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Abstract

The paper focuses on investigating the combined use
of semantic and structural information of programs to
support the comprehension tasks involved in the
maintenance and reengineering of software systems.
Here, semantic refers to the domain specific issues (both
problem and development domains) of a software system.
The other dimension, structural, refers to issues such as
the actual syntactic structure of the program along with
the control and data flow that it represents. An advanced
information retrieval method, latent semantic indexing, is
used to define a semantic similarity measure between
software components. Components within a software
system are then clustered together using this similarity
measure. Simple structural information (i.e., file
organization) of the software system is then used to assess
the semantic cohesion of the clusters and files, with
respect to each other. The measures are formally defined
for general application. A set of experiments is presented
which demonstrates how these measures can assist in the
understanding of a nontrivial software system, namely a
version of NCSA Mosaic.

1. Introduction

Program comprehension is a complex task. The
software engineer must examine both the structural aspect
of the source code (e.g., programming language syntax)
and the nature of the problem domain (e.g., comments,
documentation, and variable names) to extract the
information needed to fully understand any part of a
software system [7, 13, 31, 42, 45]. A number of tools
and methods [1, 7, 8, 20, 27, 30, 41] have been
investigated to address both of these aspects. In general,

structural information is easy to extract, but the real
problem is on how to utilize that information properly.
Semantic information, on the other hand, is much more
difficult to extract. Knowledge-based systems, of one
form or another have often been used to address this
problem. Typically, a knowledge base of programming
plans or schemes is constructed and then used to
automatically identify concepts in a program. But, there
is an inherent difficultly in the use of knowledge bases,
namely someone must construct them. Assembling such
domain specific knowledge is very time consuming and
expensive.

In the research presented here, we take the approach of
using cheaper but less accurate methods to extract
semantic information. Specifically, we are investigating
how well information retrieval methods can be used to
extract relevant semantic information from software. The
PROCSSI1 system uses an advanced information retrieval
technique, Latent Semantic Indexing (LSI), to identify
semantic similarities between pieces of source. This
semantic similarity measure is used to cluster software
components. The paper presents a model that also
incorporates structural information to assist in the
comprehension task. A set of experiments is presented
which demonstrates how these measures can be utilized in
the understanding of a nontrivial software system, namely
a version of Mosaic [36]. Finally, conclusions are drawn
based on these experiments and future research directions
are discussed.

2. Information retrieval and software

There are a variety of information retrieval methods
including traditional [14, 43] approaches such as signature

1 PROCSSI is short for PROgram Comprehension Combining
Semantic and Structural Information. We pronounced it “proxy”.
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files, inversion, and clustering. Other methods that try to
capture more information about documents to achieve
better performance include those using parsing, syntactic
information, natural language processing techniques,
methods using neural networks, and advanced statistical
methods. Much of this work deals with natural language
text and a large number of techniques exist for indexing,
classifying, and retrieving text documents. These
methods produce for each document a profile. A profile
is an abbreviated description of the original document that
is easier to manipulate.

The research that has been conducted on the specific
use of applying information retrieval methods to source
code and associated documentation typically relates to
indexing reusable components [15, 16, 18, 28, 29, 32, 35].
Notable is the work of Maarek [28, 29] on the use of an
IR approach for automatically constructing software
libraries. The success of this work along with the
inefficiencies and high costs of constructing the
knowledge base associated with natural language parsing
approaches to this problem [12, 13] are main motivations
behind our research. In short, it is very expensive (and
often impractical) to construct the knowledge base(s)
necessary for parsing approaches to extract even
reasonable semantic information from source code and
associated documentation. Using IR methods (based on
statistical and heuristic methods) may not produce as
good of results, but they are inexpensive to apply and
coupled with the structural information of the program,
should produce good quality and low cost results.

