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ABSTRACT
Aspect Oriented Programming is a programming paradigm
that addresses the issue of crosscutting concerns. Aspect
mining is a process that tries to identify crosscutting con-
cerns in existing software systems. The goal is to refactor
the existing systems to use aspect oriented programming to
make them easier to maintain and to evolve.

This paper presents a new approach in aspect mining that
uses clustering and proposes two techniques: a k-means based
clustering technique and a hierarchical agglomerative based
clustering technique. We are trying to identify the meth-
ods that have the code scattering symptom. For a method,
we consider as indication of code scattering a big number of
calling methods and, also, a big number of calling classes. In
order to group the best methods (candidates), we use in our
approach the vector-space model for defining the similarity
between methods. For testing the efficiency of the proposed
techniques, a number of Java applications are being used.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; I.5.3 [Computing Methodologies]: Pat-
tern Recognition—Clustering

Keywords
Aspect Mining, Clustering.

1. INTRODUCTION
The Aspect Oriented Programming(AOP) is a new para-
digm that is used to design and implement crosscutting con-
cerns [11]. A crosscutting concern is a feature of a software
system that is spread all over the system, and whose imple-
mentation is tangled with other features’ implementation.
Logging, persistence and connection pooling are well-known
examples of crosscutting concerns. In order to design and

implement a crosscutting concern, AOP introduces a new
modularization unit called aspect. At compile time, the as-
pect is woven to generate the final system, using a special
tool called weaver. Some of the benefits that the use of
AOP to software engineering brings are: better modulariza-
tion, higher productivity, software systems that are easier
to maintain and evolve.

Aspect mining is a relatively new research direction that
tries to identify crosscutting concerns in already developed
software systems without using AOP. The goal is to iden-
tify them and then to refactor them to aspects, to achieve a
system that can be easily understood, maintained and mod-
ified.

Crosscutting concerns in non AO systems have two symp-
toms: code scattering and code tangling. Code scattering
means that the code that implements a crosscutting con-
cern is spread across the system, and code tangling means
that the code that implements some concern is mixed with
code from other (crosscutting) concerns.

The paper is structured as follows: section 2 presents the
main issues related to the clustering problem, section 3 ex-
plains our approach, and section 4 presents the applications
we have used to test our approach and the results we have
obtained. Section 5 presents our conclusions and some fu-
ture research directions.

1.1 Related Work
Several approaches have been considered for aspect min-
ing until now. One approach was to develop tools that
would help the user to navigate and to analyze the source
code in order to find crosscutting concerns. Some of them
rely on lexical analysis, and some also include a type-based
search([6], [8], [20]). Other approach uses clone detection
techniques to identify duplicate code, that might indicate
the presence of crosscutting concerns([16] [15], [2]). These
are all static approaches that analyze the source code for
crosscutting concerns. There are also two dynamic approa-
ches: one that analyzes the event traces [1], and one that
uses formal concept analysis to analyze the execution traces
[18]. In [19] formal concept analysis is used again, but in a
static manner. A comparison of three different approaches
can be found in [3].

There is also a clustering approach that constructs the clus-



ters based on the methods names [17]. The user can then
navigate among the clusters, visualize the source code of the
methods and identify the crosscutting concerns.

2. CLUSTERING
Clustering, or unsupervised classification, is a data mining
activity that aims to partition a given set of objects into
groups (classes or clusters) such that objects within a cluster
would have high similarity to each other and low similarity
to objects in other clusters. The inferring process is carried
out with respect to a set of relevant characteristics or at-
tributes of the analyzed objects. Similarity and dissimilarity
between objects are calculated using metric or semi-metric
functions applied to the attribute values characterizing the
objects.

Let X = {O1, O2, . . . , On} be the set of objects to be clus-
tered. Using the vector-space model, each object is mea-
sured with respect to a set of m initial attributes A1, A2, ...
..., Am (a set of relevant characteristics of the analyzed ob-
jects) and is therefore described by an m-dimensional vector
Oi = (Oi1, . . . , Oim), Oik ∈ <, 1 ≤ i ≤ n, 1 ≤ k ≤ m. Usu-
ally, the attributes associated to objects are standardized in
order to ensure an equal weight to all of them ([7]).

