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Abstract 

The paper recasts the problem of feature location in 
source code as a decision-making problem in the 
presence of uncertainty.  The main contribution 
consists in the combination of two existing techniques 
for feature location in source code.  Both techniques 
provide a set of ranked facts from the software, as 
result to the feature identification problem.  One of the 
techniques is based on a Scenario Based Probabilistic 
ranking of events observed while executing a program 
under given scenarios.  The other technique is defined 
as an information retrieval task, based on the Latent 
Semantic Indexing of the source code. 

We show the viability and effectiveness of the 
combined technique with two case studies.  A first case 
study is a replication of feature identification in 
Mozilla, which allows us to directly compare the results 
with previously published data.  The other case study is 
a bug location problem in Mozilla.  The results show 
that the combined technique improves feature 
identification significantly with respect to each 
technique used independently.*  

1. Introduction 
Software evolution requires adding new 

functionalities to software systems, improving existing 
functionalities, and removing bugs, which can be 
considered as unwanted functionalities.  Identifying the 
parts of the source code that correspond to a specific 
functionality is a prerequisite to evolution and is one of 
the most common activities undertaken by software 
engineers.  In software engineering, this process is 
called concept location [19].  The concepts that 
represent a functionality of a system accessible and 
visible to the users, usually captured by the 
requirements explicitly, are called features. 
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While the developers often perform concept location 
manually, tool support is needed for large and complex 
software.  Existing tools that support concept location 
rely on the information that is gleaned from the 
program by static and/or dynamic analysis. These 
analyses can provide a large number of facts and 
extracting the relevant facts is an information retrieval 
task, similar in nature with those from other fields like 
data mining or web searching.  In this context, 
precision is used to measure the number of false 
positives returned by a query and recall is used to 
measure the number of false negatives.  In all cases, the 
users judge the retrieved results. 

Results often have low precision and/or recall, when 
querying repositories of purely static or of purely 
dynamic data.  In particular, dynamic analyses are often 
unable to distinguish between overlapping features.  
Indeed, the same code region may contribute to several 
features (i.e., several features execute the same code).  
It is difficult to separate overlapping features, thus 
impacting precision.  While static analyses may filter 
and organize the facts, they rarely identify entities 
contributing to a specific execution scenario exactly. 

The research community has recognized the need to 
combine static and dynamic data to improve program 
understanding and to help in feature identification [2, 7, 
9, 10, 21].  All current hybrid techniques share a 
common assumption: the fact that a statement belongs 
to an execution trace or that a module is activated by a 
feature are deterministic information, which are often 
expressed as Boolean values. 

However, it is not always possible to state and 
quantify facts as deterministic quantities.  Imprecision 
of the measure, uncertainty in the environment, 
perturbation phenomena, or simply the lack of 
knowledge, may require to express relations and facts 
in non deterministic terms [6].  When we execute a 
specified scenario, we have a deterministic relation 
between the trace and the scenario.  Yet, we cannot be 
certain whether a called method and/or accessed field is 



 

  

relevant to the feature, thus there is a non-deterministic 
relation between the scenarios and the features. 

Our goal is to use both certain and uncertain 
knowledge extracted with both static and dynamic 
analyses, filter it by probabilistic and information 
retrieval techniques, and in this way to identify features 
in source code.  Static and dynamic knowledge are 
thought of as collaborating experts providing their 
valuable expertise and judgments in parallel.  As in 
other domains, such as medical or financial domains, 
our goal is to combine the subjective judgments of 
these experts to improve our understanding of the facts. 

In the presented work, we reformulate the feature 
identification problem as a decision-making problem in 
the presence of uncertainty.  We are in the same 
position as a manager who must combine expert 
subjective forecasts [11, 26].  We have previously 
developed two techniques for feature identification.  
The developed techniques exploit different sources of 
information and provide complementary results.  The 
first technique is based on Latent Semantic Indexing 
(LSI) [5] of the source code [16].  The second 
technique is a Scenario Based Probabilistic (SBP) 
ranking of events, observed while executing a program 
under given scenarios [2].   

Using LSI, programmers can query static documents 
(i.e., classes, methods, and documentation), indexed via 
LSI, to obtain a ranked list of facts likely to be relevant 
to a feature.  The role of the query is to capture some 
semantic characteristics of the feature of interest. 