2.1. Latent semantic indexing

Latent Semantic Indexing (LSI) [5, 25] is a corpus-
based statistical method for inducing and representing
aspects of the meanings of words and passages (of natural
language) reflective in their usage. The method generates
a real valued vector description for documents of text.
This representation can be used to compare and index
documents using a variety of similarity measures. By
applying LSI to source code and its associated internal
documentation (i.e., comments), candidate components
can be compared with respect to these similarity
measures. Results have shown [5, 25] that LSI captures
significant portions of the meaning not only of individual
words but also of whole passages such as sentences,
paragraphs, and short essays. The central concept of LSI
is that the information about word contexts in which a
particular word appears or does not appear provides a set
of mutual constraints that determines the similarity of
meaning of sets of words to each other.

LSI relies on a Single Value Decomposition (SVD)
[40, 46] of a matrix (word × context) derived from a
corpus of natural text that pertains to knowledge in the
particular domain of interest. SVD is a form of factor

analysis and acts as a method for reducing the
dimensionality of a feature space without serious loss of
specificity. Typically, the word by context matrix is very
large and (quite often) sparse. SVD reduces the number
of dimensions without great loss of descriptiveness.
Single value decomposition is the underlying operation in
a number of applications including statistical principal
component analysis [22], text retrieval [6, 11], pattern
recognition and dimensionality reduction [10], and natural
language understanding [25]. For complete details of
Latent Semantic Indexing see [9].

The resulting profile is that each word is represented as
a vector in a d-dimensional space. Performance depends
strongly on the choice of the number of dimensions. The
optimal number is typically around between 250 and 350
and may vary from corpus to corpus, domain to domain.
The similarity of any two words, any two text passages, or
any word and any text passage, are computed by measures
on their vectors. Often the cosine of the contained angle
between the vectors in d-space is used as the degree of
qualitative similarity of meaning. The length of vectors is
also useful as a measure.

One of the criticisms of this method, when applied to
natural language texts is that it does not make use of word
order, syntactic relations, or morphology. But very good
representations and results are derived without this
information [6]. This characteristic is very well suited to
the domain of source code and internal documentation.
Because much of the informal abstraction of the problem
concept may be embodied in names of key operators and
operands of the implementation, word ordering has little
meaning. Source code is hardly English prose, but
through the use of selective naming, much of the high
level meaning of the problem at hand is conveyed to the
reader (programmer/developer). Internal source code
documentation is also commonly written in a subset of
English [13] that may also lend itself to the IR methods
utilized.

A fundamental deficiency of a number of IR methods
is that they fail to deal properly with two major issues:
synonymy and polysemy. Synonymy is used in a very
general sense to describe the fact that there are many
ways to refer to the same object. People in different
contexts, with different knowledge, or linguistic habits
will describe the same information using different terms.
Polysemy refers to the general fact that most words have
more than one distinct meaning. In different contexts or
when used by different people the same term takes on
varying referential significance [9]. Although software
developers may tend to use standard terms for the
concepts they are working on, a flexible technique
capable to deal with variability is needed. It has been
shown that LSI tends to address these issues [25]. Also,
like some other IR methods LSI does not utilize a
grammar or a predefined vocabulary. Though, many IR
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methods do use a list of non-essential words with low
discriminatory power. This makes automation much
simpler and supports programmer defined variable names
that have implied meanings (e.g., avg) yet are not in the
English language vocabulary. The meanings are derived
from usage rather than a predefined dictionary. This is a
stated advantage over using a traditional natural language
approach, such as in [12, 13], where a (subset) grammar
for the English language must be developed.

3. Clustering source code components

Clustering of source code based on semantic and
structural information is very useful in the maintenance
and evolution of legacy software systems. For instance,
the clustering can be used to assist in the re-
modularization [37, 38, 49] of systems and the
identification of abstract data types [8, 17]. If the system
were to be reengineered into an object-oriented language
from a structured one, this type of clustering would prove
to be very useful. The objective is to reduce the amount
of source code an engineer needs to view at one time and
give them clues about possible relationships with the
system not apparent from the current organization of the
files or documentation.

The work presented here focuses on using the profile
generated by IR methods, in this case a vector
representation from LSI, to compare components and
classify them into clusters of semantically similar
concepts. Given a software system, it can be broken
down in to a set of individual source code documents.
Profiles for each document are then generated by the IR
method. To cluster the source code documents they are
partitioned based on similarity value λ with respect to the
other documents, in the semantic space. There is a variety
of clustering algorithms and they can be divided broadly
into four categories: graph theoretical algorithms,
construction algorithms, optimization algorithms, and
hierarchical algorithms. There are also several hybrid
methods that use ideas from different categories for
specific problems. Here, a simple graph theoretic
approach is used, but a number of other types of
clustering algorithms have been used to cluster software
[3, 4, 21, 28].

