
Software Fault Prediction using Language Processing

David Binkley† Henry Feild† Dawn Lawrie† Maurizio Pighin‡

†Loyola College ‡Universita’ degli Studi di Udine
Baltimore MD Udine

21210-2669, USA 33100 Italy
{binkley, hfeild, lawrie}@cs.loyola.edu maurizio.pighin@uniud.it

Abstract

Accurate prediction of faulty modules reduces the cost
of software development and evolution. Two case studies
with a language-processing based fault prediction measure
are presented. The measure, refereed to as a QALP score,
makes use of techniques from information retrieval to judge
software quality. The QALP score has been shown to cor-
relate with human judgements of software quality. The two
case studies consider the measure’s application to fault pre-
diction using two programs (one open source, one propri-
etary). Linear mixed-effects regression models are used to
identify relationships between defects and QALP score. Re-
sults, while complex, show that little correlation exists in
the first case study, while statistically significant correla-
tions exists in the second. In this second study the QALP
score is helpful in predicting faults in modules (files) with
its usefulness growing as module size increases.

Keywords: information retrieval, code comprehension,
fault prediction, empirical software engineering

1 Introduction

This paper studies the application of information re-
trieval techniques to the problem of fault prediction. De-
tecting fault prone code early, regardless of software life-
cycle phase, allows for the code to be fixed at lower cost;
thus, a good fault predictor helps to lower development and
maintenance costs. Further motivation comes from Koru
and Tian who observe that “software products are getting
increasingly large and complex, which makes it infeasible
to apply sufficient reviews, inspections, and testing on all
product parts given finite resources”[10], highlighting the
need for good fault prediction.

A number of studies have found correlations between
structural characteristics of software modules and problems,
such as change or defect proneness [2, 7, 9, 10, 16, 19].

However, it has been observed that there is need for more
sophisticated measures. For example, Nortel Networks and
IBM engineers observe that the most troublesome modules
are not the ones with the highest structural-measure val-
ues [10]; thus, there is a need for more sophisticated tech-
niques.

This paper considers the application of such a technique:
it applies an Information Retrieval (IR) based technique to
the problem of fault prediction. One motivation for this is
IR’s focus on natural language (e.g., the words used to make
up the identifiers). Incorporating the semantics of natural
language complements the structural information in most
metrics presently used in fault prediction. Two case studies
show that IR-based techniques deserve future study in the
challenging domain of software fault prediction.

Historically, IR has been applied to unstructured text
(as opposed to the structured information used by database
management systems). Recently, IR techniques, which
can select relevant documents from large collections, “have
proven useful in many disparate areas, including the man-
agement of huge scientific and legal literature, office au-
tomation, and to support complex software engineering
projects”[1].

Although IR tools have focused on the analysis of prose;
many of the techniques developed are applicable to arbi-
trary text documents, including source code. For exam-
ple, Antoniol et al. and Marcus et al. independently ana-
lyzed comments and variables to (re)establish links between
source code and its documentation [1, 15]. When consider-
ing source code, potential “documents” include source files,
classes, or functions.

Many fault predictors focus on the maintenance phase
of the software life cycle (e.g., the work of Ostrand and
Weyuker [2, 20]). This allows the fault predictor to make
use of information about past faults in predicting current
faults. More general fault prediction makes use of a plethora
of structural measures in order to predict faults, even in
the absence of a fault history (e.g., the work of Menzies et
al. [16]). Example structural measures include lines of code,
operator counts, nesting depth, message passing coupling,

information flow-based cohesion, depth of inheritance tree,
number of parents, number of previous releases the module
occurred in, and number of faults detected in the module
during the previous release [2, 8].

In a recent paper, Menzies et al. argue that the partic-
ular set of structural measures used by many fault predic-
tors is less important than having a sufficient pool to choose
from [16]. Diversity in this pool is important. For example,
many existing measures are strongly correlated with lines of
code. One avenue to improve fault predictors is the search
for additional measures that are not correlated with those
in the existing pool. The measure considered herein is one
example.

The IR based measure studied in this paper, referred to as
a QALP score, is named after a project aimed at providing
Quality Assessment in the large using Language Process-
ing [14]. The QALP score was developed as part of a tool
aimed at leveraging human insight, intuition, and judgment
to assess code quality in the large. It does so by extract-
ing aspects of a system for consideration. From these, an
engineer can gain an understanding of the system’s over-
all quality. This assessment is useful, for example, in an
out-sourcing environment to evaluate the expected cost of
maintaining delivered code.

