIVISION items examined. Again, because they are less confident
than experts, it might be expected that novices would refer to items in the DATA
DIVISION more frequently. However, no such differences were observed. Similarly
bug level was not significant (R 2= 0.104).

4.2.3. Solution variables
Table 10 shows variables directly related to the solution process. Table 11 presents the
results of the statistical analysis on readily quantifiable variables.

Number of hypotheses. Nine subjects stated hypotheses ranging from one to three in
number. Novices stated more hypotheses than experts (P = 0.045; R: = 0.230). Perhaps
experts have automated their problem-solving processes to a greater extent than novices
and hence do not state hypotheses as frequently during debugging. Alternatively, since
novices make more errors (see later), they will consider more possible causes of the
problem.

Types of hypotheses. Table 10 presents the hypotheses that programmers articulated.
They range from the general "control break problem" to resetting the previous num-
ber(s), moving SPACES to DETAIL-LINE, and not setting or resetting a control flag
(see Appendix A). Of a total of 19 hypotheses, three related to control break, five to
resetting the previous number(s), nine to clearing DETAIL-LINE, and two to resetting
the change flag. Activity that resulted from understanding the program structure and

484 I. VESSEY

led directly to error correction was considered to be evaluative in nature rather than
hypothesis activity. Only one person hypothesized (twice) that the change flag was the
problem (subject EH3). It is apparent, therefore, that in debugging stating the correct
hypothesis is not a prerequisite to finding the bug. Subjects may have made implicit
assumptions about the possible cause of error that may or may not have been correct.
However, only one subject made the correct explicit assumption. This subject was
classed as an expert. Other studies suggest that experts make good first guesses about
the solution to a problem. This research found that experts did not make better first
guesses, nor did they make more guesses. The crucial factor in debugging performance
is that experts were not as committed to their hypotheses as novices. Therefore, they
were not blind to new information.

Problem-solving constraints. Several subjects stated a hypothesis but did not actively
evaluate it, preferring to let the problem unfold as they became more familiar with
the program. These subjects are designated in Table 10 as "unconstrained", and include
EH1, EH3, NH2, and NH4. Others, however, stated a hypothesis early in task
execution and were so determined they were correct that they failed either to understand
the program structure or to evaluate their proposed change. These include NH1, NL2,
NL3, and NL4. They are designated in Table 10 as constrained.t In certain cases they
did not recognize signals that their hypotheses may have been incorrect, showing
inflexibility in adopting and discarding hypotheses (NH1, NL2, and NL4). Two
subjects, NL2 and NL3, used a "shotgun" approach to error detection that was not
related to hypothesis generating activity alone. They made continual changes to the
program in the hope of eventually producing the correct one; i.e. they considered the
onus of decision was on the researcher to accept or reject the changes rather than on
themselves to justify their corrections. These subjects were all classified as novices.
System thinking. Experts, whether they stated hypotheses or not, gradually created an
implicit model of program structure and function, which permitted them to place the
error in context. Those subjects who found the error without creating the model of
program structure and function (e.g. subjects NL1, EL3 and EH4) found it essential
to create the model before being satisfied they had found the error. This is an example
of what Johnson, Hassebrock, Duran & Moiler (1982, p. 226) call "system thinking".

Those subjects who are not regarded as perceiving the problem from a system
viewpoint are NL1, NH3, and NH4. Although subject NL1 eventually constructed
such a model, he took twice as long to construct the model as he did to indicate the
error and is therefore considered to be deficient in his ability to think in system terms.

Program structures considered. Subjects explicitly examined a number of program
structures in their search for the error. To some extent these structures are reflected
in the hypotheses that subjects articulated, but they did not always state specifically
their perceptions of the cause of the error. Two cases in point are subjects NH3 and
ELI. They made single task assertions, such as "therefore that cannot be the problem",
when they found a structure they obviously had thought might have been missing from
the program. Such entries are made in brackets. Including these structures, six subjects
explicitly considered previous numbers and 12 subjects considered spaces and change

t This type of approach to problem-solving is termed "depth-first'by Nilsson (1980) and "extraction" by
Feltovich (1981). It is characterized by rejection of the suspected problem only when necessary. The alternative
problem solving approach is "breadth-first" or "precautionary" (Nilsson and Feltovich, respectively).