A minimal spanning tree (MST) algorithm [23] is used
to cluster the documents based on a given threshold for
the similarity measure. A document is added to a cluster
if it is at least λ similar to any one of the other documents
in the cluster. This strategy attempts to group as many
documents together within the given similarity range.
The similarity measures are computed by the cosine of the
two vector representations of the source code documents.
The similarity value therefore has a domain of [-1, 1],
with the value 1 being "exactly" similar.

A simple parsing of the source code is done to break

the source into the proper granularity and remove any
non-essential symbols. Comment delimiters and many
syntactical tokens are removed as they add little or no
semantic knowledge of the problem domain. Also, the
LSI method inherently will see such ubiquitous tokens
such as a semi-colon as a totally non-discriminating
feature between to source code components. That is,
every meaningful C++ component contains a semi-colon.
Therefore, the variance of this feature is very low (most
likely zero) thus; if two components have a semi-colon
then nothing can be said about their similarity.

The granularity of the source code input to LSI is of
interest at this point. In the applications of LSI on natural
language corpuses, typically a paragraph or section is
used as the granularity of a document. Sentences tend to
be to small and chapters too large. In source code, the
analogous concepts are function, structure, module, file,
class, etc. Obviously, statement granularity is too small
and a file containing multiple functions may be too large.

3.1. Previous Experiments using LSI

In previous experiments done by the authors, the
function and class declaration levels have been used [32].
Two readily available software systems were used as data
for the experiments: LEDA [26] (Library for Efficient
Data structures and Algorithms) and MINIX [47]
(Operating System). LEDA is a library of the data types
and algorithms for combinatorial computing and provides
a sizable collection of data types and algorithms in a form
that allows them to be used by non-experts. LEDA is
composed of over 140 C++ classes. MINIX is a simple
version of the UNIX operating system and widely used in
university level computer science OS courses. It is
written in C and consists of approximately 28,000 lines of
code. Given that LEDA is written in C++ using an
object-oriented methodology the granularity chosen is that
of the class LEDA has 144 source code documents. For
MINIX the function level is used along with some whole
files that are made up of data structure definitions. This
resulted in 498 source code documents for MINIX.

The previous work supported the concept of using LSI
as a similarity measure for clustering software at a given
level of granularity, namely a class or function level [32].
The clusters automatically produced by this method
tended to reflect the reality of the source code [32].
Pieces of source code that had large amounts of semantic
similarity were in general grouped together and modules
with no relation to others remained apart. The clusters in
the LEDA library seem to reflect class categories, that is,
groups of related classes that function on similar concepts
or solve common types of problems. In the MINIX
system, the clusters are quite different due to the different
methodology and programming language utilized. In this
case, the clusters represented sets of documents that
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represent a class or abstract data type. The larger clusters
are typically composed of one or two data structure
definitions and a number of functions that utilize these
data structures.

While these experiments support the use of LSI to
source code, the fact is that both of these software
systems are very well written, documented, and
organized. Also, neither of these systems is very large.
In general, one does not need complex tools to help in
understanding these types of software systems. We will
demonstrate the use of these methods on a more real
world type problem in a following section.

We are developing the PROCSSI system as an
experimental platform in order to test these methods
usefulness to the general problem of program
comprehension. This system utilizes a number of metrics
and measures derived from the semantic information
produced from LSI. These metrics are now described.

Figure 1: A part of the relationship graph
representing Mosaic. The files DrawingArea.c,
DrawingArea.h and Drawing AreaP.h are shown

entirely. Not all edges shown.

