
PROGRAM UNDERSTANDING BEHAVIOR DURING 
DEBUGGING 

OF LARGE SCALE SOFTWARE 

Anneliese von Mayrhauser and A. Marie Vans 
Colorado State University 

601 Howes Lane, room 239 
Fort Collins, CO 80523 USA 
[avm, vans] @cs.colostate.edu 

KEYWORDS: Program Comprehension, Software Maintenance, Debugging. 

ABSTRACT 
This paper reports on a software understanding experiment during corrective maintenance of 
large- scale software. Participants were professional software maintenance engineers. The paper 
reports on the general understanding process, the types of actions programmers preferred during 
the debugging task, and the level of abstraction at which they were working. The results of the 
observation are also interpreted in terms of the information needs of these software engineers 
during the debugging task. 

1. INTRODUCTION 

Program understanding is a central activity in a variety of maintenance tasks. During corrective 
maintenance, the software engineer needs to-understand the software enough to analyze a 
problem, locate the bug, and determine how it should best be fixed without breaking anything. For 
larger software products, understanding will be partial. Maintainers are not always experts in the 
application area. Even when they are, they may not be experts in the implementation language. In 
order to learn more about comprehension behavior during corrective maintenance, the 
observations considered both situations. The questions we tried to answer were: 

1. What kinds of actions do programmers perform when debugging code? 
2. Do programmers follow the Integrated Comprehension model of (von Mayrhauser & Vans, 

1995a)? Do they switch between its three model components? Is there a preference for a 
particular model component? 

3. Is it possible to identify a specific comprehension process that is common to the subjects and 
thus indicative of debugging tasks? 

4. Are there certain types of information programmers tend to look for during corrective 
maintenance? 

We started our investigation with the premise that in industry, large-scale programs are a prevalent 
focus for software comprehension and corrective maintenance activities. von Mayrhauser and 
Vans (von Mayrhauser & Vans, 1995a, 1993a, 1993b) describe an Integrated Comprehension 
Model that characterizes large scale code comprehension activities as a combination of three 
comprehension processes at the program, situation and top-down (application domain) levels. 
Section 2 explains this Integrated Comprehension Model and provides the background for an 
observational study of software maintenance engineers working on corrective maintenance tasks. 

157 

-- ---_ -- - ” -- 



Section 3 describes the design of the study. It is an observational field study of maintenance 
programmers in industry working on corrective maintenance. Software was at least 40,000 lines of 
code. Section 4 reports on the results of the observations with regards to the questions posed 
above. Section 5 summarizes conclusions and provides working hypotheses based on our results 
that should be evaluated with further experiments. 

2. INTEGRATED COMPREHENSION MODEL (VON MAYRHAUSER & VANS, 1993A) 

Existing code cognition models agree that comprehension occurs either top-down, bottom-up, or 
using a combination of both. Studies with large scale code (von Mayrhauser & Vans, 1993a, 
1995a) indicate that code comprehension include both top-down and bottom up activities, 
Soloway and Ehrlich’s model (Soloway, Adelson, & Ehrlich, 1988a) is the foundation for the top 
down component (the domain model) while Pennington’s model (Pennington, 1987a, 1987b) 
motivated the program and situation models. The Integrated Comprehension Model contains four 
major components: (1) Program Model, (2) Situation Model, (3) Top-Down Model (or domain 
model), and (4) Knowledge Base. The fourth is necessary for construction of the other three 
models. Program, situation, and top-down (or domain) model building form the three processes 
that direct the understanding of code. As Figure 1 demonstrates, any of these comprehension 
processes may be activated from any of the others. Beacons, goals, hypotheses, and strategies 
determine the dynamics of the cognitive tasks and the switches between the model components. 
Each component carries an internal representation (mental model) of the program being 
understood. This representation differs in level of abstraction for each model component. Each 
component also includes strategies to construct this internal representation. The knowledge base 
supplies the processes with information related to the comprehension task. It also stores any new 
and inferred knowledge. 

The Top-Down model of program understanding is typically invoked during the comprehension 
process if the code or type of code is familiar. The top-down model or domain model represents 
knowledge schemas about the application domain. For example, a domain model of an Operating 
System (OS) would contain knowledge about the components of an OS (memory management, 
process management, OS structure, etc.) and how they interact with each other. This knowledge 
often takes the form of specialized schemas including design rationalization (e.g., the pros and 
cons of First-Come-First-Serve versus Round Robin scheduling.) Obviously, a new OS will bc 
easier to understand for a maintenance engineer with such knowledge than without it. Domain 
knowledge provides a motherboard into which specific product knowledge can be integrated mom 
easily. It can also lead to effective strategies to guide understanding (e.g. understanding high 
paging rates requires understanding how process scheduling and paging algorithms arc 
implemented and whether the system limits the number of pages allocated to processes). 

When code to be understood is completely new to the programmer, Pennington (Pennington, 
1987a, 1987b) found that the first mental representation programmers build is a control flow 
abstraction of the program called the program model. For example, operating system code may 
be understood by determining the control flow between modules. Then a singIe module may bc 
selected for content analysis, e.g. a scheduling function: This may use an implementation of a 
doubly-linked list. The code representation is part of the program model. The abstraction of the 
scheduling queue as a doubly-linked list is part of the situation model representation. 