D E B U G G I N G C O M P U T E R P R O G R A M S 4 8 5

~

o~

h.,

121

Z

r e~

,1

o 0
g = .

0

Z =

0

z
r/3

z" ~" ~'z'z "z

z

~ z -~. z ~
~h r / l

t,N t, xl t.-q

r ~

o o r , .) o o

~, I~,~ ~ , I'-"

~ ~:~ ~ g ~ : ~
m m m m m Z Z Z Z Z

rllr .~

UU ~

z
e~

z"

I I I I ~ 1 - -

~.~ .~ ~ ~ ~ ~.~ ~ ~
~ ~ m,,~ m Z Z Z Z Z

0
,..2

8

o

~

a::

~

r, 8 ~

~, _ ~ ,I ,,,.~"I~

, ~ ~ ~ ~ ~ . ~ . ~ . ~

II II
o ~

4 8 6 I. VESSEY

TABLE 11
Statistical results derived from

variables
selected solution

Dependent
variable* EN effects R 2

Number of hypotheses 0.045 0.230
N > E

Number of mistakes 0.005 0.500
N > E

* There were no bug effects for the solution variables.

flags. Note the bias in the number of subjects who considered flags since this was the
error; hence, everyone eventually referred to flags as being the source of error. Only
two subjects, EH3 and EL4, considered change flags alone, while two more, EH2 and
EL2, appeared to detect the bug with no explicit consideration of structures of any
kind. Two subjects, who had previously considered other structures, did not finish
with an explicit consideration of change flags: NL3 and NL4. Subject NL3 suggested
the correct amendment, together with other changes he had not deleted, as yet another
amendment that could have made the program work. NL4 appeared just to state the
correct solution; he had already committed an error at that point.

Number of mistakes. Programmers classed as novices made significantly more errors
than those classed as experts (P = 0.005, R 2= 0.500). Bug level had no effect although
six of the eight mistakes were committed for the low-level bug.

Types of mistakes. Subjects made limited sorts of mistakes (as reported in Appendix
A). Of eight mistakes, four involved moving SPACES to DETAIL-LINE (or to some
part of DETAIL-LINE), and the other four involved branch, salesperson or customer
numbers. Three of these latter mistakes involved resetting the previous numbers, while
the fourth introduced an unnecessary test to determine whether a number had changed
prior to printing that part of the DETAIL-LINE repeatedly written in error.

4.3. ANALYSIS OF SUBJECTS' DEBUGGING STRATEGIES
Figure 7 presents a pictorial representation of the strategy paths the programmers
followed. The representation of strategy paths differs from the individual subjects'
strategy diagrams in that it describes at a macro level the strategies of all subjects. The
strategy paths are characterized by four binary factors leading to a possible 16 paths.
These four variables represent significant elements in the subjects' debugging processes.
They derive from the previous analysis. The binary variables, in the sequence in which
subjects considered them (explicitly or implicitly), are:

(1) Whether subjects examined the program or the output first (Table 6: Familiarity
before problem determination).

(2) Whether subjects engaged in active or passive examination of the problem (Table
6: Module examination procedure).

(3) Whether subjects were constrained by the hypotheses they stated (Table 10:
Problem-solving constraints).

DEBUGGING COMPUTER PROGRAMS 487

J

Active
module
examination ?

Search for ~ /
dues first? ~

< ,
Active
modu le
examination ?

Depth-first
search for
error ?

Depth-first
search for
error ?

/

m j
thinking? N ~

/

S,
~ System /

thinking ?

Depth -first
search for
error ?

NH I
NL2
NL3
NL4

(i)

EH I (2)
EH4
EL4

NH 3 (3)

EH2
EH3
NH2

(4)

NH4
(5)

NLI

(6)

S i
ELI

EL3
System
thinking? N ~

FIG. 7. Strategy paths followed by programming subjects.
* The numbers in brackets on the branches represent the number of subjects following that strategy.

The alternative to searching first for clues to the problem is to examine the program structure and
function and then to search for clues.

2 Active module examination is distinguished by: (a) initially following the execution path of the program
rather than the lexical sequence; or (b) actively searching for the error rather than first undestanding the
program.

s All subjects who were not recorded as being constrained by their hypotheses were regarded as engaging
in breadth-first search for the error.