4. Metrics for comprehension

The PROCSSI system uses a graph theoretic approach
to define metrics that will be used in the comprehension
task. Our choice of representation is a multi-graph,
similar to how a data flow or control flow graph is
represented (see figure 1). Each node represents a source
code document. The document relates to the level of
granularity used for clustering. We automatically label
the nodes with a unique document number generated
during parsing. But in the best case, the nodes could be

labeled with the name of the document (e.g., function
name, class name, etc.), which can be derived from the
associated source . Below are some basic definitions of
the model.

Definition. A source code document (or simply
document) d is any contiguous set of lines of source code
and/or text. Typically, a document is a function, block of
declarations, definitions, or a class declaration including
its associated internal documentation (comments).

Definition. A software system is a set of documents S
= {d1, d2, …, dn}. The Total number of documents in the
system is n = |S|.

Definition. A cluster, ck, is a set of documents from S
such that ck ⊆ S. Size of a cluster, ck, is the number of
documents in a cluster, noted |ck|.

Definition. A file fi, is then composed of a number of
documents and the union of all files is S. Size of a file, fi,
is the number of documents in the file, noted |fi|. A file is
a cluster defined by the developers.

Definition. A relationship graph is represented as a
multi-graph G = (S, E), where the nodes S are the
documents, E is a set of weighted edges, and a function e:
E → {(di, dj) | di, dj ∈ S; di ≠ dj}. The function e defines
which nodes are connected by which edge. The edges u
and v are called parallel or multiple edges if e(u) = e(v).

Each parallel edge represents a relationship between
the nodes (i.e., documents) it connects. There are several
types of edges; each represents different relationships
between the two source code documents. Here we
consider two types of relationships, namely semantic
similarity and structural relationships. They are defined
as follows.

Definition. The function sem : S×S → E defines edges
that represents a semantic similarity between source code
documents. The edges defined using the sem function are
called semantic edges.

Definition. The function struct : S×S → E defines
edges that represent a structural relationship (e.g., data
flow, control flow, coupling, etc.). The edges defined
using the struct function are called structural edges.

A cluster ck is then represented as a connected (by
edges of one type) sub-graph of G (figure 1). Each node
with zero degree represents a singleton cluster. There will
be as many types of clusters as there are edge types. In
particular, we define semantic clusters, having edges
defined by the semantic similarity function and structural
clusters, having edges defined with the structural
connectivity function. Multiple semantic similarity and
structural connectivity functions can be incorporated into
this model. Currently, we are only using one type of each
for the work presented here.

The weighted semantic edges λ(di, dj) ∈ E represent
the similarity measure between to adjacent nodes and in
this case λ = lsi(di, dj), where the function lsi : S×S → R[-
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Table 1. Vitals for Mosaic.
LOC 95,000

Vocabulary 5,114
Number of

parsed documents 2,347

Number of
clusters produced 655

1,1] is a real value between –1 and 1 that represents the
similarity measure between its document arguments.
This represents the cosine between the vector descriptions
of the two documents. Of particular interest here are the
edges that represent a similarity between two documents
with a value λ > 0.7 (i.e., this corresponds to an angle of
45° or less between the vectors). Edges that do not fit this
constraint can be disregarded or removed from the graph.
The semantic similarity function to be used is lsisem: S×S
→ E, where lsisem(di, dj) ∈ E if lsi(di, dj) > 0.7.

The structural information currently being used is
derived from the file structure of the software system.
While this is a very simple form of structural information,
it has been shown to convey a good deal of information
[3]. In addition, most existing software clustering
methods that use a graph representation model the files as
simple nodes [2-4, 33, 34]. It is often considered that files
are implicitly cohesive units of a software system.
Unfortunately, that is not the case in many legacy
systems.

The un-weighted structural edges (di, dj) ∈ E
represents the appurtenance to the same file. The function
file: S×S → {1, 0} is 1 if the argument documents are
from the same source code file and 0 otherwise. The
structural connectivity function to be used is filestruct:
S×S → E, where filestruct(di, dj) ∈ E if filestruct(di, dj) =
1. Thus, in this case, a structural cluster will represent a
file.