The measure used for discriminating objects can be any met-
ric function d. We used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

vuut
mX

l=1

(Oil −Ojl)2

The similarity between two objects Oa and Ob is defined as

sim( ~Oa, ~Ob) =
1

d( ~Oa, ~Ob)

A large collection of clustering algorithms is available in the
literature. [7], [9] and [10] contain comprehensive overviews
of the existing techniques. Most clustering algorithms are
based on two popular techniques known as partitional and
hierarchical clustering.

In the following, an overview of both techniques is presented.

2.1 Partitioning Methods. Thek-means

Clustering Algorithm
A well-known class of clustering methods is the one of the
partitioning methods, with representatives such as the k-
means algorithm or the k-medoids algorithm. Essentially,
given a set of n objects and a number k, k ≤ n, such a
method divides the object set into k distinct and non-empty
clusters. The partitioning process is iterative and heuristic;
it stops when a “good” partitioning is achieved.

Finding a “good” partitioning coincides with optimizing a
criterion function defined either locally (on a subset of the
objects) or globally (defined over all of the objects, as in
k-means). These algorithms try to minimize certain criteria
(a squared error function); the squared error criterion tends
to work well with isolated and compact clusters ([10]).

Partitional clustering algorithms are generally iterative al-
gorithms that converge to local optima.

The most widely used partitional algorithm is the iterative
k-means approach. The objective function that the k-means
optimizes is the squared sum error (SSE). The SSE of a
partition K = {K1, K2, ...Kk} is defined as:

SSE(K) =
X

Kj∈K

X
Oi∈Kj

d2(Oi, fj) (1)

where the cluster Kj is a set of objects {Oj
1, O

j
2, ..., O

j
nj
} and

fj is the centroid (mean) of Kj :

fj =

0
BB@

njP
k=1

Oj
k1

nj
, . . . ,

njP
k=1

Oj
km

nj

1
CCA

Hence, the k-means algorithm minimizes the intra-cluster
distance. The algorithm starts with k initial centroids, then
iteratively recalculates the clusters (each object is assigned
to the closest cluster - centroid) and their centroids until
convergence is achieved.

2.2 Hierarchical Methods. The Hierarchical
Agglomerative Clustering Algorithm
(HACA)

Hierarchical clustering methods represent a major class of
clustering techniques. There are two styles of hierarchical
clustering algorithms. Given a set of n objects, the agglom-
erative (bottom-up) methods begin with n singletons (sets
with one element), merging them until a single cluster is
obtained. At each step, the most similar two clusters are
chosen for merging. The divisive (top-down) methods start
from one cluster containing all n objects and split it until n
clusters are obtained.

The agglomerative clustering algorithms that were proposed
in the literature differ in the way the two most similar clus-
ters are calculated and the linkage-metric used (single, com-
plete or average).

3. CLUSTERING APPROACH IN ASPECT
MINING

Our approach is to try to discover crosscutting concerns by
finding measures of the two symptoms: code scattering and
code tangling. The version presented here is just for scat-
tering. Our goal is to group the methods by the number of
calling methods(the fan-in metric) and also by the number
of calling modules(in this case we have considered classes
as modules). In [14] an approach to aspect mining is pre-
sented that also uses the fan-in metric, but in our opinion
the number of calling classes is also important. A method
might have a high fan-in value, but all the calling methods
belong to the same class. This might show a high-coupling
between the two classes and it might, even, indicate that
some refactoring is needed [4].

In order to group methods, we use two clustering algorithms:
the k-means algorithm and the Hierarchical Agglomerative
Clustering Algorithm HACA (section 2).



In our approach, the objects to be clustered are methods
X = {M1, M2, ...Mn}. The methods belong to the applica-
tion classes or are called from the application classes. We
consider two vector-space models:

• The vector associated with the method M is {FIV, CC},
where FIV is the fan-in value and CC is the number
of calling classes. We denote this model by M1.

• The vector associated with the method M is {FIV, B1,
B2, ...Bm}, where FIV is the fan-in value and Bi is the
value of the attribute corresponding to the application
class Ci. The value of Bi is 1, if the method M is called
from a method belonging to Ci, and 0, otherwise. We
denote this model by M2.

In the following, we will briefly describe the application of
k-means and HACA in the context of aspect mining.

k-means
We applied a modified version of the k-means algo-
rithm in order to optimally divide the set of meth-
ods into clusters. We define the “optimal” partition
K = {K1, K2, ...Kp} as the partition that minimizes
SSE(K) and we will refer to p as the “optimal” num-
ber of clusters (p ≤ k).