Although the QALP score was not developed for use in
fault prediction, its focus on quality makes it potentially
well suited to the task. In particular, it focuses on natu-
ral language, and thus indirectly the comprehensibility of
the code. To investigate the value of the QALP score in
fault prediction, two case studies are presented–one using
the open source programMozilla and the other a propri-
etary program. These studies assess the utility of the QALP
score in predicting fault-prone modules of source code.

The remainder of the paper includes background infor-
mation in Section 2, followed by a description of the ex-
perimental setup of the two case studies in Section 3. The
primary contribution of the paper is the two case studies
themselves, presented in Section 4, which are followed by
a discussion of related work and a summary in Sections 5
and 6.

2 Background

This section first provides background information on
the computation of the QALP score and the information
retrieval concepts that underly it. Next, it presents a brief
overview of the two software packages examined in the case
studies. Finally, a description of the statistical techniques
used is given.

2.1 QALP Score

The QALP score describes the similarity between a mod-
ule’s comments and its code. It is computed usingcosine
similarity, a technique developed for use in IR tools to re-
trieve documentsrelevant to a query [24]. In IR the term
documentrefers to any cohesive unit of text and is usually
the artifact returned as the result of a query. One popular
method for finding relevant documents uses avector space
model. Such a model considers each word as a separatedi-
mensionin an n-dimensional vector space. Thesimilarity
between two documents is then defined as the cosine of the
angle between their two vectors. Given that a query can also
be expressed as a vector, documents can be ranked accord-
ing to their cosine similarity to the query. The closer the
cosine of the angle is to 1.0, the closer the match.

Several techniques are applied to improve cosine simi-
larity. One employs a stop-list: a collection of words not
thought to be relevant to any query. For example, in En-
glish, words such as ‘the’ and ‘an’ are stop-list words. In the
context of this project, the comments are (assumed to be)
written in natural language, so they are stopped using an ap-
propriate natural language stop-list (for code with English
comments, a standard English-language stop-list is used).

A second technique,stemming, reduces the dimension-
ality of the vector space by eliminating word suffixes; thus,
ignoring the particular form of a word. For example, the
‘stem’ of ‘run’, ‘ running’, and ‘runs’ is ‘ run’. Since IR
uses exact matches of words, stemming improves document
matching.

The final technique weights the words in the vector
space. The QALP tool uses the standard methodterm
frequency−inverse document frequency(tf-idf) [22], which
provides a method for weighting the importance of a given
word (called aterm) to a document relative to the frequency
of the term in the entire collection. The weighting takes into
account two factors: term frequency in the given document
and inverse document frequency of the term in the whole
collection. In short, term frequency in a document shows
how important the term is in that document. Document fre-
quency of the term shows how common the term is. A high
weight usingtf-idf is achieved by a term that occurs much
more than the average in a document, but is rare in the entire
collection.

To compute a QALP score, two separate documents are
constructed from each module. One contains the comments
of the module and the other the code of the module. The
comments are stopped and stemmed. The code is only
stopped using a special stop-list that includes frequently
used words not indicative of the concepts present in the
code [14]. For example, the stop-list forC includes key-
words (e.g., while), predefined identifiers (e.g.,NULL),
library function and variable names (e.g.,strcpy and

errno), and all identifiers that consist of a single charac-
ter. The resulting score is a real number between zero, no
similarity, and one, ‘perfect’ similarity.

After stopping, program identifiers are split. The need
for splitting comes from identifiers made up from multiple
words fused together (e.g., rootcause). To facilitate match-
ing code with the comments, such identifiers must be di-
vided into their constituent parts [6, 13]. Herein, these parts
are referred to as “words” – sequences of characters with
which some meaning may be associated. Words are often
demarcated by the use of word markers (e.g., CamelCase-
ing or underscores). For example, the identifierssponge-
Bob andsponge bob both contain the demarcated words
sponge andbob.