Given these definitions, we build a set of metrics for
use in the comprehension task. For simplicity, we will
refer to semantic clusters as simply clusters and to the
structural clusters as files. The following is a set of
measures and metrics that pertain to (semantic) clusters of
source code documents:

Definition. The number of files that contain a
document from a given cluster is | FDCk | where

FDCk = {f ⊆ S | ck ∩ f ≠ ∅}
Definition. The semantic cohesion of a cluster with

respect to files is

SCCFk =
|c|

1|FDC|
1

k

k −− .

Definition. The number of documents in a cluster
from a given file is |DCFi,k| (number of common nodes
between the two clusters) where

DCFi,k = {d | d ∈ ck ∩ fi, ck ⊆ S, fi ⊆ S}.
Definition. The degree of relationship of a given file

with a given cluster Ri,k is |DCFi,k| / |fi|.
Below is a set of measures and metrics that deal

directly with files (structural clusters) of the software
system:

Definition. The number of clusters that contain a
document from a given file is |CDFi| where

CDFi = {ck ⊆ S | ck ∩ fi ≠ ∅}
Definition. The semantic cohesion of a file with

respect to clusters is

SCFCi =
|f|

1|CDF|
1

i

i −− .

Definition. Number of files related by a cluster to a
given file, fi, is | RFi | where

RFi = {f ⊆ S | ck ∩ f ∩ fi ≠ ∅, f ≠ fi, ck ⊆ S}.
Definition. Number of files strongly related by a

cluster to a given file, fi, is SRFi: SRFi = | RFi | - max | ck

| - 1 and ck ∈ LCk where LCk is the set of clusters that
contain documents from fi and have a low semantic
cohesion with respect to files.

LCk = FDC ∩ {cj⊆ S|
|c|

1|FDC|
1

j

j −
− <ε}

where ε is an empirically established threshold.
All these definitions can be generalized to relate to

semantic clusters and structural clusters of any kind.

5. Experiments with Mosaic

To determine
how well the
selected IR method
supports the
program
understanding
process, the source
code for version 2.7
of Mosaic [36] was
used as input into LSI and clustered using the previously
described method. The resulting partitioning is then used
to help support understanding of portions of the source
code. This experiment was undertaken as a control, using
only the IR method without any serious structural
information. It was felt that if reasonable results were
produced with the IR method alone, then combining that
with more structural information would lead to a powerful
tool.

Mosaic is written in C and was programmed and
developed by multiple individuals. No single coding
standard is observed over the entire system and often
times different standards are used within a given file.
Little or no external documentation on the design or
architecture is available and the internal documentation is
often scarce or missing. In short, Mosaic reflects the
kinds of realities often found in commercial software due
to the many external issues that affect a software
development project.

5.1. Clustering Mosaic

Table 1 gives the size of the Mosaic system (269 files
containing approximately 95 KLOC). A semantic space
using a dimensionality of 350 for the 2,347 documents
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Table 2. A distribution of
the size of clusters. The
number of clusters that
contain a given number

of documents.
Number of
Documents

Number of
Clusters

1 481
2 98

3 - 5 46
6 - 10 15
11 -30 8

38 1
99 1

1084 1

was generated. The
documents were then
clustered, as stated
previously, based on
the angle of 45
degrees or less (i.e.,
between 1.0 and 0.7)
between any two
vectors, which
resulted in 655
groupings.

A distribution of
the clusters based on
the number of
documents they
contain is given in

table 2. There are a large number of singleton clusters
(481) and few really large clusters. These numbers reflect
the same type of trends that were found in the earlier
experiments. The large number of clusters of size one
reflects the fact that many functions often stand by
themselves semantically. The largest cluster is for the
most part composed of a common header comment that is
found in almost every file. It also includes a large number
of very small documents that were parsed out to be only
one or two lines of code.

A number of scenarios were envisioned that require
such understanding of a large software system with little
existing external documentation. The system may be
under maintenance by a person with little knowledge of
the system or a reengineering of the system may be
planned. In such a case, the software is written in C, a
reengineering of the system in another language, say C++,
may be planned. In fact, such a reengineering of Mosaic
actually took place and current versions are written in
C++.