(4) Whether subjects developed a model of the program structure and deduced a
causal model of the error (Table 10: System thinking).

The strategies are represented in the form of a decision tree (DeMarco, 1979; Gane
& garson, 1979), with the intention of representing temporally the strategic decisions
made by subjects. The numbers of subjects choosing each path is represented on the
diagram. Subjects followed six of the 16 paths.?

tThe strategies are numbered to the right of Fig. 7.

488 I. VESSEY

Examination of the subjects following each strategy shows that strategies 1, 3 and
5 are followed principally by subjects classified as novices according to the expert-novice
programmer classification, while strategies 2, 4 and 6 are followed principally by those
classified as experts. Reformulat ion of the decision tree presented in Fig, 7 produces
the complete and consistent decision table of Table 12 (Gildersleeve, 1970). It shows
that two factors determine expert behaviour in this diagnostic task: the ability to pursue
a breadth-first search for the error t and the ability to think in systems terms. Program-
mers who are constrained by the hypotheses they generate are novices. Further,
programmers who engage in breadth-first search for the error but who do not formulate
a model of the program structure and conceive of the error within that context will
be likely to make mistakes and will therefore be regarded as novices. Whether subjects
initially examine the output of the program has no effect on problem-solving. Neither
does reading modules vs mentally executing modules.

TABLE 12
Decision table for determining expert and novice subjects according to the ex post

programmer classification

Rules

1 2 3

Conditions (1) Breadth-first search for error Y Y N
(2) System thinking Y N - -

Actions (a) Designate expert X
(b) Designate novice X X

* This table approaches the designation of experts and novices from the viewpoint of experts as opposed
to Fig. 7, which approached it from the viewpoint of novices. Figure 7 derived from the analysis in this
chapter which identified constrained problem-solving as a characteristic of novices, while a more positive
approach identifies the characteristics of experts.

The decision table, based on only two binary conditions, classifies 15 of the 16
programmer subjects in the same manner as the skill classification, which is based on
the chunking ability of the subjects. The sixteenth subject is NH2. Perusal of NH2 ' s
process description (Vessey, 1984, Appendix E.2) shows that there is little in his
protocol to suggest that he is a novice according to the criteria presented in this section.
He does not exhibit, however, a very refined chunking ability (see Table 2). He is
ranked tenth in a three-way tie on function changes, ninth in a three-way tie on Program
Debug reversals, and eleventh in a two-way tie on position changes.

5. Implications of the results
The objective of this research was to determine those characteristics of programmers '
debugging processes that lead to debugging expertise.

t For further discussion of the significance of breadth-first vs depth-first approaches to both diagnostic
and design problems, see Feltovich (1981), Jeffries et aL (1980), Johnson, Duran, Hussebrock et al. (1981),
Maihotra et aL (1980), and Nilsson (1980).

DEBUGGING COMPUTER PROGRAMS 489

5.1. IMPLICATIONS FOR D E B U G G I N G PROCESSES

Tables 13 and 14 present summaries of the differences in debugging processes assessed
quantitatively for level of program bug and the exploratory ex post programmer
classification, respectively. Differences in debugging processes were observed between
bug levels when subjects made mistakes. Mistakes led to increases in the number of
phases in which programmers engaged. Mistakes were generally associated with the
more deeply entrenched low-level bug. Programmers did not otherwise appear to
modify their problem-solving methods for the low bug. There were again differences
in the effectiveneness of the application of those methods as a result o f the differing
bug complexity. This is evidenced particularly in the time required to debug the two
programs.

TABLE 13
Summary of the effects of bug level on process

variables

Dependent variable Direction

Debug time L > H
L > H for N

Position changes L > H
Major phases L > H
B000 examinations L > H

TABLE 14
Summary of the effects of skill level on process variables

Dependent variable Direction

Debug time N > E
N > E for

Time to error N > E
Major phases N > E
Episodes N > E
High-level module examination E> N
Familiarity before problem determination E > N
Modules examined N > E
B000 examinations N > E
Mistakes N > E

L

All programmers engaged in similar types of activity during debugging, i.e. all
programmers ' debugging processes could be described with five basic building blocks.
There are certain differences in the way the activities are sequenced and whether or
not a subject employs a given activity. The overriding consistent difference in expert-
novice processes that emerges from this study is the preference of expert programmers
to work at a high level without apparent concern for solving the problem. Novices are
anxious about their ability to solve the problem. They tend to focus directly on getting
a solution rather than understanding the program and how it functions. They are
inflexible in their approach to the problem and their (proposed) solution to it. From
the subjects' strategy diagrams, it appears that novices have the same basic methods

490 I. VESSEY

available to them but that there are differences in the effectiveness of the application
of these methods.