158 



Top-Down 

U” IJay t ensmn 
Process v 

( Macro- 1 

/ 

Kn&vledge: 

1 Structurej 1 A Text-Structure \ I Problem Domain \ I I “appm, 

/ Program Domain \ 

I I / Knowledge \ I 
1. Control Primes 

I / 
B. Plan Knowledge 
1.Ak?JfithIns - \ I 
2. Contml Sequence 
3. Data-Structures 
4. Data-Flow (slices) 
5. syntax 

Functional Knowledge 

Figure 1: Comprehension Model (von Mayrhauser & Vans, 1993a, 1995a) 

159 



Once the program model representation exists, Pennington showed that a situation nrodel is 
developed. This representation, also built from the bottom up, uses the program model to create a 
data-flow/functional abstraction. The integrated model also assumes that maintenance engineers 
unfamiliar with the domain start by building a program model. However, to assume that a full 
program model is built before abstracting to the situation or domain level would create cognitive 
overload for professionals working on software products with over 40,000 lines of code. Rather, 
what we expect is abstraction of program model information at the situation and domain level as it 
helps the programmer remember how the program works and what it does. 

Programmers switch between any of the three model components during the comprehension 
process. When constructing the program model, a programmer may recognize clues (called 
beacons) in the code indicating a common task such as sorting.’ If, for example, a beacon leads to 
the hypothesis that a sort is performed, the switch is to the top-down model. The programmer 
then generates sub-goals to support the hypothesis and searches the code for clues to support these 
sub-goals. If, during the search, a section of unrecognized code is found, the programmer jumps 
back to building the program model. Figure 1 illustrates the relationships between the three sub- 
models and the related knowledge. 

The definition of the integrated model allows a refinement in terms of tasks and task sequences for 
each of the three comprehension processes. Comprehension is further guided by the systematic 
bottom-up, the opportunistic top-down, or a mixed systematic/opportunistic strategy. 

A systematic approach is one in which the programmer applies a systematic order to 
understanding code completely, for example code comprehension line by line. An opportunistic 
approach involves studying code in an as-needed fashion. The distinction between systematic and 
opportunistic (or as-needed) is important because Littman et.al. (Littman, Pinto, Letovsky, & 
Soloway, 1986) found that programmers who use a systematic approach to comprehension arc 
more successful at modifying code (once they understand it) than programmers who take the 
opportunistic approach. Although the systematic strategy seems better or safer, it is unrealistic for 
large programs. A disadvantage to the opportunistic approach is that understanding is incomplctc 
and code modifications based on this understanding may be error prone (Littman et. al, 1986). 

Various aspects of this model have been confirmed in prior studies. von Mayrhauser and Vans 
(von Mayrhauser & Vans, 1993b) showed for one enhancement task that the software cngincer 
switched between all model components of the integrated model and reported actions occurring at 
all three levels of the model. Von Mayrhauser and Vans (von Mayrhauscr & Vans, 1993a) 
extended these results to include a debugging task. They also analyzed for detailed action types, 
in addition to actions by component model. Observations are interpreted in terms of possible tool 
capabilities. von Mayrhauser and Vans (von Mayrhauser & Vans, 1994a, 1996b, 1996c) 
investigated cognition processes to confirm through observations the processes stipulated in the 
model. von Mayrhauser and Vans (von Mayrhauser & Vans, 1994a, 1996c) report on the 
comprehension process of one subject who had used a systematic understanding strategy where 
actions could be aggregated into episodes, episodes into aggregate processes, and those in turn 
into a session level process. The analysis found 7 types of episode level processes, 3 aggregate 
level processes, and one session level process. The episode level processes include switches 
between model levels and thus are not pure bottom-up understanding processes. By contrast, von 

’ For example, a beacon may be the characteristic pattern of value switches indicating a common task (such 
as sorting), or it may be the name of the function (such as QSORT). 

160 



Mayrhauser and Vans (von Mayrhauser & Vans, 1996b) report on the comprehension process of 
an engineer who was porting software and employed a fundamentally different comprehension 
process related to an opportunistic strategy. This process was driven, and could be structured 

around a hierarchy of goals, hypotheses, and actions. These results support the integrated model, 
the switching behavior between model components, and the role of hypotheses in an opportunistic 
understanding process. 

3. STUDY DESIGN 
The experiment was designed as an observational field study of professional maintenance 
programmers working on software maintenance. Software consisted of at least 40,000 lines of 

code. Each observation involved a programming session in which the participants were asked to 
think aloud while working on corrective maintenance. We audio and/or video taped this as a 
thinking aloud report. Sessions were typically two hours long. As this is not enough to 
understand a large-scale software product, we classified participants by their degree of prior 
experience with the code. 

The study ranked participants by levels of expertise and the amount of accumulated knowledge 
subjects had acquired prior to the start of each observation. Expertise distinguishes between 
programming knowledge (language and platform skills) and application domain knowledge. This 
is the same classification used in earlier studies (von Mayrhauser & Vans, 1995a, 1996c). Shaft 
and Vessey (Shaft & Vessey, 1996) confirmed the need to distinguish between programming 
knowledge and application domain knowledge because comprehension processes differ depending 
on the amount of programming and application domain knowledge. We also consider the amount 
of accumulated knowledge, as it is likely to affect the work process as well. For example, 
someone who is already quite familiar with the code itself can be expected to refer to existing 
knowledge more often rather than have to acquire it. The type &maintenance task was corrective 
maintenance. Table1 describes the attributes of the four subjects and the software they worked on. 

Cl 

G! 

c3 

C4 

Task 

Table 1: Subject Classification 

Expertise Accumulated 

Knowledge 

Fix reported bug Language expert (Pascal) novice in 
application domain (communication 
protocols) 

Understand bug Language novice (expert in Microsoft 
Windows and C, but not v Intrinsics); 
domain expert (software project 
management software) 

Fix reported bug Language novice (expert in C, but not 
Pascal); domain expert (OS kernel) 

Track down bug h-page novice (expert in C, but not 
Pascal); domain expert (client-server, 

Some knowledge: File 
structure, Cdl is-@. 
requirements/design 
None 

Little (file structure, call 

graph) 
Significant:@rior maintenance 
tasks on same software) 

The code the participants tried to understand and the specific assignment are representative of this 
type of corrective maintenance in industry. It addresses situations in which maintenance 
programmers find themselves on occasion: being assigned software in a new application domain, 

161 



or having to work with software in a “new” language or platform, but in an application domain 
where the programmer has expertise. 