Using SBP, programmers can analyze dynamic 
traces of execution scenarios and get a list of entities 
(e.g., methods and classes) ranked according to their 
likelihood to be relevant to a feature exercised under 
the given scenarios. 

The problem is that both techniques provide a 
different uncertain judgment and, to improve our 
knowledge, we must combine these judgments.  The 
LSI and SBP ranking techniques could be considered 
our experts; the ranked lists are the judgments of these 
experts.  We combine the respective ranked lists 
produced via an affine transformation where the affine 
coefficients express our confidence in the two experts 
and their ability to identify features correctly. 

We compare the resulting combination with known 
results and thus gather evidence that the combination 
outperforms the judgments of each single expert.  We 
perform the comparison in two case studies.  First, we 
apply the combination to the scenarios presented in an 
earlier case study from [2].  Results clearly show the 
superiority of the combination.  In the second case 
study, we identify methods and classes involved in a 
documented bug.  We compare methods identified as 
being relevant to the bug with those actually contained 
in the official patch applied to fix the bug.  We show 

that the combination indeed identifies the relevant 
methods with better precision and recall than either of 
the techniques does individually. 

The remaining sections of this paper are organized 
as the following.  Section 2 presents an overview of the 
related work on dynamic and static techniques for 
feature and concept location.  It also briefly introduces 
necessary background information on our techniques.  
Section 3 presents our novel, hybrid technique for 
feature identification.  The evaluation of the new 
technique via two case studies is presented in Section 4.  
The conclusions and future work are outlined in Section 
5. 

2. Previous Work 
Existing techniques for concept location and feature 

identification fall into three broad categories: using 
static data, using dynamic data, and using both.  We 
cover the main work on these techniques in subsection 
2.1.  Then, we present background information from 
our previous work on feature identification using the 
SBP ranking [2] in Section 2.2, and on concept location 
using LSI [16] in Section 2.3.  Sections 2.2 and 2.3 
introduce the formalism required to describe our novel 
technique in Section 3. 

2.1. Related Work on Concept Location 
The work by Wilde et al. [24] and Biggerstaff et al. 

[3] are the starting points of much of the work on 
concept and feature location, including the present 
paper. 

Wilde and Scully [25] proposed the dynamic 
technique to identify features by analyzing execution 
traces of test cases.  They use two sets of test cases to 
build two execution traces: an execution trace where 
the desired functionality is exercised and an execution 
trace where the functionality is not used.  The two 
traces are compared to identify the parts of the program 
that implement the feature(s) associated with the 
functionality.  In their work, the authors use only 
dynamic data to identify features; no static analysis on 
the program is performed.  The method was recently 
extended [2, 6, 8]. 

Chen and Rajlich [4] proposed a semi-automated 
technique for static concept location based on searching 
on Abstract System Dependence Graph (ASDG).  
Maintainers identify features manually using the ASDG 
following a precise process. 

Marcus et al. [16] proposed an information retrieval-
based technique for static concept location.  A 
comparison of several static concept location 
techniques is presented in [15]. 

Zhao et al. [27] proposed a static and non-interactive 
method for feature identification, which uses 



 

  

information retrieval technique to reveal the basic 
connections between features and functionalities in the 
source code.  A branch-reserving call graph is used to 
further recover both the relevant and the specific 
computational units for each feature. 

Combining previous techniques, Eisenbarth et al. [7] 
used both static (i.e., dependencies) and dynamic (i.e., 
execution traces) data to identify features in software.  
They also used concept analysis techniques to relate 
features together. 

Salah and Mancordis [20] also use both static and 
dynamic data to identify features in Java programs.  
They went beyond feature identification by creating 
feature-interaction views, which highlight dependencies 
among features. 

2.2. Feature Identification using Probabilistic 
Ranking 

The key steps of the process of identifying features 
and studying their evolution with a probabilistic 
ranking technique are summarized in this subsection.  
Static and dynamic analyses are used to extract data 
from executions of several releases of a system, 
following given scenarios. 

We borrow from a previous work [2] key definitions 
and equations.  A feature links program architecture 
with its dynamic behavior.  Thus, a first step is to 
recover the program architecture.  Second, a subset of 
the program architecture, a micro-architecture, must be 
identified as participating in the implementation of the 
functionality.  Third, intra- and inter-feature 
relationships across releases are studied to highlight 
feature evolution. 