The clustering of the source code gives another
dimension to view relationships among pieces of source
code. Grouping functions and structures together within a
file often represents some semantic relationship within the
grouping. For instance, an abstract data type (ADT) is
often encapsulated in the C language within an
implementation file (.c) and an associated specification
file (.h). Unfortunately, not all software systems are
written with good habits of coupling and cohesion in
mind. In legacy systems, it is quite common that little (or
no) semantic encapsulation is used, concepts are spread
over multiple files, and files contain multiple concepts.

5.2. Understanding Mosaic

The metrics described in section 4 were computed for
the clustering of Mosaic that was generated. The
resulting values are used to identify groups of documents
in the software system that should be investigated as a

whole. The following guidelines are utilized in
assessment of clusters and files:
 Semantic cohesion of a file with respect to clusters

(SCFCi) should be high.
 Number of files strongly related by a cluster to a

given file (SRFi) should be low.
 Semantic cohesion of a cluster with respect to files

(SCCFk) should be high.
 Degree of relationship of a given file with a given

cluster (Ri,k) should be high.
Each of the following examples presents a group of

files and clusters that are related. They were selected
either solely based on the values of their associated
metrics, or in conjunction with some additional domain
knowledge (e.g., file names, existence of some variables
in the files, etc.). Files that satisfy the above-mentioned
conditions were considered for further manual inspection.
This step, selecting the files that are candidates for
manual inspection, can be automated and would reduce
the amount of manual work needed to understand the
software system. For the files and clusters the
measurements and metrics are computed and presented in
groups of three tables: one for the metrics and
measurements dealing with files (tables 3, 6 and 9),
another for the metrics dealing with clusters (tables 4, 7,
and 10), and the third for the degree of relationship
between the files and clusters (tables 5 and 8).

5.2.1. Example: DrawingArea

The first example shows a group of related files (table
3) that were selected based on the file names, a natural
choice that an analyst would do when starting to
understand a software system. The goal of the experiment
was to see if using the measurements and values of the
metrics, one could identify related files. DrawingArea.c
was the first selected file, and the existing measurements
indicated that it is strongly related with three other files
(see SRFi in table 3). The degree of relationship with
cluster c1 is very low (see table 5), so the related files
through that cluster were not considered for further
analysis. The measurements and the metrics (table 3, 4
and 5) indicated DrawingArea.h and DrawingAreaP.h as
strong candidates for analysis. Given the names of the
files, this is not a surprising finding. The values also
indicated HTML.c as the best candidate among the rest of
the related files. HTML.c does not satisfy entirely the

Table 3. Metrics on the important
files related to DrawingArea.c

File (fi) | fi | SCFCi SRFi

DrawingArea.c 11 0.73 3
DrawingArea.h 1 1.00 2

DrawingAreaP.h 1 1.00 2
HTML.c 91 0.69 14
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Table 4.
Semantic

cohesion of
clusters with

respect to files
Cluster SCCFk

c327 0.64
c331 0.50
c1 0.81

Table 5. Degree of relationship of a given file
with a given cluster
File(fi) Cluster Ri,k

DrawingArea.c c1 0.18
DrawingArea.c c327 0.73
DrawingArea.c c331 0.09
DrawingArea.h c327 1.00

DrawingAreaP.h c327 1.00
HTML.c c1 0.01
HTML.c c327 0.01
HTML.c c331 0.01

Table 6. Metrics on the important files
related to HTChunk.c

File(fi) |fi| SCFCi SRFi

HTChunk.c 8 0.88 3
HTChunk.h 1 1.00 3
HTAAFile.c 5 0.60 16
HTNews.c 55 0.49 17

Table 7.
Semantic

cohesion of
clusters with

respect to files
Cluster SCCFk

c472 0.67
c466 0.63

above-mentioned constraints,
however, the fact that it relates
to DrawingArea.c through three
clusters with two having high
metric values (see table 4), and it
has a relatively high cohesion
(table 3), promoted it as a
candidate for in-depth analysis.

The in-depth analysis
revealed that indeed the three

strongly related files implement a minimalist drawing
area widget. Additionally, the files implement a well-
defined abstract data type – drawing area. A form of
information hiding was even used by using a separate file
namely, DrawingAreaP.h, to implement some “private”
functions. Two of the functions in DrawingArea.c
connect the files with over 200 other files, through cluster
c1. Closer inspection revealed that the two functions are
in fact constructors and have only two lines of code. This
makes them similar with many other constructor-type
functions, so the induced relationships were ignored. The
values of the metrics in table 1 and table 3 signify this fact
to some degree. The analysis confirmed that this was a
coincidental relationship.