The subjects represent a sampling of application domains, prior work with the code, and 
programmer experience in domain and language. While a case study like this is limited in its 
generality, the results provide useful insight and can serve as starting points for further 
investigations. The work presented here adds to prior observations reported in (von Mayrhauser 6r. 
Vans, 1996b) in which a similar analysis was done for someone who was porting programs, rather 
than doing corrective maintenance. Further, the work reported here adds to prior observations of 
other types of maintenance tasks reported in (von Mayrhauser & Vans, 1993a, 1993b, 1995a, 
1996a,1996c). Our objectives were to analyze the observations for characteristic activities and 
behavior. The analysis also identified information needs. We used protocol analysis for this 
purpose. 

3.1. Protocol Analysis 

The same protocol analysis methods employed here were used in prior analyses (von Mayrhauscr 
& Vans, 1993a, 1993b, 1995a, 1996a, 1996c). Think-aloud reports of subjects working on tasks 
are transcribed and classified using categories decided on prior to the actual analysis, For 
example, we expect to find maintenance engineers generating hypotheses and reading code during 
maintenance. Each statement in the transcript is encoded as one of the a priori categories. 
Thinking aloud must occur concurrently with the task for the data to be accurate. The analysis 
proceeds from identifying single actions of various types to determining action sequences, The 
analysis parallels experimental work related to the Integrated Code Comprehension Model. This 
Integrated Model was developed to explain how programmers understand large-scale code in 
industrial settings (von Mayrhauser & Vans, 1994a, 1995b). This model is the framework for 
discovering the role of actions, hypotheses, and comprehension behavior in large-scale code 
understanding. The integrated model consists of four components: 1) Top-Down model, based on 
Soloway and Ehrlich’s model (Soloway & Ehrlich, 1994); 2) Situation Model, based on 
Pennington’s situation model (Pennington, 1987a); 3) Program Model, also based on Pennington’s 
model; and 4) a knowledge base which is used to store and retrieve information used by the three 
component models. A detailed description of the model can be found in (von Mayrhauscr & 
Vans, 1994a, 1995b). 

Actions 
The first analysis on the protocols involved enumeration of action rypes as they relate to the 
integrated cognition model of (von Mayrhauser & Vans, 1995b). Action types classify 
programmer activities, both implicit and explicit, during a specific maintenance task. Examples of 
action types are “Generating hypotheses about program behavior” or “mental simulation of 
program statement execution”. We began with a list of actions we expected to find based on 
(Vessey, 1985) and searched for them in the transcripts of the protocols. We also analyzed for 
possible new action types. 

Segmentation and information Needs 
The next step in the analysis combines segmentation of the protocols and identification of 
information and knowledge items. Segmentation classifies action types into those involving the 
domain (top-down), situation, or program model that can be thought of in terms of different levels 

162 



of abstraction in the mental model. Information Needs are information and knowledge items that 
support successful completion of maintenance tasks. For prior results with different subjects see 
(von Mayrhauser & Vans, 1993a, 1993b). 

Protocol analysis is an iterative process. A first pass analysis results in a high-level classification 
of programmer actions as either program, situation, or top-down model components of the 
Integrated Model. This is necessary because similar actions appear in different component 
processes. For example, hypotheses may be generated while constructing any of the three 
component models. Once actions are associated with a particular model component, the next pass 
identifies action types of a specific maintenance task. Once the action types are identified, the 
transcripts are reanalyzed and encoded using these types as tags on the programmer utterances.’ 
Information Needs are determined from protocols directly (see Table 3) or through inference. 

Table 2: Example Protocol Analysis - Action Types 

Tag Action Type Example Protocol 

SYSS Generate Hypothesis “..and my assumption is that nil 
(Program Model) with a little n and nil with a big N 

are equivalent at the moment.” 
SYS7 Chunk & Store knowledge “So clearly what this does is just 

(Program Model) flip a logical flag.” 

Table 3: Example Protocol Analysis - Information Needs 

Tag Information Need Ctassified Example ProtocoI 
As: 

I9 List of Browsed Locations “Because if class SPOOL-INTO, 
OP2, ow, SITKNOW, yeah. So I was at the right place. 
OPKNOW, SYSlO A long time ago.” 

I61 General Classification of “Yeah this is the one. DbFile 
Related Functions Insert. Insert dbfile. Get the 
OP3, OP4, OP14, OP15, OP20, dbfile in. Curse the author of this 
SIT4, SYSS, SYSI 1 one. Try to insert dbtile. So...it 

sounds a lot like the other one.” 

An information need may not be directly stated but the programmer could obviously profit from it 
if he knew it existed. For example in Table 3, the protocol segment associated with the General 
Classijication of Related Functions information need demonstrates that if he was sure the 

particular function he was examining was related to a function he had seen before, his 
understanding of the current function might have occurred more quickly. He spent a great deal of 
time examining several documents for this very information. 

Tables 2 and 3 contains example protocols to show action type classification and information 
needs identification. Column one of tables 2 and 3 provide the tag used in action type and 
information need classification. 