5.2. IMPLICATIONS FOR A C O N C E P T OF P R O G R A M M I N G EXPERTISE

The ex post programmer classification, based on subjects' ability to chunk programs,
together with bug level, explained 73.7% of the variation in debug time and classified
all programmers who made mistakes as novices.

Further support for the use of chunking ability as a measure of debugging expertise
was provided by the analysis of subjects' strategy paths. Except for subject NH2,
classification of subjects according to their high-level problem solving capabilities and
their approach to modelling the system resulted in the same programmer classification
as that based on chunking ability. Hence, a micro-analysis of debugging activities and
a macro-analysis of debugging strategies essentially produced similar results. Two
diverse methods resulting in convergent programmer classifications lend support to
the notions that underlie those methods and hence provide insight into the nature of
debugging expertise.

Expert debuggers are those who can chunk programs more effectively. They exhibit
disciplined approaches to problem-solving, pursuing similar types of behaviour rather
than frequently changing mode of behaviour, checking on the clues to the problem
and changing reference points within the program. Furthermore, expert debuggers are
those who approach the problem in a relaxed manner. They do not permit the formula-
tion of hypotheses to lead them to a depth-first search for the error. Instead, they allow
the structure of the program to unfold, place the clues in the context of that structure,
and conceptualize the error in terms of the program structure. Directed search for the
solution to the problem in terms of initial examination of the output for clues to the
problem and/or the module in error is not a determinant of debugging expertise.

The type of problem-solving outlined above--i.e, breadth-first, keeping constraints
open--is behaviour commonly found to characterize the problem-solving of experts.
In addition, it is behaviour that Dreyfus (1982) refers to as situation-dependent
behaviour. Problem-solvers who are constrained by their initial hypotheses do not
always react to the program content but perceive what they expect to perceive. They
are therefore situation-independent. So too are those programmers who do not develop
a causal model of the program structure and the error in it, i.e. those who do not
exhibit "system thinking". This study provides no support, however, for the notion of
a formal symptom-pattern recognition feature such as that found in medical diagnosis
(e.g. see Bouwman, 1978).

6. Limitations of the research
The major limitation of the study is that the reliability of the method used to classify
programmers has not been tested independent of the current data. The study shows
that, in a given set of circumstances, one of the primary factors associated with variable
programming performance is the chunking ability of programmers. The ex post
classification method should now be tested to establish whether it classifies subjects
consistently in the same manner. That is, a test-retest examination of the method is
required to assess the reliability.

DEBUGGING COMPUTER PROGRAMS 491

7. Conclusions
This research provides insights into the nature of debugging expertise and hence
contributes to a general theory of programming expertise. General empirical proposi-
tions about the expertise required to repair programs should be formulated from the
theory and the strategic propositions tested.t This research suggests that some of the
strategic propositions to be tested in the investigation of debugging expertise are:

1. (a) Experts use breadth-first approaches to problem-solving and, at the same
time, adopt a system view of the problem area;

(b) Experts are proficient at chunking programs and hence display smooth-flowing
approaches to problem-solving.

2. (a) Novices use breath-first approaches to problem-solving but are deficient in
their ability to think in system terms;

(b) Novices use depth-first approaches to problem-solving;
(c) Novices are less proficient at chunking programs and hence display erratic

approaches to problem-solving.
Further investigation will serve to extend and refine the theory and also to set

boundaries on the applicability of the strategic propositions.

The author is indebted to Gordon Davis, Vasant Dhar, Ron Weber, and participants in
workshops at the University of Minnesota and New York University for comments on earlier
versions of this paper.