We acquired and developed several parsers and tools 
to analyze existing software statically with reasonable 
precision.  In particular, we developed our own C++ 
parser, which manages the previous degrees of 
imprecision, to generate AOL files [1].  AOL files are 
higher-level representations of object-oriented systems 
(classes, methods, relationships), which are simple to 
handle programmatically. 

We assume that the source code is available and that 
a compiled version can be exercised under different 
scenarios.  Dynamic analysis provides the necessary 
source of data to link functionalities (features) with 
software constituents and thus, to identify micro-
architectures responsible for the specific 
implementation of functionalities. 

We reuse our previous technique [2] inspired by 
Wilde’s [6].  We instrument and generate traces of the 
executions of a software, given a certain scenario, 
which exercises a functionality of interest.  We 
experimented with processor emulation on the Mozilla 

web-browser, using Valgrind1, with satisfying results, 
to collect execution traces.  We compared processor 
emulation with profiling techniques2 and found that 
processor emulation collects more accurate data than 
profiling techniques, with little performance overhead. 

We associate events in the execution trace with the 
functionality using a relevance index, a ranking 
quantifying the probability that an event is relevant to 
the functionality.  We concur with Wilde [23, 25] to 
avoid the use of set operations.  Avoiding set 
operations implies using thresholds and maintainer 
interactions to validate identified features.  However, 
we can limit the use of thresholds and minimize 
maintainer interactions by ranking the events 
according to their relevance to the feature of interest. 

Let F* be a set of scenarios exercising a 
functionality of interest and F a set of scenarios not 
exercising the functionality.  Execution of scenarios in 
F* produces a set of intervals I* containing events 
relevant to the functionality of interest.  We mark these 
intervals as relevant via Start/Stop signals.  Scenarios 
in F always produce intervals in I, intervals irrelevant to 
the functionality.  However, intervals I* (I, respectively) 
may contain irrelevant (relevant) events.  Indeed, any 
scenario is likely to decompose in a few intervals in I* 
surrounded by many intervals in I.  If NI* and NI are the 
overall numbers of events in the two sets I* and I, then 
the frequency of a relevant event ei in I* is  
fI*(ei) = NI*(ei)/NI* and its frequency in I is  
fI(ei) = NI(ei)/NI.  The relevance index of ei is then: 
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Equation (1) is a renormalization of Wilde's 

equation, where events are re-weighted by population 
sizes (frequencies) to make events comparable directly.  
We use equation (1) to classify events in the I* and I sets 
with respect to the functionality of interest.  Then, we 
use equation (2) to keep the most relevant events with 
respect to a positive threshold t. 

 
{ }tere iit >=Ε )(*     (2) 

 
The size of the set *

tΕ depends on t: 100.00% means 
that we only retain events that do not appear in intervals I 
and that, thus they are most relevant to the functionality. 

 

                                                           
1 http://valgrind.kde.org/ 
2 Profiling techniques do not collect traces but time spent in functions 
and methods along with callees and callers; such data can be used to 
build traces. 



 

  

2.3. Concept Location using Latent Semantic 
Indexing 

Developers usually use regular expressions when 
searching for the location of concepts, in the absence of 
sophisticated tools.  They look for identifiers and 
comments, as these encode domain knowledge in the 
source code.  We use LSI [5] to improve the search by 
allowing users to formulate more relaxed queries and to 
obtain ranked results at different levels of granularity.  

Previous work covers in detail the use of LSI to 
index software elements for retrieval purposes [14, 16].  
In summary, LSI works much like today’s popular 
search engines (e.g., Google) by creating a signature (in 
this case a real valued vector) for each element of 
interest in the source code.  We provide tool support 
[18] to define these elements of interest, which can be 
classes, methods, functions, interfaces, parts of 
documentation, etc.  Once defined, these are extracted 
from the source code (i.e., in form of comments and 
identifiers) and used to generate a semantic space, 
which is used for the search.  Users can write queries, 
which are also converted into vectors in the semantic 
space and the results of the search are returned as a list 
of software elements, ranked by their similarity to the 
user query. 