Although the metrics indicated a weak relationship
with the HTML.c file, the relating functions were
analyzed. The two functions (from DrawingArea.c and
HTML.c) in cluster c331 are related because they are
definitions to similar structures: one defines
htmlClassRec, while the other defines
drawingAreaClassRec. Both definitions use the same
constant names and similar identifiers (e.g., TRUE,
FALSE, NULL, Initialize, Inherit, Resize, etc.).

These semantic similarities indicated that both
functions use the same global constructs (i.e., user defined
types and identifiers) and the ADTs that they relate to
could be in fact specializations of the same parent (or
abstract) class. The other related function from the
HTML.c file, is a geometry manager for a widget that is
also used by the drawing area ADT.

These findings indicated that HTML.c should be also
analyzed in conjunction with DrawingArea.c and its

closely related files. Using the same metrics and
considering HTML.c as the starting file, it is found that
the HTMLWidget.c file is also related to the concepts
derived previously. Finally, it was concluded that these
five files contain definitions for a general (abstract)
widget structure (ADT or class) and implementation of at
least two specializations of it: drawingAreaClassRec and
htmlClassRec.

This example proved that
by analyzing the metrics,
groups of files that contain
cohesive implementation of
ADTs or classes representing
some concepts (drawing area)
could be identified. The
metrics helped identify files
that contain implementation
of similar structures (html
record) and implementation of a general (abstract)
concept (e.g., widget) that is a generalization of the
previous ones.

5.2.2. Example: chunk handling and flexible arrays

In this experiment, a file was selected at random from
among those with very high semantic cohesion with
respect to clusters and containing between 5 and 20
documents. The selected file was HTChunk.c, with 8
documents and a cohesion value of 0.88 in table 6. From
this point on, a similar procedure with the one described
in the first example is followed. The metrics indicated a
highly cohesive set of files: HTChunk.h, HTChunk.c, and
HTAAFile.c. Upon further analysis, it was determined
that the two functions from HTAAFile.c that are related
perform similar functions on different data structures
(e.g., adding a character to a list of characters) and share
variables and constants with the same name (e.g., ch,
FILE, NULL). In addition, the size of these functions is
relatively small (5-10 lines of code). Therefore, this file
was not considered further in the analysis. However, the
similarity shows that HTAAFile.c contains functions that
implement some sort of list, even if not directly related to
the chunks concept. Thus, a separate analysis of this is
recommended. Similar facts were found for the
HTNews.c file, although its metrics were even lower.

It was also found that the remaining two files
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Table 8. Degree of relationship of a given file
with a given cluster
File(fi) Cluster Ri,k

HTChunk.c c472 1.00
HTChunk.h c472 1.00
HTAAFile.c c472 0.40
HTAAFile.c c466 0.60
HTNews.c c472 0.02

Table 9. Metrics on the important files
related to newsrc.c

File (fi) |fi| SCFCi SRFi

newsrc.c 55 0.74 1
HTNews.c 31 0.49 17

Table 10. Semantic
cohesion of
clusters with

respect to files
Cluster SCCFk

c1 0.81
c200 0.93
c205 0.88
c206 0.89
c201 0.50

(HTChunk.c and HTChunk.h) implement an ADT that
deals with flexible arrays or chunks. A chunk, in this
system, is a structure that may be extended. These
routines create and append data to chunks and
automatically reallocate them as necessary. The
generality of the structure determined the other (weaker)
relationships with the other files. This suggested that
those files implement similar structures (lists) but using
other concepts (e.g. files and news articles rather than
chunks).