References
ANDERSON, J. R., GREENO, J. G., KLINE, P. J. & NEVES, D. M. (1981). Acquisition of

problem-solving skill. In Anderson, J. R., Ed., Cognitive Skills and Their Acquisition. Hillsdale,
New Jersey: Lawrence Erlbaum Associates.

ATWOOD, M. E. & RAMSEY, H. R. (1978). Cognitive structures in the comprehension and
memory of computer programs: An investigation of computer program debugging. NTIS,
AD-A060 522/0.

BIGGS, S. F. (1978a). An investigation of the decision processes underlying the assessment of
corporate earning power. Unpublished Doctoral Dissertation, University of Minnesota.

BIGGS, S. F. (1978b). An empirical investigation of the information processes underlying four
models of choice behavior. In Bums, T. J., Ed., Behavioral Experiments in accounting. II.
College of Administrative Science, The Ohio State University.

BOUWMAN, M. J. (1978). Financial diagnosis: A cognitive model of the processes involved.
Unpublished Doctoral Dissertation, Carnegie-Mellon University.

BOUWMAN, M. J. (1983). Human diagnostic reasoning by computer: An illustration from
financial analysis. Management Science, 29, 653-672.

BROOKS, R. E. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9, 737-751.

BROOKS, R. E. (1980). Studying programmer behavior experimentally: The problems of proper
methodology. Communications of the ACM, 23, 207-213.

CHI, M. T. H., FELTOVICH, P. J., & GLASER, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

DEMARCO, T" (1979). Structured Analysis and System Specification. Englewood Cliffs, New
Jersey: Prentice-Hall.

t According to Dubin (1978, p. 168), "Strategic propositions are those that state critical or limiting values
for one of the units involved", and further (p. 210), "If strategic propositions (do) not produce positive
results, then there (is) no point in worrying about the other testable propositions". (The verbs in brackets
have been changed from past to present tense.)

492 I. VESSEY

DREYFUS, S. E. (1982). Formal models vs human situational understanding: Inherent limitations
on the modeling of business expertise. O~ce: Technology and People, 1, 133-165.

DUBIN, R. (1978). Theory Building. Revised edn. New York: The Free Press.
FELTOVICH, P. J. (1981). Knowledge based components of expertise in medical diagnosis.

Unpublished Doctoral Dissertation, University of Minnesota.
GANE, C. & SARSON, T. (1979). Structured Systems Analysis. Englewood Cliffs, New Jersey:

Prentice-Hall.
GILDERSLEEVE, T. R. (1970). Decision Tables and Their Practical Application in Data Processing.

Englewood Cliffs, New Jersey: Prentice-Hall.
GOULD, J. D. (1975). Some psychological evidence on how people debug computer programs.

International Journal of Man-Machine Studies, 7, 157-182.
GOULD, J. D. & DRONGOWSKI, P. (1974). An exploratory study of computer program debug-

ging. Human Factors, 16, 258-277.
JEFFRIES, R., TURNER, A. A., POLSON, P. G. & ATWOOD, M. E. (1981). The processes involved

in designing software. In Anderson, J. R., Ed., Cognitive Skills and Their Acquisition.
Hillsdale, New Jersey: Lawrence Edbaum Associates.

JOHNSON, P., DURAN, A., HASSEBROCK, F., MOLLER, J., PRIETULA, M., FELTOV1CH, P. &
SWANSON, D. (1981). Expertise and error in diagnostic reasoning. Cognitive Science, 5,
235-283.

JOHNSON, P., HASSEBROCK, F., DURAN, A. & MOLLER, J. (1982). Multimethod study of
clinical judgment. Organizational Behavior and Human Performance, 30, 201-230.

KINTSCH, W. and VAN DIJK, T. A. (1978). Toward a model of text comprehension and
production. Psychological Review, 85, 363-394.

LARKIN, J. H. (1981). Enriching formal knowledge: A model for learning to solve textbook
physics problems. In Anderson, J. R., Ed., Cognitive Skills and Their Acquisition. Hillsdale,
New Jersey: Lawrence Erlbaum Associates.

LARKIN, J. H., MCDERMOTT, D., SIMON, D. P. & SIMON, H. A. (1980). Expert and novice
performance in solving physics problems. Science, 208, 1335-1342.