We use as similarity measure between a query and a 
source code element, the cosine between their 
corresponding vectors.  The cosine between two vectors 
vq, corresponding to a query q, and vi, corresponding to 
a source code element i (which can be a method or a 
class), in the semantic space, is the length-normalized 
inner product: 

 

cos(vq, vi) = 
T

q i

q 2 i 2

v v
|v | ×|v |

   (3) 

 
This similarity measure yields values between [-1, 1] 

for any pair of vectors, with 1 corresponding to 
identical documents.  Negative values are associated to 
non-related documents. 

We developed a set of tools [16, 18] and a 
methodology [15] to use the information retrieval 
technique for concept location in source code.  We 
decompose the methodology in the following steps: 
1. The semantic space is generated using the available 

tools, at a user defined granularity level. 
2. Select a set of words/terms that describe the 

concept.  This set of words constitutes the query. 
3. Check whether a term is present in the vocabulary 

of the software system (generated by LSI).  If the 
term is not present, then: 
a. Look up similar words using the vocabulary of 

the software system (e.g., use a spell-checker 

based on an editing distance function to 
suggest similar terms); 

b. Eliminate from the initial query the words that 
are not in the vocabulary.  If the elimination of 
a word significantly alters the meaning of the 
query, go to step 2 and select additional words 
for the query. 

4. Run the query with LSI on the search space.  The 
query returns a list of source code elements ordered 
by their similarity to the query. 

5. Examine the source code documents from the list 
in the order they appear in the results.  For every 
document examined in the results a decision is 
required whether the document is part of the 
concept or not, if it is and it covers all the aspects 
of the concept, then stop.  If it is not and the new 
knowledge obtained from the investigated 
documents helps to formulate a better query (e.g., 
narrow down the search criteria), go to step 2; else 
examine the next document in the list. 

In essence, the similarity between a query expressing 
some semantic characteristics of a feature and a set of 
facts about the software (e.g., manual pages, 
documentation, classes or methods of a program), 
indexed via LSI, allows producing a ranking of entities 
relevant to the feature. 

3. Combining the Experts 
We introduce our novel technique to improve the 

precision of feature identification by combining the 
SBP [2] and LSI [16] ranking techniques.  We consider 
the SBP and LSI rankings as the judgments of our 
experts.  Experts provide expertise to solve the problem 
of identifying the feature precisely.  We draw 
inspiration from Jacobs [11] to combine the SBP and 
LSI rankings.  When n experts are present, judgments 
can be combined using the following equation: 

( )∑
=

=
n

i
iii xfxf

1

)( βλ    (4) 

where fi(x) is the judgment of the ith expert, λi is a 
weight expressing our confidence in the ith expert and βi 
is a re-normalization constant.  We use re-
normalization constants, because the different experts 
may express judgments that are not commensurable.  
We use these constants to map judgments and to allow 
meaningful combinations.  In the more general case, βi 
is a function of the input value x.  The βi coefficient can 
also be selected so that fi(x) lies in the interval [0, 1].  In 
any case, the judgments of the experts should be in a 
same interval, thus imposing the constraints that the 

weight λi defines an affine transformation: ∑
=

=
n

i
i

1
1λ .  



 

  

Our experts state judgments based on different 
information.  The SBP expert grounds its judgment on 
the probabilistic ranking of dynamic events observed in 
execution traces.  The LSI expert builds its judgment 
from a query on a set of documents, created with static 
data extracted from the source code and index with LSI.  
However, we ask, in different ways, both experts to 
answer the same question: we want to identify a set of 
particular facts related to a feature of interest for a 
maintainer.  Thus, we combine the valuable expertise of 
both experts to obtain a more precise set of relevant 
events in order to minimize the maintainer’s effort. 

In this paper, we focus on identifying classes and 
methods relevant to a feature of interest.  Thus, we are 
interested in combining our experts’ judgments on 
methods that contribute to the feature.  These methods 
are likely to be placed on top of both the SBP and LSI 
rakings, because we ask the two experts, the same 
query conceptually. 

Let x be a method.  For the sake of clarity, we 
denote with sbp(x) and lsi(x) the relevance scores 
assigned to x by our experts without detailing the actual 
query performed.  lsi(x) and sbp(x) are not defined over 
a same domain.  Thus, the combination of the two 
experts’ judgments with equation (4) requires a re-
normalization of the relevant scores.  This 
normalization must not disrupt the LSI and SBP 
experts’ judgments, because we want to promote 
methods that both experts consider highly relevant. 