Process Analysis 
For actions, process analysis determined the nature of actions over time graphically. Each action 
has already been classified by level of abstraction (Program, Situation, or Domain level). They are 

2 Utterances are verbalizations of programmers during programming sessions and captured in the transcripts 



, 

now plotted as a function of “time” (in terms of numbers of actions). These graphs illustrate both 
how long (in terms of actions) a programmer spends in each model, as well as the frequency of 
switches and whether switching is fairly unidirectional (top-down or bottom-up) or not. 

4. RESULTS 

4.1. Programmer Actions 

Table 4 shows how often the subjects perform actions at the three levels of abstraction defined in 
the Integrated Model. Percentages give an indication of relative frequency of these actions for 
each subject. 

The table contains a column for combined Program and Situation model references, roughly 
corresponding to Pennington’s (Pennington, 1987a) comprehension model. We wanted to identify 
patterns based on differences between Pennington’s bottom up model and the top-down model. 

Both C2 and C3 had a similar distribution of top-down and combined program and situation 
model actions. Each had twice as many references to the combined program and situation models 
as to the top-down model. Both were domain experts but had either very little or no prior 
experience with the code. We hypothesize that the lack of experience with the code and the 
language can cause this behavior of concentrating on lower levels of abstraction. This agrees with 
Pennington’s (Pennington, 1987b) results that programmers tend to build a program model first 
when they are unfamiliar with the code. 

Cl’s model preferences were more dramatic. This programmer was a language expert, but had 
very little experience in the domain. He had some prior experience with the code, including 
familiarity with the file structure, program call graph, and requirements and design documents. 
Only 13% of his model references were in the domain model. We believe that lack of domain 
experience drives the behavior we see. Without the domain knowledge, the programmer stays 
within the program and situation models until that experience is acquired. With language 
expertise, the programmer can concentrate on understanding the code at the program model 1~~1 
and use the situation model as a higher level abstraction until he has acquired enough knowlcdgc 
to make connections into the domain model. 

164 



The last subject, C4, had both domain experience and significant experience with the code. He 
had an almost equal distribution of top-down and combined program and situation model 
references. This adds support to the hypothesis that domain expertise and experience with the 
code affects the ability to make connections between all three model levels. The distribution 
between the program and situation models was almost equal. We conjecture that both the domain 
expertise and the significant prior experience allowed this subject to make more use of the top- 
down model. 

Tables 5, 6, and 7 show each action type by model for the subjects. The first column shows the 
code used in the protocols to identify the action. The second column contains a description of the 
action. The next four columns report the number of each action for individual subjects. The last 
column contains the total number of each action for all subjects. 

165 



,; 3 i 
.’ .i ~.,, 

Table 6: Action Types - Situation Model 
Code 1 Action Type 1 Cl 1 c2 1 c3 1 c4 I TTI. 
Hi-1 Gain situation knowledge 13x1 101 21 11 49 

Code 
SYSI 

Table 7 : Action Types - Program Model 

I Action Type 1 Cl I c2 
Read intro code comments/related dots 

For top-down model building, using domain knowledge is clearly the most frequent action 
(count=107). Domain knowledge was used 23% of the time during top-down model construction. 
This supports our hypothesis that when programmers have domain knowledge they use it 
frequently for building a top-down model. Of the four subjects, three were domain experts (C2, 
C3, and C4) and they had 94% of the references to top-down knowledge. The second most 

166 



important action type for top-down model building is generating or revising hypotheses (OP3, 
count=76). Using hypotheses for building a top-down model is a feature of Brooks’ theory of 
program comprehension (Brooks, 19X3). 

For situation model building, chunking and storing acquired information (SZT4, count=107) was 
most important. This confirms Pennington’s model. The subject with no domain experience and 
some prior exposure to the code had significantly more chunk and store actions than the rest of the 
subjects. This was probably due to this programmer’s comfort at the lower levels and unfamiliarity 
with the domain. Similar to the domain level, both use of situation model knowledge (count=92) 
and generating hypotheses (SZV, count=64) are important activities. This confirms Pennington’s 
model, but also supports hypotheses as being major drivers of comprehension. These are the 
second and third most frequent actions at the situation model level. 

At the program model level, chunking and storing knowledge (SYS7, count=l15) is the most 
important action. Again, this confirms Pennington’s theory that programmers build higher levels 
of abstraction from low level information. Examining code in sequence (SYS3, count=102) and 
generating hypotheses (SYS8, count=65) are the next two most frequent actions, demonstrating the 
importance of hypotheses in understanding code. Use of program knowledge has the fourth 
highest frequency (count=61). 

The use of knowledge and generating hypotheses are important activities for programmers. In all 
three model components of the Integrated Model, these action types ranked in the top four most 
frequent actions. Chunking and storing information is the most important action for both the 
program and situation model levels. This is an indication of the building of knowledge. That 
reading code in sequence happened so often indicates a systematic strategy (L&man, Pinto, 
Letovsky, & Soloway, 1986). 

The types and distribution of actions between the models tells us something about the level of 
abstraction in which programmers prefer to work. The Integrated Model defines mental model 
construction as the abstraction of lower level information into higher level abstractions or by 
decomposing the higher levels into lower levels. We can see this by looking at how often 
programmers switch between the levels and what the preferred models are between which the 
switch occurs. We will examine this next. 

4.2. Processes 

Switches occur between all three models (top-down, program, and situation models). Table 8 
summarizes switches between models during the corrective maintenance task. The rows represent 
starting models and the columns represent ending models. Typically, switching between program 
and situation models happens because the engineer is trying to link a chunk of program code to an 
algorithmic description in the situation model. (A switch from program to situation model.) 
Alternatively, the programmer may be looking for a specific set of program statements to verify 
the existence of some functionality. (A switch from situation to program model.) 