LEWIS, C. H. (1981). Skill in algebra. In Anderson, J. R., Ed., Cognitive Skills and Their
Acquisition. HiUsdale, New Jersey: Lawrence Edbaum Associates.

MALHOTRA, A., THOMAS, J. C., CARROLL, J. M. & MILLER, L. A. (1980). Cognitive processes
in design. International Journal of Man-Machine Studies, 12, 119-140.

MAYER, D. B. & STALNAKER, A. W. (1968). Selection and evaluation of computer personnel--
The research history of SIG/CPR. Proceedings of the 23rd ACM National Conference,
657-670.

MYERS, G. J. (1978). A controlled experiment in program testing and code walkthroughs/inspec-
tions. Communications of the ACM, 21, 760-768.

NEWELL, A. & SIMON, H. A. (1972). Human Problem Solving. New York: Prentice-Hall.
NIL, N. H., HULL, C. H., JENKINS, J. G., STEINBRENNER, K. & BENT, D. H. (1975). Statistical

Package for the Social Sciences. 2nd edn. New York: McGraw Hill.
NILSSON, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, California: Tioga.
PAYNE, J. W., BRAUNSTEIN, M. L. & CARROLL, J. S. (1978). Exploring predecisional behavior:

An alternative approach to decision research. Organizational Behavior and Human Perform-
ance, 22, 17-44.

PENNINGTON, N. (1982). Cognitive components of expertise in computer programming: A
review of the literature. Technical Report No. 46, University of Michigan.

REILLY, R. et al., (1975). In The Use of Expert Judgment in the Assessment of Experimental
Learning. CALL Working Paper No. 10.

SHELL, B. A. (1981). The psychological study of programming. Computing Surveys, 13, 101-120.
SHEPPARD, S. B., CURTIS, B., MILLIMAN, P. & LOVE, W. (1979). Modern coding practices

and programmer performance. Computer, 12, 41-49.
SHNEIDERMAN, B. (1980). Software Psychology: Human Factors in Computer and Information

Systems. Cambridge, Massachusetts: Winthrop.
SHROBE, H. E. (1979). Dependency directed reasoning for complex program understanding.

Unpublished Doctoral Dissertation, Massachusetts Institute of Technology.
SMITH, H. T. & GREEN, T. R. G., Eds. (1980). Human Interaction With Computers. London:

Academic Press.

DEBUGGING COMPUTER PROGRAMS 493

SIMON, D. P. & SIMON, H. A. (1978). Individual differences in solving physics problems. In
Siegler, R. S., Ed., Children's Thinking: What Develops?, pp. 325-348. Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

VESSEY, I. (1984). The psychological processes underlying the debugging of computer programs.
Unpublished Doctoral Dissertation, University of Queensland.

VESSEY, I. & WEBER, R. (1984). Research on structured programming: An empiricist's evalu-
ation. IEEE Transactions on Software Engineering, SE-IO, 397-407.

VITALARI, N. P. (1981). An investigation of the problem solving behavior of systems analysts.
Unpublished Doctoral Dissertation, University of Minnesota.

VITALARI, N. P. & DICKSON, G. W. (1983). Problem solving for effective systems analysis: An
experimental exploration. Communications of the ACM, 26, 948-956.

YOUNGS, E. A. (1974). Human errors in programming. International Journal of Man-Machine
Studies, 6, 361-376.

Appendix A. Discussion of the problem solution
When a program is in error, the error is often manifested in output that differs f rom
the expected. Reference to the correct and incorrect outputs produced in this study
(Figs 2b, c) reveals the problem to be one of control over printing certain report fields.
In the version with the high-level bug, the branch, salesperson and customer numbers
are repeated following the first change in branch number. In the version with the
low-level bug, the customer number is repeated following the first change in customer
number. Since the program with the high-level bug produces a greater number of
erroneous output fields, that problem may appear more difficult at first. However, as
already indicated the error is equivalent in both program versions, the difference in
output being due to the hierarchical nature of the COBOL code.