The sbp(x) relevance score is defined on [0, 1] while 
the lsi(x) score takes values in [-1, 1].  Among several 
possible renormalizations, we select two 
transformations: variable standardization and simple 
normalization.  The latter transformation is grounded 
on the fact that LSI negative values are irrelevant.  Thus 
the re-normalized SBP and LSI scores can be obtained 
as follows: (rlsi(x) has the same domain as sbp(x)) 
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For the former transformation of variable 

standardization, we remap lsi(x) and sbp(x) in a 
standard normal distribution with zero mean and 
unitary variance via the transformation [22]: 
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This is equivalent to considering experts’ judgments 
as being generated by Gaussian sources with different 
means and variances.  Thus, we bring the relevance 
scores back to the tabulated N(0,1) before combining 
them.  In the case studies, we did not observe any 
substantial difference on the rankings from the 
transformations for renormalization used to compute 
rlsi(x) and rsbp(x).  Figure 1 shows the ranking for the 
first case study (see Section 4.3) based on the equations 
in (6), while the rest of the results in this paper are 
reported only for the equations in (5). 

The combination of the two experts leads us to 
rewrite equation (4) as: 

 
( ) ( ) ( ) ( )xrxrxr lsisbpcombined λλ −+= 1    (7) 

 
where λ expresses our confidence on the ability of the 
SBP or LSI ranking experts to identify a feature 
correctly using their particular techniques.  Equation (7) 
allows ranking methods based on the combined score.  
However, we may be interested to further reduce such a 
list.  This can be done by retaining the k-top ranked 
methods or by imposing a threshold on rcombined(x). 

The combination of the techniques allows for some 
changes in the existing methodologies.  The SBP 
ranking was originally done in combination with a 
knowledge-based filtering [2], using the previous 
experience of the user with the system under 
investigation.  LSI ranking is in fact a mechanism that 
allows the user to gain knowledge on how elements of 
the software relate to each other.  Thus, LSI ranking 
could replace the knowledge-based filtering in the 
combined technique. 

4. Case Studies 
We performed two case studies to assess the 

precision of the novel hybrid technique for feature 
identification.  The first case study is a replication of a 
case study [2], which used the SBP ranking only.  We 
compare previous results with the LSI ranking and our 
hybrid technique to assess their respective precisions. 

The second case study focuses on bug location, 
which we consider as an undesirable feature.  We apply 
the techniques (i.e., SBP ranking, LSI ranking, and the 
novel hybrid ranking) independently and compare their 
results. 

These two case studies provide data to assess the 
precision of the combination of the SBP and LSI 
rankings and the help brought to the maintainer for 
identifying features in the source code. 

In addition, to the authors’ knowledge, these case 
studies are the largest (in terms of the size of the subject 
software) that were done on using LSI to index source 
code.  In fact, the size of the software and its 



 

  

vocabulary is one order of magnitude larger than 
natural language corpora used in previous experiments 
with LSI.  Given this situation, we use these case 
studies to see how the LSI dimensionality reduction 
factor influences the results. 

 
 

Table 1.  Mozilla v1.6 size related statistics 

Item Count (MLOC) Item Count

Header files 8,055 (1.50) Classes 4,853
C files 1,762 (0.90) Methods 53,617

C++ files 4,204 (2.00) Specializations 5,314
IDL files 2,399 (0.20) Associations 17,362

XML files 283 (0.12) Aggregations 6,727
HTML files 2,231 (0.19)   

Java files 56 (0.06)   

 

4.1. Object of the Case Studies 
We use Mozilla, a large object-oriented multi-

threaded web-browser [17], as the object of the case 
studies.  Mozilla is an open-source web browser ported 
on almost all known software and hardware platforms.  It 
is large enough to represent an industrial size program.  
It is developed mostly in C++ with C code (which 
accounts only for a small fraction of the program).  We 
do not analyze parts of Mozilla written in other 
programming languages, like C, Java, IDL, XML, 
HTML, etc., to simplify the case studies.   