167 



:’ , I 
1 / 

i 
-- I 

‘! :’ a 9 

_1 

. . 1 
i 

‘( , 

I ,I 

Table 8: Action Switches - Absolute & Frequency (Total switches = 562) 

From Model To Top-Down Model To Situation Model To Program Model 

Top-Down Model N/A 67 93 
12% 17% ,. .- ___. I _ ^_. . .^.. ._ ._ . 

Situation Model 86 ‘... .“NtA 112 
15% _ 20% 

Program Model - -” -- 75 129 N/A 
13% 23% 

Switches during corrective maintenance occur slightly more often between program and situation 
models. For corrective maintenance, having that low-level information is important. It helps to 
more effectively track down defects and understand them. We are interested in understanding 
how expertise and amount of accumulated knowledge affect mental model construction. To see 
this, we looked at each subject’s switching behavior, both in terms of how often they switched 
between models as well as the actual sequence of switches during the programming session. 
Figures 2, 3, 4, and 5 illustrate how these switches happen over time. These graphs are modeled 
after those fouhd in Pennington et.al (Pennington, Lee, & Rehder, 1995) and Lee and Pennington 
(Lee & Pennington, 1994). The graphs show a line from one model component to another when 
the programmer switches from an action in one model to another. Thus the incline of the line 
represents how long a programmer stayed at a level before switching: a very steep line indicates 
few actions between switches, longer numbers of actions between switches are indicated by a 
shallow incline or decline in the switch-line. 

Cl: Language Expert, Some Accumulated Knowledge 

Table 9: Cl: Action Switches Frequencies Between Models (Total Switches = 118) 
From Model To Top-Down Model To Situation Mode1 To Program Modrl 

Top-Down Model, N/A 12% 12% 
Situation Model _ ” _ .. 15% N/A 25% 

Program Model 9% 27% N/A . 

Table 9 shows the frequency of switches between each of the three models. Cl had a total of 118 
switches between models. Switches between the situation and program model are more frequent 
than switches between either the top-down and program models or the top-down and situation 
models. We hypothesize this is due to the subject’s lack of domain knowledge. 

Figure 2: Cl: Fix Reported Bug -Action Sequence 

Figure 2 shows that this subject preferred to work at the situation and program model levels, 
switching quite frequently between the two and only occasionally switching to the top-down 
model. The graph also shows that he spent more action time either in the program or situation 
models since the jumps into the top-down model were quickly followed by a jump back into the 
program or situation model. Figure 2 illustrates the hypothesis that programmers who arc 
unfamiliar with the domain prefer to work at lower levels of abstraction. 

168 



C2: Domain Expert, No Accumulated Knowledge 

Table 10: C2: Action Switches Frequencies Between Models (Total Switches = 192) 
From Model To Top-Down Mode1 To Situation Model To Program Model 

Top-Down Model N/A 12% 16% 
Situation Model 14% N/A 21% 
Program Model 14% 23% N/A 

Table 2 shows how often C2 switched between models. This programmer switched a total of 192 
times during the programming session. C2 switched slightly more often between the top-down 
and program models than Cl. However, switches between the program and situation model 
occurred at the highest frequency. 

Figure 3: C2: Understand Bug - Action Sequence 

Because C2 is knowledgeable about the application domain, he can make connections between the 
program and domain levels. We see similar behavior with C3. While C2 did not spent significant 
amounts of time in the domain model before switching to another level, he spent more action time 
in the top-down model than did Cl. Because he was unfamiliar with code, the frequent switching 
into the program model would indicate that he was trying to use his knowledge of the domain to 
understand the code. He also made use of the situation model, which could indicate that he used 
the situation model as an intermediate level bridge between the program and top-down levels. The 
majority of the switches into the situation model occurred from the program model. 

C3: Domain Expert, Little Accumulated Knowledge 

Table 11: C3: Action Switches Frequencies Between Models (Total Switches = 127) 
. Fran Model 1 To Top-Down Model To Situation Mode1 To Program Model 

Top-Down Model N/A 5% 27% 
sitnafioa’l&d& 12% N/A ,..15% 
Program Model 19% 22% N/A 

Similar to C2, C3 switched frequently between the program and top-down models, however, he 
did not use the situation model as a bridge from the top-down to the program model as often as 
C2. Instead, he preferred to work at a particular model level, switching less frequently than C2. 
(C2 had a total of 192 switches and C3 had a total of 127 switches.) This is probably due to 
individual differences in understanding strategy. 

Figure 4: C3: Fix Reported Bug - Action Sequence 

An important result here is that domain expertise may have an effect on this programmer’s ability 
to switch directly between the top-down and program model levels. Accumulated knowledge may 
also be playing a part in that lack of experience may be driving this programmer’s need to build a 
mental representation of the code in the most efficient manner. Having a top-down mental 
representation allows the programmer to quickly isolate code that needs correction. 



C4: Domain Expert, Significant Accumulated Knowledge 

, 

-., ‘I, 

/ i 
_! 

Table 12: C4: Action Switches Frequencies Between Models (Total Switches = 125) 
From Model To Top-Down Model To Situation Model To Progrmn Model 
Top-Down Model N/A 19% 11% 

., S?+on Made1 _-“. 1. _ .I _ ‘..:I -... __ -I 22% .‘- N/A 1 K’$, 
Program Model 10% 20% N/A 

C4 had a total of 125 switches between models. Switching is distributed pretty evenly among all 
three models except for direct switches between the top-down and program model. They are 
lower (10% vs. 20%). We hypothesize that this is due to the amount of accumulated knowledge. 
Because C4 had been working with the code for a while, he already had mental representations at 
all three levels. The program understanding activities we saw could be indicative of trying to fill 
in the holes at each level. 