When words are not explicitly demarcated, a splitting al-
gorithm is used to divide each identifier into its constituent
words. A greedy algorithm that recursively searches for the
longest dictionary prefix and suffix of (the remaining part
of) an identifier is one option [6]. For example, consider the
code

/* Sponge Bob needs to be given a bath */
givebath(spongebob);

The greedy algorithm decomposesgivebath into give and
bath andspongebob into sponge andbob.

In addition to splitting the code, the comments are
stemmed. In the example above, stemming replacesgiven
with its present tense formgive. After stemming and split-
ting, the similarity between the comments and the code
comes through in the QALP score as measured using the
cosine similarity technique. Note that without stemming the
comments and splitting the identifiers, there are no ‘words’
in common between the two; thus, the QALP score would
be zero indicating a lack of overlap.

In the study QALP scores are computed by the search
engine Yari, developed by Victor Lavrenko at the Center
for Intelligent Information Retrieval [12]. One advantage
of using Yari is that the search engine is freely available for
research purposes along with its source code, so that new
applications can be developed based on a collection indexed
by Yari. In addition to the ability to build retrieval collec-
tions from arbitrary text, additional functionality was been
included in Yari. For example, there are several similar-
ity functions including cosine similarity and part-of-speech
recognition functions that enable the recognition of nouns
in natural English.

2.2 Study Subjects

Two programs were used in the case studies: version 1.6
of the open source browser,Mozilla, and a proprietary pro-
gram, referred to asMP . These programs were chosen
based on their size and the availability of defect (fault) data.

In the case ofMozilla this data was extracted by examin-
ing the bug database maintained by Bugzilla which assigns
each bug to a set of classes [9]. ForMP fault data was col-
lected in a similar in-house database in which two kinds of
bugs are recorded: those revealed during the integration test
phase and those generated by faults “in the field” during op-
eration. For both, the database stores the module containing
the fault, its date, a description of fault, and the customer(if
present).

In more detail,Mozilla is coded primarily in C++, with
parts in C and Java. It contains 3,004,824LoC(lines of code
as measured by the UNIX utility wc) and 2,383,034SLoC
(source lines of code as measured bySLOCCount [26]).
SLoCincludes only non-comment, non-blank lines of code.
By language,Mozilla contains 1,549,636SLoC of C++,
829,814SLoCof C, and 3,584SLoCof Java. The sec-
ond case study,MP , is written exclusively in C and has
454,609LoC and 282,246SLoC. The software was written
for a business application in a mid-size enterprise. It runs
under UNIX and interfaces with Infromix database using a
specific access library (All-II).

As described by Ferenc et al., the defect data forMozilla
contains the number of defects found in the 3,677 C++
classes [9]. The data was collected by examining the bugs
from bugzilla. Each bug report included a list of lines from
one or more files that had been modified to fix the bug. By
examining the source code, each bug was assigned to one or
more classes; thus, the final outcome was a bug count per
class. If the bug fix changed more than one class then each
effected class had its count incremented. Classes generated
on-the-fly were ignored. In all, more than half of the classes
(1,850 of them) contained no bugs, and about one fifth (666
of them) contained only one bug.

ForMP defect data was available for each of the 1,161
C source files. The defects were tracked in a database. All
defects had an associated date and module. Given that the
program was developed by a team of 20 engineers, one pro-
grammer from the team was assigned to fix a particular de-
fect. For this reason, many programmers worked on the
same module over the 10 to 12 year life-cycle of the project.

2.3 Statistical Tests

Linear mixed-effects regression models are used to an-
alyze the data [25]. Such models easily accommodate un-
balanced data, and, consequently, are ideal for this analysis.
These statistical models allow the identification and exami-
nation of important explanatory variables associated witha
given response variable.

The construction of a linear mixed-effects regression
model starts with a collection of explanatory variables and
a number of interaction terms. The interaction terms al-
low the effects of one explanatory variable to change de-

pending upon the value of another explanatory variable.
Backward elimination of statistically non-significant terms
(p > 0.05) yields the final model. Some non-significant
variables and interactions are retained to preserve a hierar-
chical well-formulated model [18]. To provide a measure
of model quality, ap-value and the coefficient of determi-
nationR2 are reported with each model. The coefficient
of determination can be interpreted as the percentage of the
variation in the number of defects that is explained by the
model.