The latest version of Mozilla includes more than 
10,000 source files consisting of about 3.7 MLOC 
(millions lines of code), which are decomposed in about 
3,500 different subdirectories.  Mozilla consists of 90 
modules maintained by 50 different module owners.  In 
our case studies, we use version 1.6. 

Table 1 shows some statistics for Mozilla v1.6.  
The reported figures should be considered as orders of 
magnitude rather than as exact values.  Indeed, several 
factors influence these figures, such as the reverse 
engineering tools, the parsing techniques used [12] 

and the way in which we consider certain 
programming language features. 

We choose to use conservative reverse-engineering 
techniques.  We apply strict reverse-engineering rules 
such that we classify as classes only entities declared as 
such according to the C++ syntax.  Moreover, we 
consider structures and complex templates (e.g., 
templates mixed with structures) as outside of the 
boundary of reverse-engineered models and do not 
recover their attributes, methods, and locations in source 
code files. 

Table 2.  LSI corpus vitals for Mozilla v1.6 

MLOC 4.4 
Vocabulary 85,439 

Number of parsed documents 68,190 
Number of methods 48,267 
Number of functions 19,923 

 

4.2. Design of the Case Studies 
In each study, the use of the SBP ranking follows 

the pattern described in Section 2.2.  The SBP ranking 
technique provides sets of ranked methods with 
equation (1) using their frequencies in the execution 
traces.  Several methods may have the same frequencies 
in the traces and thus, the same ranking.  For example, 
for the first case study, the SBP ranking provides a set 
of 274 methods ranked first, rsbp(ei) = 1 in equation (1).  
Thus, the recall of the SBP ranking is good but its 
precision is low. 

We follow the methodology for LSI ranking 
described in Section 2.3.  Creating the LSI search 
space, however, deviates from our previous 
experiences.  We use the Mozilla source code to build 
and to index a semantic space to allow query-based 
searches for feature identification.  LSI builds the 
semantic space corresponding to Mozilla, by projecting 
a 85,436×68,190 matrix (the vector space) onto a 
smaller one (a subspace), see Table 2.  When applying 
LSI on natural language corpora, a space of 300 
dimensionality is usually chosen [13].  On large 
software such as Mozilla, the size of the vocabulary is 

Table 3.  Results for locating the methods related to the “bookmark” feature.  The position of the methods in the table 
(column 1) show the rank obtained by combining the two approaches.  Numbers in parenthesis denote the ranks for 
those methods obtained with LSI alone.  Columns 2-5 correspond to the different dimensionality of the LSI subspace. 

Pos. 300 500 750 1,500 
1 CreateBookmark (3) CreateBookmark (6) AddBookmarkImmediately (1) AddBookmarkImmediately (1) 
2 AddBookmarkImmediately (4)  AddBookmarkImmediately (2) CreateBookmark (14) CreateBookmark (8) 
3 CreateBookmarkInContainer(64) Flush Flush CreateBookmarkInContainer(19)
4 InsertResource CreateBookmarkInContainer(57) CreateBookmarkInContainer(36) WriteBookmarks 
5 ListenToEventQueue InsertResource WriteBookmarks getFolderViaHint 
6 Flush WriteBookmarks Observe InsertResource 



 

  

one order of magnitude larger than in natural languages 
(or in previously indexed source code).  We adjust the 
dimensionality reduction factor and perform each query 
four times using as dimensionality reduction factors 
300, 500, 750, and 1,500 respectively, to find the best 
(approximate) dimensionality reduction value by 
comparing the rankings.  Any larger factor would 
generate a too large search space to be practical from a 
computational point of view on actual average 
computers.  Table 3 and Figure 1 show how results 
improve in the first case study (see Section 4.3), as the 
LSI dimensionality reduction factor increases. 

LSI, on the contrary to the SBP ranking, ranks each 
method differently and thus, has a good precision but 
may have a low recall.  Since LSI creates the vector 
representation for each method based on its identifiers 
and comments, methods with small bodies and very 
few identifiers will not be ranked properly.  Also, 
inheritance is not dealt with specifically here, so 
overridden methods in subclasses may also be miss-
ranked by LSI in some cases.  The SBP ranking is not 
perturbed in these situations. 