Control over changes in each of the three report fields is exercised in two ways:
first, by establishing "previous" numbers to test whether a change has taken place;
second, by means of a change flag that permits printing of the correct fields. Figure 1
shows the program modules principally responsible for the control functions. (The
modules that handle a salesperson change and a branch change are essentially similar
to the module B010-PROCESS-CUSTOMER-CHANGE.) "Previous" numbers are
initialized with the values in the first input record by the module A000-CREATE-
SALES-REPORT on the first execution pass. In module A001-PROCESS-AND-READ,
tests are made to determine whether there has been a change in any of the report fields
(lines 255, 261 and 266).t I f a change has occurred, subordinate modules B010-
PROCESS-CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-CHANGE, and
B030-PROCESS-BRANCH-CHANGE are called as required to execute the necessary
processing. These modules reset the "previous" numbers with current values to prepare
to test the next input record (e.g. see line 344 in B010-PROCESS-CUSTOMER-
CHANGE) . On return to A001-PROCESS-AND-READ, the appropriate change flag
is set to 'YES' (lines 259, 264, and 268)J; In module B000-PROCESS-DETAIL
RECORDS, the print module, tests are made on the change flags (lines 295, 301, and
306). I f a change has occurred, the relevant input data items are moved to the
corresponding report fields, the relevant change flag is reset to ' N O ' (lines 299, 304,
and 308), D E T A I L - L I N E is written (lines 315, 316), and finally SPACES are moved
to D E T A I L - L I N E (line 319). A possible solution follows.

t The tests are hierarchical (from branch to customer) and mutually exclusive; that is, a change in branch
will also cause processing for change in salesman and change in customer to occur.

~: Change flags are initialized to 'NO' in the WORKING-STORAGE SECTION.

494 I. VESSEY

(1) Ascertain the problem. Note that processing proceeds normally until there is
either a branch change (high bug) or a customer change (low bug).

(2) Examine the output file in the file section of the data division (line 55). Note
that the output record is defined simply as PIC X(132).

(3) Search for a DETAIL-LINE in the WORKING-STORAGE SECTION.
Note the fields in error: BRANCH-NO-REPORT, SALESMAN-NO-REPORT and
CUSTOMER-NO-REPORT, or CUSTOMER-NO-REPORT alone.

(4) Find where the DETAIL-LINE is printed: module B000-PROCESS-DETAIL-
RECORDS. Check backwards to ascertain where input values are moved to output
fields. Check conditions for moving values into the output fields. Note that this occurs
when a particular change flag equals 'YES'.

(5) Hypothesize that the change flag always equals 'YES' after the first change is
processed because 'NO' is not being moved back to the flag following processing of
the change.

(6) Ascertain where 'NO' should be moved to the change flag. Note, there is a
definite pattern of movements of 'YES's and 'NO's to the change flags in modules
A001-PROCESS-AND-READ and B000-PROCESS-DETAIL-RECORDS respec-
tively.
This is a parsimonious approach to debugging the program: it formulates a hypothesis
about the possible cause of error in a logical manner--without making guesses about
program structure. The results show it is highly unlikely that debugging will be achieved
in this fashion as the programmer will generally need to know more about the program
structure before finally deciding on the error.

Subjects frequently proposed two competing hypotheses. The first is that "previous"
numbers are not being reset following a change (i.e. subjects have not examined
modules B010-PROCESS-CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-
CHANGE, and B030-PROCESS-BRANCH-CHANGE sufficiently closely). If this
were so, in module A001-PROCESS-AND-READ on every occasion except the first,
the " input" number would not be equal to the "previous" number and changes would
be processed producing continual total lines. This is not the situation presented. The
second hypothesis relates to clearing the DETAIL-LINE (or some part of it) before
processing the next record (subjects have not examined module B000-PROCESS-
DETAIL-RECORDS sufficiently closely). If SPACES were not being moved to
DETAIL-LINE, the first part of the report (up to the first change) would not have
been printed correctly. In proposing either of these changes, subjects have failed to
characterize the problem fully. They generally search for the statements they believe
to be absent rather than reasoning about what the situation would be if that were, in
fact, the case.

Some inefficiency in debugging COBOL programs occurs because unnecessary refer-
ences are made to the DATA DIVISION; in particular, in this case, to the WORKING-
STORAGE SECTION. One item commonly checked is the initial value of the change
flags. Since the first part of the report is correct (i.e. as far as the first customer change
or the first branch change), there is no need for programmers to know what values
they contain initially.