In the mixed-effect models, computing a standardt-
value for each comparison and then using the standard crit-
ical value increases the overall probability of a Type I er-
ror. Thus, Bonferroni’s correction is made to thep-values
to correct for multiple testing. In essence eachp-value is
multiplied by the number of comparisons and the adjusted
p-value is compared to the standard significance level (0.05)
to determine significance. Bonferroni’s correction is chosen
because it is a rather conservative test.

3 Experimental Setup

This section describes the two steps taken to setup the
data collection for the case studies. In order to focus these
studies on understanding the value and viability of using the
QALP score in fault prediction, only three metrics are con-
sidered: the QALP score and the two structural measures
LoC(the total lines of code) andSLoC(the total source lines
of code, that is, non-comment, non-blank lines of code).
The first step computes the structural measures for each
module (eachMozilla class and eachMP file).

The second step, computing the QALP score, includes
three preprocessing phases, as pictured in Figure 1. The
first phase (from Figure 1a to 1b) breaks the source into
modules. Natural modules include functions, classes, and
files, but the QALP score computation is not tied to any
given definition. In this phase, the method of reporting the
defect data determined the type of module used when com-
puting the QALP score. Often, this step can be omitted as
the source is physically laid out by module.MP source,
for example, was organized by file, which matches the de-
fect data. ForMozilla, some files contain multiple classes.
In such cases, Phase 1 gathers together the code associated
with a single class into a single file used to hold the source
of the particular module.

The second phase separates each model into comments
and code as illustrated in Figure 1c. This is done using
src2srcmlto insert XML tags throughout the code [4]. Once
marked-up, the source is then run through a simple fact ex-
tractor to separate the comments and code. The comments
include those that occur immediately before a class or func-
tion definition and those that appear within the class or func-
tion.

Figure 1. The preprocessing steps.

The final phase applies language processing techniques
to improve the efficiency and the accuracy of the cosine sim-
ilarity. In particular, as illustrated in Figure 1d, the identi-
fiers are split and the comments are stopped and stemmed.
Finally, Yari is used to compute the QALP score for each
module.

4 Discussion of Results

The analysis begins with a simple graphical inspection
followed by statistical models for each of the two case stud-
ies. It then concludes with a discussion comparing the two
models. The graphical analysis, shown in Figure 2, plots
the maximal QALP scores for all modules of a given defect
count. For example, of allMozilla classes with six reported
defects, the maximal QALP score is just greater than 0.4.

An inverse relationship is expected between QALP score
and defects where high quality modules (those with a high
QALP score) are low in defects. As is evident in Figure 2,
the expected pattern is seen where higher QALP scores
form anenvelopethat appears as a ‘line’ sloping down and
to the right. This envelope is more pronounced forMozilla
– the top line of Figure 2. The maximum QALP score of
MP , the lower line in Figure 2, also shows this relation-
ship although it is less pronounced.

4.1 Mozilla

The statistical analysis first considersMozilla. The ini-
tial linear mixed-effects regression model for predictingthe
defects inMozilla begins with the explanatory variables

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 2 4 6 8 10 12 14

Q
A

LP
 S

co
re

Defect Count

Mozilla
MP

Figure 2. Maximum QALP score per defect
count for both programs.

QALP score, denoted asqs, LoC, SLoC, and their inter-
actions. From this model statistically insignificant terms
(those having ap-value> 0.05) are removed. Dishearten-
ingly, the QALP score is one of the terms removed. The last
model (during the elimination) to include the QALP score
is

defects= 0.68 − 0.15qs

(1)+ 7.3 × 10−3 LoC

− 6.8 × 10−4 SLoC

− 1.0 × 10−6 LoC × SLoC

The negative coefficient forqs in this model would be good
news except that thep-value for the QALP score of 0.829 is
quite high; thus, QALP score is not significant in predicting
the value ofdefects.

The final model, which includes onlyLoC, SLoC, and
their interaction, is

defects= 0.61 + 7.2 × 10−3 LoC

(2)− 6.1 × 10−4 SLoC

− 1.0 × 10−6 LoC × SLoC

Its coefficient of determination,R2 = 0.156, is quite low
(the model’sp-value is< 0.0001). Thus, forMozilla nei-
ther the QALP score nor the size measures prove to be good
defect predictors.