4.3. The First Case Study 
This first case study is partly a replication study of a 
previous case study published in [2].  We perform the 
same case study (same scenario, same feature 
identification task) to compare previous results from 

SBP ranking with new results from LSI and hybrid 
rankings.  Such a partial replication is important 
because it allows comparing the three ranking 
techniques against one another.  It is a partial 
replication study because we replicate the scenario and 
the task only, we do not apply again the SBP ranking, 
whose results are available elsewhere [2]. 

We consider two scenarios: 
• Scenario 1:  A user visits an URL.  She opens 

Mozilla, clicks on a previously bookmarked URL, 
waits for the page to load, and closes the browser; 

• Scenario 2:  The user acts as before but, once the 
page is loaded, she saves the URL using the mouse 
right button and closes the web browser. 

 
The feature identification task can be stated as: 
“identify classes and methods in Mozilla that are part 
of the feature activated when a URL is saved in 
Scenario 1 with respect to Scenario 2”.   

We apply the SBP ranking by running Mozilla 
according to the two scenarios and by collecting 
corresponding dynamic traces as detailed in [2].  We 
then apply equation (1) to produce sets of relevant 
methods to the feature of interest. 

We apply the LSI ranking by formulating a query on 
the terms related to “bookmark” in the vocabulary of 
Mozilla generated during indexing of the corpus by 
LSI.  We use our judgment to assess whether the terms 
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Figure 1.  Rankings of relevant methods as the LSI dimensionality reduction factor increases for the 

first case study.  The three relevant methods are highlighted with red color. 



 

  

relate to the feature of creating a new bookmark.  We 
create the following query: “bookmark newbookmark 
bookmarkname bookmarkresource bookmarkadddate 
createbookmark insertbookmarkitem deletebookmark 
bookmarknode”.  We do not have to spell-check the 
query terms because they are directly taken from the 
Mozilla vocabulary. 

Table 3 summarizes the results obtained in 
identifying the feature in the first case study.  The first 
column indicates the rank of the methods obtained 
when combining the SBP and LSI rankings with λ = 
0.5.  The methods in bold (i.e., CreateBookmark, 
AddBookmarkImmediately, and 
CreateBookmarkInContainer) are the methods realizing 
the functionality of interest, that we checked manually.  
The numbers in parenthesis show the LSI ranking of 
the methods obtained using rlsi alone.  Columns 2–5 
correspond to the different dimensionality of the LSI 
subspace.  Each of these three methods was ranked in 
the set of 274 methods with a relevance index (rsbp) of 1 
by the SBP ranking alone. 

We obtain a better ranking of the relevant methods 
when combining the judgments of the two experts.  The 
results also tend to improve overall when increasing the 
dimensions of the LSI space (see Figure 1), which 
supports our hypothesis that larger vocabularies warrant 
the usage of larger subspaces.  The weight λ, for a given 
dimension, does not impact the ranking significantly.  
Different values for λ only re-order relevant methods. 

Figure 1 shows that increasing the dimensionality 
reduction factor improves the ranking of the three 
relevant methods with respect to the top ten high-
ranked methods, thus increasing the precision of our 
novel technique. 

4.4. The Second Case Study 
In the second case study, we locate a bug in Mozilla 

using our novel technique.  We choose bug #1821923, 
described as “quotes (“) are not removed from 
collected e-mail addresses”.  Among possible bugs, the 
rationale to select this one was threefold.  First, we 
were interested in a well known, documented, and 
reproducible bug.  Second, to minimize the probability 
of obtaining good results by chance, we were interested 
in a bug that has no interaction with methods and 
classes involved in the first case study.  Finally, we 
were looking for a bug with available and approved 
patch that was also actually fixed in recent Mozilla 
releases.  Indeed, bug #182192 has all these 
characteristics; it was well known since early Mozilla 
releases; a patch was available; it was officially fixed in 
release 1.7.  In this case, we also eliminate any potential 

                                                           
3 https://bugzilla.mozilla.org/long_list.cgi?buglist=182192 

bias given that none of the authors determine what part 
of the system corresponds to the feature of interest. 

To apply SBP, we performed two scenarios: 
• Scenario1: A user replies to an e-mail; 
• Scenario2: A user performs the same action of 

Scenario 1, and on the same e-mail and, using 
the mouse, the user forces to collect the e-mail 
address of the sender. 