Figure 5: C4: Track Down Bug - Action Sequence 

Figure 5 shows that he could switch between all three levels, preferring to concentrate on building 
specific levels of abstraction at various times during the session. For example, the first 50 or SO 

actions were spent between the top-down and situation model levels. The next 50 between the 
program and situation model levels. Actions 100 to 150 are dominated by switches between the 
top-down and program model levels. Then he repeats this pattern for a short time before 
concentrating on the top-down and situation models for approximately 100 actions. The sequences 
of action switching lends support to the hypothesis that C4 was trying to complete mental model 
construction at all three levels of abstraction. 

Comparing the four subjects, we can make several conjectures about the effect of expertise and 
accumulated knowledge for corrective maintenance: 

l Programmers with little experience in the domain work at lower levels of abstraction until 
enough domain experience will allow them to make connections from the code to higher 
levels of abstraction. 

l Programmers with domain experience but little or no accumulated knowledge about the 
software will also work at lower levels of abstraction, but will be able to more effectively USC 

their knowledge of the domain to make direct connections into the program model. They 
may also use the situation model as a bridge between the program and top-down models. WC 
saw a significant increase in the number of switches for subject C2, which could be an 
indication that smaller steps in comprehension are necessary until more experience with 
code is acquired. 

l Programmers with domain expertise and significant experience with the software can make 
connections between all three levels of abstraction. The hypothesis is that they already have 
a good mental representation at all three levels and use switches as a means for completing 
the full model. 

4.3. Information Needs 

Information Needs are developed by analyzing each action type for the kind of information it 
needed or searched for. The results of this analysis are summarized in Tables 13 and 14. The 
information needs tables contain eight columns. The first provides a code for the information 

170 



Figure 2: Cl: Fix Reported Bug - Action Sequence 

‘I: 

, ” 

Figure 3: C2: Understand Bug - Action Sequence 

171 



,I, 
I _I, 

‘i ! 

I 
, 

‘1 ’ 
,, : 

; 
,( v 

‘. 

I .,I 

1 
, ,I XI! 

, I, ‘_’ I 

,; II 8 

. -. :,j 
.I ’ 

-. _/ 

Figure 4: C3: Fix Reported Bug - Action Sequence 

Figure 5: C4: Track Down Bug - Action Sequence 

172 



need. The second describes the information for which the software engineer is looking. The third 
lists the action type codes (associated with a specific model) for which the information is needed. 
The fourth lists cumulatively how often the subjects had a need for this information. The last four 
columns provide detail results for Cl, C2, C3, and C4 individually. These results help to illustrate 
the type of work a software engineer was doing and to prioritize solutions that would facilitate this 
work. 

Table 13: information Needs 

Code Information Need Action Codes 

17 Domain concept descriptions 

161 

14 Location and uses of identifiers 

I9 List of browsed locations 

OPl,OP3,OP6, 

OP17,OP20, 

OPKNOW,SITI, 

SIT2,SIT4,SIT6, 

SIT7,SITS,SYSl, 

Connected domain-program-situation 
model knowledge 

sYs7,sYss,sYs19 

sYss,sYs1o 

.SYSKNOW 

OP2,OP3,OP6, 

oP2o,oPKNow, 

SITI,SIT2,SIT4, 

OP2,OP3,OP14. 

SIT6,SIT7,SITS, 

SITKNOW,SYSl, 

SYS2,SYS3,SYS4, 

sYs7,sYss,sYslo 

, SYSll, SYSIC 

OP2,OP6,OP20, 

oPKNow,sIT~, 

SIT6,SIT7,SITS, 

SITKNOW,SYSZ, 

sYs4,sYs7,sYss, 

SYSIO,SYSlI, 

SYS23,SYSKNOW 

OP2,OP3,OP15, 

oPKNow,sIT2, 

sIT4,sITKNo\v, 

SYS7,SYSlO, 

SYSII,SYS12, 

sYsI3,sYsKNow 

OP2,OP3,OP6, 

SYS2,SYS7,SYS9. 

SYSIO,SYSIl, 

SYS12 

OP2,OP3,OP6, 

OP15,OP20, 

oPKNow,sYs9, 

SYS13 

OP3,OPKNOW, 

SIT4,SIT7,SITS, 

sITKNow,sYs3, 

I2 List of routines that call a specific routine 

I14 Call Graph Display 

I43 

4Yzizzi Format of data structure plus description of 

General classification of routines/functions 

OPKNOW,SITl. 

SIT7,SIT12,SYS4, 

SYSS,SYSIO 

OPKNOW, 

SITKNOW.SYS3, 

Sub. 
TTI 

41 

Cl c2 

14 1s 

c3 c4 

2 7 

33 5 12 10 6 

26 3 8 8 7 

17 

14 

12 

2 7 8 0 

7 1 6 0 

3 4 5 0 

5 5 

1 0 

3 0 S 

1 0 

4 6 

4 1 

173 

- .-_ -- - --. ~_____ 

, ” 



, 

calls, variable values 

files, main file, support files, libmry files. 