An inspection of code forMozilla generated three rele-
vant insights as to why the QALP score proved an ineffec-
tive measure for predicting faults. First, many of the classes
had few, if any reported defects and, second, there are very
few comments. A complete absence of comments produces
a QALP score of zero. When these zeros occur in classes
with a wide range of faults, they produce statistical ‘noise’,
which interferes with the ability of the statistical techniques
to find correlations.

Second, many of the comments that did exist were either
used to make up for a lack ofself documenting codeor were
outward looking. In the first case, the code uses identifiers
that are not easily understood out of context and comments
are required to explain the code. In the second case, com-
ments are intended for users of the code and thus ignore the
internal functionality of the code. In both cases, the code
and comments have few words in common, which leads to a
low QALP score. For example, the code snippet in Figure 3
shows an example of both types of comments. This snippet
determines whether there is anything other than whitespace
contained in the variablemText. Unfortunately, it is not
clear from the called function name,IsDataInBuffer, that
it is simply a whitespace test. The first comment informs
the reader of this; thus, the comment is compensating for a
lack of self-documentation. The second comment is an out-
ward looking comment, reflecting on the implications that
the local code segment may have on the system as a whole.

The third insight follows fromMozilla being open
source, which means that it includes many different coding
practices and styles [10]. This is evident when inspecting
samples of the code where identifier naming and general
commenting are not done in a systematic fashion.

4.2 MP

The statistical analysis ofMP begins with the same set
of explanatory variables as that ofMozilla. As seen in Fig-
ure 2, the maximum QALP scores forMP show a less pro-
nounced downward-right trend than those ofMozilla. How-
ever, the final model (after removal of statistically insignifi-
cant terms) is substantially different. This model, given be-
low in Equation 3, includes several interaction terms, mean-
ing that no direct correlation between the explanatory vari-
ables and the response variable can be given.

defects= −1.83 + qs(−2.4 + 0.53 LoC − 0.92 SLoC)

(3)
+ 0.056 LoC

− 0.058 SLoC

The model’s coefficient of determination (R2 = 0.614, p-
value< 0.0001) indicates that it explains just over 61% of
the variance in the number of defects.

The model indicates that the QALP score plays a role in
the prediction of faults. Of prime interest is the coefficient

// Don’t bother if there’s nothing but whitespace.
// XXX This could cause problems...
if (! IsDataInBuffer(mText, mTextLength))
break;

Figure 3. Mozilla-1.6 Example Code Snippet

Figure 4. Break even point for coefficient of
QALP score.

of the QALP score:−2.4 + 0.53 LoC − 0.92 SLoC. For
higher QALP scores to be associated with lower defects,
this coefficient has to be negative. In a simple model, free
from interactions, this coefficient would be a constant and
if less than zero the model would exhibit the desired cor-
relation. In the presence of interactions, the value of the
coefficient depends on other explanatory variables. Consid-
ering the coefficients in Equation 3, asSLoCincreases, the
coefficient ofqs grows increasingly negative. A simplis-
tic reading of this is that for larger modules, QALP score
performs better. However, the coefficient forLoC in Equa-
tion 3, has the opposite interpretation: asLoC grows the
coefficient grows increasingly positive.

Taken together these two make interpretating the model
difficult. One approach is a graphical interpretation as
shown in Figure 4 whereLoC is graphed againstSLoC. As
LoC is bounded from below bySLoC, no point can occur
below the solid 45 degree line. The gray area in the fig-
ure shows the region in which the coefficient ofqs(−2.4 +
0.53 LoC − 0.92 SLoC) is dominated by−0.92 SLoC. In
this region, the coefficient ofqs is negative (the region has
a slight downward shift to account for the constant -2.4).
Above the shaded region the term+0.53 LoC dominates
andqs has a positive coefficient. The points in the graph
represent the actual values for the modules ofMP . As all
of these points fall in the shaded region, the coefficient of
qs is negative over the range of combinations ofLoC and
SLoCactually observed.