 
The subsequent steps in obtaining the SBP ranking 

are the same as in the first case study.  By comparing 
the two scenarios, methods and classes highly relevant 
to the process of e-mail address collection are spotted. 

To obtain the LSI ranking, based on the bug 
description, we formulate the following query to 
retrieve related methods in Mozilla: “collect collected 
sender recipient email name names address addresses 
addressbook”.  We used the same technique as in the 
previous case study for the query formulation.  LSI 
provides four lists of ranked methods for the four 
different dimensions. 

The Bugzilla reports4 contain the description of the 
bug fixes, including the methods CollectAddress and 
CollectUnicodeAddress (from nsAbAddressCollecter) 
responsible for the “unwanted” functionality that we are 
looking for in this case study. 

Table 4.  The top five methods related to the Mozilla 
bug after merging dynamic and LSI results with the 
corpus indexed using 1,500 dimensions; λ= 0.5;  
rlsi is the rank of these methods obtained using LSI 
alone; methods highlighted in bold contain the fixes 
for the bug done by the developers. 

Rank Class name Method name rlsi 
1 nsMsgHeaderParser ParseHeadersWithArray 2 

2 nsMsgHeaderParser ParseHeaderAddresses 4 

3 nsAbAddressCollecter CollectAddress 37 
4 nsAddrDatabase OpenInternal 36 

5 nsAbAddressCollecter CollectUnicodeAddress 46 

 
Table 4 shows the ranking obtained with the 

combined methodologies (column 1) and the ranking 
obtained by using LSI alone (column 4).  When using 
the SBP ranking 8,695 methods are retained and 
ranked; out of these, 206, including the CollectAddress, 
and CollectUnicodeAddress methods, obtain a score of 
1.0.  As in the previous case study, the SBP ranking 
provided high recall but low precision. 

4.5. Discussion 
The two case studies support our claim that 

combining expert judgments is effective in increasing 

                                                           
4 https://bugzilla.mozilla.org/attachment.cgi?id=147661&action=diff 



 

  

the precision of feature identification in the large 
software systems.  Our novel combination technique 
performs better than any one of the two techniques 
alone. 

The case studies were carried out with the two 
different normalizations proposed in Section 3: the 
variable standardizations in equation (6) and the simple 
transformations in equation (5).  We did not observe 
any substantial difference in ranking for the various LSI 
space dimensions.  Ranking of relevant methods were 
exactly the same.  Only in one experiment, for LSI 
using 1,500 dimensions, in the second case study, the 
rank of the CollectAddress method was exchanged with 
ParseHeaderAddresses (i.e., CollectAddress was ranked 
in position 2 and ParseHeaderAddresses in position 3).  
However, we do not have any empirical evidence to 
prefer one normalization technique over the other.  
More data and more experiments are needed to verify if 
there is really a significant difference between the two 
normalization techniques. 

On our data set, we did not observe any major 
changes while ranging λ between 10% and 90%.  
Extreme values below 1% or above 99% obviously tend 
to perform more close to either the LSI or the SBP 
ranking. 

5. Conclusions and Future Work 
The main contributions of the paper can be 

identified as the followings: 
• We proposed and defined a novel hybrid technique 

to combine an information retrieval based concept 
location technique with a dynamic technique for 
feature identification. 

• We applied the proposed combination of 
techniques in a new case study for bug location in 
Mozilla.  We also compared the results of the 
combined technique with our previous results on 
applying the dynamic technique only, through a 
replicated case study. 

• The combined technique allows the elimination of 
the knowledge-based filtering, present in the 
previous SBP ranking technique.  This has the 
advantage that the user does not need to acquire 
extensive knowledge of the target system a-priori. 

The case studies showed that the two combined 
techniques, based on different analysis methods and 
data, are not only expressing different judgments in 
trying to identify features, but that these judgments are 
complementary.  This is proved by the fact that the 
results obtained with the combined techniques betters 
any one of them used independently. 

The work presented here also opens the door to 
future efforts in the area.  More experiments are 
planned to compare results with other techniques.  

Also, a deeper investigation to determine heuristics that 
would identify the best value for the λ coefficient is 
under way.  Last but not least, we are working on 
extending this approach such that it would combine 
several techniques for feature location. 
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