Nammg conventlons separate 
or library objects that use them. Rules used 



I21 

130 

137 

I41 

149 

I.55 
I63 

I10 

II7 
126 
128 
132 

I47 

159 

16.5 

177 

enhancements 
Organized functions into categories in 
which functions are related 
Where variable is toggled, when and why, 
where passed to and why 
Language definitions, e.g. reserved words, 
instruction defs. for C, PascaLetc. 
Cal1 graph with extraneous information not 
relevant elided 
File name of current file 

Domain simulation 

All definitions and used of a variable 
prioritized..so more important uses show 

Function call count 

Location of desired code segment 

All include file definitions and uses 

List of all routines with initialization code 

If common objects are not used in 
traditional way. e.g. nil or null 
List of identifiers and domain concepts that 
are important 
How a variable is passed into a procedure, 
e.g. by value, address, etc 
Assembly language code segment number 
(Machine Code) 
Data-flow trace 

TOTAL!3 

OP6,OP15,SYSlO 2 0 1 1 0 

oP3,sIT7,sYslo 2 2 0 0 0 
I I I I I 

21 01 01 11 1 SYS2,SYS3,SYS& : 
SYSll 
OP3,OP15 2 0 0 2 0 

I 1 I I 

Sl.T4,SYS3,SYS7 1 11 01 01 1 i 011 
SYS12 11 0 11 01 0 

OP3 II 0 II 01 0 
SIT4 I it nl il nl n II 

SIT2 I 11 0 01 01 1 

1 294 1 72 93 1 69 1 60 

Overall, the most important types of information needed during corrective maintenance are 
domain concept descriptions (17) and connected domain-program-situation model knowledge 
(Z6Z), location and uses of identifiers (Z4), and a list of browsed locations (19). Domain concept 
descriptions include high-level information, for example, operating system concepts. Connected 
model knowledge is information that allows cross-referencing from one model to another. For 
example, if a chunk of code is labeled “sort”, the label can be viewed as the connection between 
program and situation models. It is not surprising that these two types of information are needed 
significantly more often than other types of information. This strengthens the hypothesis that 
programmers try to build different levels of abstract views of the program. Recalling recently 
browsed information (19) is also important. The ability to scroll back and forth between data 
reduces cognitive overload. A common example occurs when a programmer skims data she does 
not fully understand. She needs to revisit the information when other data triggers a recall and 
subsequent comprehension of the previously skimmed data. 

We are also interested in looking at the effect of expertise and amount of accumulated knowledge 
during corrective maintenance. 

Cl needed domain concept descriptions most often (17,count=14). The second most frequent 
need was a list of routines that call a specific routine (Z2,count=7). The third most frequent was 
connected information from each of the models into the other models (161, count=5). The need 
for domain information and model connections may be due to the lack of Cl’s domain experience 

175 

J 



P 

‘! 

and accumulated knowledge. While he preferred to work at the program and situation model 
levels, there were times when he recognized the need to understand functionality at a higher level, 
The need for function call information could be influenced by the lack of accumulated knowledge 
This type of information is usually very important during initial comprehension. It becomes less 
important once the programmer has worked with code for a while. 

For C2, domain concept descriptions (17,count=l8), connected model information (161, 
count=12), and location and uses of identifiers (Z#,count=8) were the top three most frequent 
information needs. C2 had no accumulated knowledge about the software. The difference between 
C2 and Cl, however, is that C2 had domain knowledge. This knowledge can be used to search for 
expected code segments. C2 also needed the greatest amount of information. He had 32% of all 
the corrective maintenance information needs. This may be due to his lack of accumulated 
knowledge about the code. The need for low-level information is probably due more to the 
corrective task than domain expertise or accumulated knowledge. 

C3 needed connected model information (16Z,count=lO), location and uses of identifiers 
(14,count=8), a list of recently browsed code locations (ZP,count=8), and a list of routines that call 
a specific routine (12,count=6) most often. While C3 needed connected information, his need for 
domain concepts was significantly less than the other three subjects. Instead, he needed lower 
level information and wanted to follow a thread of reasoning by keeping track of where he had 
been in the code. C3 had a little accumulated knowledge about the code, but similar to Cl hc 
needed to know call information (12) because he was not yet very familiar with code. 

Domain concept descriptions (17,count=7), location and uses of identifiers (14,count=7), control- 

flow graph (168,count=7), and connected model information (16Z,count=6) are needed most often 
by C4. This subject had the smallest number of information needs of all the corrective 
maintenance subjects. This is probably because he had both domain expertise and a significant 
amount of knowledge about the software. He needed specific information on the code he was 
debugging, and this shows in the types of information he required. 

In general, the need for understanding domain concepts and building the connections bctwcen the 
three model components can be driven by different goals. For programmers who have domain 
experience the need for this type of information may be due to the fact that they want to build 
their mental representations by connecting the knowledge they have with specific code segments. 
On the other hand, those with no domain knowledge need this information so they can understand 
functionality of the code. We also found that the subject with the most experience, C4, had less 
information needs than the other three. While it was not significantly less, it could be an indication 
that as expertise and experience with the software increases, the need for information decreases, 

5. CONCLUSIONS 

Corrective maintenance is a frequent activity during software evolution. We observed four 
experienced professional programmers while they were debugging software and analyzed their 
behavior. The goal was to answer several questions about how programmer go about debugging 
software, their work process and their information needs. Answers can be summarized as follows: 

176 



1. Actions. 
Use of knowledge and generating hypotheses are important programmer actions when 
working at all levels of abstraction. At the lower levels, chunking and storing acquired 
information is also common. 

2. Process. 
Little experience in the domain means that comprehension will occur at lower levels of 
abstraction until enough domain experience allows connections to be made from the code 
to higher levels of abstraction. This confirms Pennington’s results. Having domain 
experience but little or no accumulated knowledge about the software will cause 
comprehension to occur at lower levels of abstraction, but will also allow more efficient 
use of the existing domain knowledge to make direct connections into the domain model. 
The situation model can more easily be used a bridge between the program and top-down 
models. Domain expertise and significant experience with the software allows 
connections between all three levels of abstraction to be easily made. 