We also mention that in order to assure a “good”
choice of the initial centroids, we choose as initial cen-
troids the most dissimilar initial methods (objects).

We mention that, for simplicity, we will continue to
refer this method as k-means.

HACA
With the optimal number of clusters p determined af-
ter applying k-means, we have applied a modified ver-
sion of the traditional HACA algorithm in order to
determine p clusters in data (the agglomerative algo-
rithm stops when p clusters are reached).

We also mention that we have used complete-link as a
linkage metric, because, in general, complete-link gen-
erates compact clusters [10] and is a better choice for
our approach (single-link produces elongated clusters).

3.1 Identification steps
The approach consists of the following steps:

Step 1. Computation
Computation of the set of methods in the selected
source code, and computation of the attributes set val-
ues, for each method in the set.

Step 2. Filtering
Methods belonging to some data structures classes like
ArrayList, Vector are eliminated. Also, we eliminate
the methods belonging to some built-in classes like
String, StringBuffer, StringBuilder, etc.

Step 3. Grouping
The remaining set of methods is grouped into clusters
using k-means or HACA. The clusters are sorted by
the average distance from the point 0m in descending
order, where 0m is the m dimensional vector with each
component 0.

Step 4. Analysis
The clusters obtained are analyzed to discover which
clusters contain methods belonging to crosscutting con-
cerns. We analyze the clusters whose distance from 0m

point is greater than a threshold (eg. two).

The first three steps are done automatically, but the last one
must be done manually.

3.2 Example
In the following, we present a small example of the appli-
cation of our techniques. If we have the classes shown in
Table 1, the values of the attributes set when M1 is used
are presented in Table 2 and the clusters obtained are shown
in Table 3:

public class A {
private L l;

public A(){l=new L();}
public void methA(){ l.meth();}
public void methB(){ l.meth();}

}
public class L {

public L(){}
public void meth(){}

}
public class B {

public B(){}
public void methC(L l){ l.meth();}
public void methD(A a){a.methA();}

}

Table 1: Code example.

Method FIV CC

A.A 0 0

A.methA 1 1

A.methB 0 0

B.B 0 0

B.methC 0 0

B.methD 0 0

L.L 1 1

L.meth 3 2

Table 2: Attribute values when M1 is used.

Cluster Methods
C1 { L.meth }
C2 {A.methA, L.L }
C3 { A.A, A.methB, B.B, B.methC, B.methD }

Table 3: The obtained clusters.

3.3 Characteristics of our clustering approaches
Our clustering approaches have some advantages, reducing
the well known main disadvantages of k-means and HACA:

• we have adapted the traditional k-means approach in
order to determine the “optimal” number of clusters;

• the k-means dependence on the initial centroids is re-
duced by a good selection of the initial centroids (the
most dissimilar initial objects);



• the HACA based approach that we have used, instead
of merging all the methods in a single cluster, deter-
mines a good enough partition into clusters;

• the HACA based approach uses the complete-link as
linkage metric, choice that is better for our approach
(we are looking for compact clusters in data).

4. CASE STUDIES
For each case study, we have generated the vector-space
models M1 and M2 as inputs for clustering, and we have
applied two clustering algorithms: k-means and HACA.

4.1 Theatre
The second case study is a web application, called Theatre,
developed by an undergraduate student as her graduation
project. It allows searching for a show, reserving tickets for a
show, canceling reserved tickets; it displays the configuration
of a showr0om and the occupied places. The application was
developed using applets, servlets and databases. It has 27
classes (4 applets, 9 servlets, and 14 additional classes), and
336 methods.

The ”optimal” number of clusters obtained by k-means for
the model M1 is 9 and for the model M2 is 15. The dis-
tribution of methods inside each cluster is shown in Table
4. The first two clusters are identical for all the algorithms
independent of the vector-space model used.

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9
Methods 1 1 2 2 11 14 37 206 62

Table 4: No. of methods inside each cluster when
M1 and k-means are used.

The first cluster contains one method PrintStream.println(
String) which was used inside the applet classes to print log-
ging information. The second cluster also contains a method
used for logging LogWriter.log(...), from the servlets classes.
The application contains two distinct logging methods, be-
cause the applets are not implicitly allowed to write to files,
so applets logging information are written to the Java con-
sole of the browser.