The study of the related files and clusters indicated that
cluster c466 (see tables 8 and 9) should be analyzed

separately. This supports the values in table 7 that also
indicated the “interestingness” of the HTAAFile.c that
strongly relates to the cluster c466 (table 8). This example
showed that, solely using the metrics, groups of strongly
related and cohesive files could be identified and that they
implemented a general structure (chunks or flexible
arrays). The metrics helped to identify files that contain
similar structures (lists). The fact that Mosaic was written
by several authors led to interesting facts such as the fact
that often, different authors implemented their own list-
processing module, instead of using a general one, across
the system. Again, in this case the identified similarities
help in finding these structures (e.g., lists). After that, it is
easy to manually identify the concepts (objects) that are
handled by the structures (e.g., stored in lists).

5.2.3. Example: cluster c466, the password and access
control

In this example, a cluster was chosen as a starting
element in the analysis. The starting cluster is c466 and
was indicated in the previous example as a candidate for
separate analysis. The cluster spans over 14 highly
related and cohesive files. The manual analysis revealed
that 10 of these files implemented the basic functions and

structures to handle passwords and access control. The
other files were using these functions and structures. This
time, the names of the files would not have indicated the
relationships. Due to limited space, the actual metrics are
not shown here.

5.2.4. Example: top clusters and newsgroup

This example deals
with the analysis of a
number of clusters with
very high cohesion with
respect to files. The
second example (chunk
handling) showed that the
HTNews.c file should be a
candidate for manual
inspection, but the
observed relationships
were not relevant to that
group of files. As mentioned, the relationships only
indicated that there is a type of list structure implemented
in this file. HTNews.c is related to the newsrc.c file that
has high cohesion (table 9). More than that, newsrc.c is
related to three of the top ten (table 10) most cohesive
clusters (c200, c205, and c206). Therefore, these were the
exact type of clusters to be considered as starting
elements in this experiment.

The analysis showed that newsrc.c implements a
number of structures that deal with the concepts of “news
group” and “news article”. The relationship with the
HTNews.c file, although not very strong, is significant
because HTNews.c implements, among other things, a
“Network News Transfer protocol module for the WWW
library”. In order to do that it uses the structures
implemented in the newsrc.c file. More than that, the list
structure, indicated by the relationships in the second
example, is in fact a list of news articles.

6. Related work

Related research on similarity measures includes the
work of Girard and Koschke [17, 19]. This work is also
based on similarity metrics between software components
and defines similarity metrics that combine structural and
semantic information. The structural information is
defined using a resource flow graph representation of the
source code and semantic information uses the work of
Schwanke [44]. Schwanke’s work is based on Parnas’s
[39] information hiding principle and on Tversky’s [48]
research. The work proposed here differs in that the
clusters are used as a parameter to the metrics. Other
research that clusters software components includes work
by Anquetil [3, 4], Wiggerts [49], Merlo [34], and
Lakhotia [24]. Lakhotia lists a number of works on
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software clustering. Most of them use formal features
(i.e., structural information) and two of them ([28] and
[37]) use semantic information (referred to as non-formal
descriptive features). The research that has been
conducted on the specific use of applying information
retrieval methods to source code includes [15, 16, 18, 28-
30, 32, 35].

7. Conclusions

The experiments with the PROCSSI system show that
the semantic similarity of source code documents
provides valuable information that can be used in the
tasks of software maintenance and evolution. It also
shows that concepts from the problem domain are often
spread over multiple files, and files contain multiple
concepts. The next steps in the development of the
PROCSSI system will be to incorporate additional
structural information into the model. The low cost of the
methods used in this system and their flexibility allows
experiments on software written in other languages. The
only necessary change is in the initial parsing of the
software system. All the tasks performed by PROCSSI
can be fully automated and performed in relatively short
time repeatedly, using different kinds of information.

The examples describe how the methods can be used
to assist in the program comprehension process. The
methods appear to be reasonable for automatically
grouping semantically similar software components based
on variable and type names along with comment text.
The clusters produced by these methods represent an
abstraction of the source code based on a semantic
similarity, which should relate to higher-level concepts.
The clusters produced are often similar to those that
would be produced by a programmer with good
knowledge of the particular software. Adding more
structural information should allow the development of
tools to assist the understanding of large-scale software
systems. Development of cost effective methods that do
not rely on the acquisition and representation of large
amounts of knowledge is necessary to support program
comprehension tools that are widely usable.
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