3. Information Needs. 
Domain concepts and connected program, situation, and top-down model information is 
important during corrective maintenance. The reason we saw the need for domain 
concepts and connected model information so frequently could be because it is the type 
of information that is not easy to get from existing tools and technology. The usual 
scenario is that any information above the program model level has to be searched for 
and connections made manually. Expertise and accumulated knowledge can affect the 
types of information needed. We saw that the programmers with domain expertise and 
accumulated knowledge about the code looked for very specific types of information, 
such as statement execution order and definition and uses of variables. 

We consider these conclusions to be working hypotheses rather than generally validated behavior. 
The sample of subjects was simply too small. These conclusions should be validated through 
further observations. Unfortunately, such observational studies are costly. 

6. REFERENCES 

Brooks, Ruven (1983), Towards a,theory of the comprehension of computer programs. In 
InternationalJournal of Man-Machine Studies, Vo1.18, (pp. 543-554). 

Lee, A. and Pennington, N. (1994), The Effects of Paradigm on Cognitive Activities in Design 
In Znternational Journal of Man-Machine Studies, Vol. 40, (pp.577-601). 

Letovsky, Stanley (1986), Cognitive Processes in Program Comprehension, In . E. Soloway and 
S. Iyengar (Eds.), Empirical Studies of Programmers, (pp. 58 - 79). Norwood, NJ: Ablex. 

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1986), Mental Models and Software 
Maintenance, In . E. Soloway and S. Iyengar (Eds.), Empirical Studies of Programmers, 
(pp. 80 - 98). Nor-wood, NJ: Ablex. 

177 

---___ _. 

.---- 

/ 



__ “. : 
8 

., -13 , I * -. :.I 

,,-,I 
I 

: I I. ,, 

.-. ,I 

;. 

.) 
-, 

j . . 

: ,;,. < 

I i. 

, ’ 

t 

,_I 

,i ,, 

, ., ‘. 
I 

‘, ;. 

Pennington, N., Lee, A. Y., and Rehder, B. (1995). Cognitive Activities and Levels of 
Abstraction in Procedural and Object-Oriented Design, In: Human-Computer Interaction, 
Vol. 10, (pp.171-226). 

Pennington, N., (1987). Stimulus Structures and Mental Representations in Expert 
Comprehension of Computer Programs, In: Cognitive Psychology, Vol. 19. (pp.295-341). 

Pennington N., (1987). Comprehension Strategies in Programming. In G. M. Olson, S. Sheppard, 
& E. Soloway (Eds.), Empirical Studies of Programmers: Second Workshop (pp. 100 - 112). 
Norwood, NJ: Ablex. 

Shaft, T. M. and Vessey; I., (1996). Computer Program Comprehension Processes: the Effect of 
Application Domain Knowledge, In: Empirical Studies of Programmers: 6th Workshop, (pp. 
277 - 278). Nor-wood, NJ: Ablex. 

Soloway E. and Ehrlich, K., (1984). Empirical Studies of Programming Knowledge, In: IEEE 
Transactions on Software Engineering, Vol. SE-IO, No. 5, (pp. 595-609). 

Soloway, E., Adelson, B., and Ehrlich, K., (1988). Knowledge and Processes in the 
Comprehension of Computer Programs, In M. Chi, R. Glaser, and M.Farr (Eds.), The Natarc 
of Expertise, (pp. 129-152). Lawrence Erlbaum Associates. 

Vessey, I., (1985). Expertise in debugging computer programs: A process analysis, In 
International Journal of Man-Machine Studies, Vol. 23, (pp.459-494). 

von Mayrhauser, A. and Vans, A., (1993a). From Program Comprehension to Tool Requirements 
for an Industrial Environment, In Proceedings of the 2nd Workshop on Program 
Comprehension, Capri, Italy, (pp. 78 -86). 

von Mayrhauser, A. and Vans, A., (1993b). From Code Understanding Needs to Reverse 
Engineering Tool Capabilities. In Proceedings of the 6th International Workshop on 
Computer-Aided Software Engineering (CASE93), Singapore, (pp. 230 - 239). 

von Mayrhauser, A. and Vans, A., (1994). Comprehension Processes During Large Scale 
Maintenance, In Proceedings of the 16th International Conference on Software 
Engineering, Sorrento, Italy, (pp. 39-48). 

von Mayrhauser, A. and Vans, A., (1995a). Industrial Experience with an Integrated Code 
Comprehension Model, In ZEE Software Engineering Journal, Sept. 1995, (pp. 171 - 182) 

von Mayrhauser, A. and Vans, A., (1995b). Program Understanding: Models and Experiments, 
In M.C. Yovits and M.V. Zelkowitz (Eds), Advances in Computers, Vol. 40, (pp. 1 - 38), 
Academic Press, Inc 

von Mayrhauser, A. and Vans, A., (1996a). On the Role of Program Understanding in Re- 
engineering Tasks, In Proceedings of the 1996 IEEE Aerospace Applications Conference, 
(pp. 253 - 267). 

178 



von Mayrhauser, A. and Vans, (1996b) A., On the Role of Hypotheses during Opportunistic 
Understanding While Porting Large Scale Code, In Prxxeedings of the 4th Workshop on 
Program Comprehension, Berlin, (pp. 68 - 77). 

von Mayrhauser, A. and Vans, A., (1996c). Identification of Dynamic Comprehension Processes 
during Large Scale Maintenance, In IEEE Transactions on Sojlware Engineering, vol. 22, 
no. 6, June 1996, (pp. 424 - 43s). 

von Mayrhauser, A. and Vans, A., (1997). .Program Understanding Needs During Corrective 
Maintenance of Large-Scale Software to appear in COMPSAC97. 

. 

179 

-- --I _- 