The next two clusters contain methods used for the con-
struction of the user interface, and constructors for writing
to files.

The application uses a connection pool implemented using
the Singleton design patterns. In all the cases, all the meth-
ods belonging to the database connection were grouped into
the same cluster; the difference is the number of the clus-
ter they appear in. In one case, they are the only methods
contained in the cluster (when M2 is used as vector-space
model and k-means as the clustering algorithm).

4.2 Carla Laffra - Dijkstra’s Algorithm
We have considered as case study, Carla Laffra’s implemen-
tation of the Dijkstra algorithm [12], also. The ”optimal”
number of clusters obtained by k-means for the model M1

is 7 and for the model M2 is 5. The distribution of methods
in clusters is shown in Table 5.

Cluster C1 C2 C3 C4 C5
Methods 1 2 20 40 90

Table 5: No. of methods inside each cluster when
M2 and k-means are used.

In each case, the methods Component.repaint() and Doc-
Text.showline(String) appear in the first or the second clus-
ter. The method Component.repaint() is used each time a
new step is executed, or when the algorithm is finished or
when a new execution is started with new input data. This
method might be considered as part of the crosscutting con-
cern that refreshes the user interface after the execution of
different operations. The method DocText.showline(String)
is used to display guiding information in the TextArea or
to display error messages when some preconditions are not
met. The last usage may be considered as a crosscutting
concern.

In [18] two crosscutting concerns were discovered: locking
and unlocking the user graphical interface each time a func-
tionality was executed. The methods used to implement
them were not found in the clusters we have analyzed (a
better choice for the threshold will, certainly, influence the
final results). Another explanation can be the fact that the
approach used in [18] is trying to discover tangled code, and
the current version of our approach is only trying to discover
scattered code.

4.3 JHotDraw
Our last case study is JHotDraw, version 5.2 which contains
190 classes. The ”optimal” number of clusters obtained by
k-means for the model M1 is 20 and for the model M2

is 34. After analyzing the results we have observed that
better results were reported by using the model M1 and
HACA algorithm. That is why we briefly present only these
results.

Most of the crosscutting concerns discovered in [14] were also
discovered by our approach and they were not eliminated
during step 4. The first six clusters contain methods like
Point.Point(...), FigureEnumeration.hasMoreElements() or
Figure.displayBox() which cannot be considered as crosscut-
ting concern seeds.

The first occurences of methods belonging to crosscutting
concerns in the obtained clusters are as follows: Observer
in cluster 7, Policy Enforcement in cluster 7, Persistence in
cluster 10, Composite in cluster 11 and Contract Enforce-
ment in cluster 17.

5. CONCLUSIONS AND FURTHER WORK
We have presented a new clustering approach in aspect min-
ing based on vector-space models. It tries to identify the
methods used to implement crosscutting concerns that have
the scattered symptom. For that we compute the fan-in
metric of each method that is called inside the application
classes, and the number of classes that call this method. The
obtained results are divided in clusters using two clustering
algorithms: HACA and k-means. Some of the obtained clus-
ters are then manually analyzed to determine if they contain
methods used to implement crosscutting concerns.



The case studies used to test our techniques have shown that
the first clusters obtained contain almost the same meth-
ods independently of the clustering algorithm used. Most
of the methods belonging to these clusters are used to im-
plement crosscutting concerns. We also mention that the
approach proposed in this paper can be used for large ap-
plications(with large number of classes).

Further works can be done in the following directions:

• to discover a set of attributes that can indicate the tan-
gling symptom for methods. This set of attributes can
be easily integrated into our approach just by modify-
ing the used vector-space model;

• to apply other steps of filtering, for example to elimi-
nate the get/set type methods, as in [14];

• to use other vector-space models in the clustering ap-
proach, and to identify the models that will lead to
better results;

• to apply other clustering techniques in the context of
aspect mining;

• to use other approaches for clustering that were pro-
posed in the literature (such as variable selection for hi-
erarchical clustering [5], search based clustering [13]);

• to isolate conditions in order to decide the clustering
methods and the metric that will lead to better results;

• to apply this approach for other case studies like Pet-
Store and TomCat as in [14];

• to identify and to explain the reasons for success and
failure in our approach.
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