A second method for interpreting models with multiple
interactions uses a quantitative approach. The approach
considers several values for one of the variables. In this
case the ratio ofLoC to SLoCis considered. Typical values
to use include the mean together with the low and high end
of the 95% confidence interval around the mean. For the
model in Equation 3, these yield

LoC = 1.665 SLoC (lower bound)
LoC = 1.676 SLoC (mean)
LoC = 1.687 SLoC (upper bound)

Substituting these values in forLoCof Equation 3 yields the
following three models

Using the Lower Bound
defects= −1.83 + qs(−2.4 − 0.047 SLoC)

+ 0.0345 SLoC

Mean
defects= −1.83 + qs(−2.4 − 0.041 SLoC)

+ 0.0351 SLoC

Using the Upper Bound
defects= −1.83 + qs(−2.4 − 0.035 SLoC)

+ 0.0357 SLoC

The positive coefficient ofSLoCat the end of each equa-
tion supports the unsurprising result that an increase in mod-
ule size (as measured in the non-comment, non-blank lines
of code) brings an increase in defects. In this case at the rate
of about three and a half per 100SLoC. Due to the interac-
tion with qs, this number should be taken as a rather rough
estimate.

The coefficient ofqs in all three equations is negative;
meaning that QALP score has the desired slope. Further-
more, as module size increases, this coefficient grows in-
creasingly negative; thus, QALP scores are better predictors
for larger modules.

One final statistical model forMP is considered. In
Equation 3 there is a complex interaction betweenLoCand
SLoC. In particular the two have opposite signs. This makes
general statements about the trend for larger or smaller
modules difficult. In terms of the code, these two counts
differ by two quantities: the number of comment lines and
the number of blank lines. To better understand their im-
pact, the number of comment lines per module, referred to
as cl, was separately computed and added as an explana-
tory variable. (Also, adding blank-lines produces a lin-
early redundant variable as the number of blank lines is
LoC − SLoC − cl.) The final mixed-effects regression
model is shown in Equation 4.

defects= 1.1 + qs(12.6 − 0.0761 SLoC)

(4)− 0.12 LoC

+ 0.13 SLoC

+ 0.22 cl

+ 4.5 × 10−6 LoC × SLoC

+ 6.0 × 10−5 LoC × cl

− 1.3 × 10−4 SLoC × cl

This model’s coefficient of determination (R2 = 0.714),
indicates that the model explains just over 71% of the vari-
ation in the number ofdefects.

While in some ways this model is more complex (e.g., it
includes three interaction terms) the interpretation ofqs is
simpler (its coefficient includes only a constant andSLoC).
Consideringqsfirst, the QALP score has the desired effect
for modules (files) over a certain size (in this case 166SLoC,
the point at which−0.0761 SLoC is larger than12.6). In
other words, the desired inverse relationship between the
QALP score and defect rate is seen when there are more
than 166 source lines of code in a file (this is true for 49%
of MP ’s files). Above this size, a higher QALP score in-
dicates that the module will have fewer defects, whereas a
low QALP score indicates there will be a higher number of
defects. The slope of this relationship increases assloc in-
creases. Fault prediction for smaller files is less of an issue
as inspection of files smaller than 166SLoCis not too de-
manding. This is particularly true ofMP where each file
includes multiple functions.

Similar to the model of Equation 3, in this model as
module size increases, this coefficient grows increasingly
negative; thus, QALP scores are more valuable for larger
modules. The other non-interaction variables (the next three
lines of the equation) also indicate thatdefectsincrease with
increased code size. This is best seen by expanding theLoC
term into SLoC, cl, and blank lines. Recombining terms
leavesSLoCandcl both with positive coefficients (of 0.01
for SLoCand 0.1 forcl). It also leaves blank-lines with a
negative coefficient, so (presumably up to some limit) white
space improves code quality.

As with Mozilla, an inspection of the code was per-
formed, in this case to try and understand why the predic-
tion models were so different for the two programs. The
first noticeable attribute of theMP source is its modular-
ization: eachMP module (i.e., each file) contained many
short, well-commented functions. In addition, the com-
ments include those that areinward-looking(i.e., they refer
to the functionality of the code). These characteristics arose
from very strict programming rules adopted by the software
group. Each module, independent of its functionality, was
built starting from a fixed skeleton into which the engineer
inserted code and comments. A team manager directed the

project, and a team of three to four senior engineers oper-
ated on the framework by specifying the set of libraries at
the disposal of the programmers, the skeleton of the mod-
ules, and the operating environment. This gave rise to a
strict structure for each module in terms of comments, vari-
able declaration (often done with predefined macros), and
having the same kind of function in modules of the same
type (e.g., those dealing with the GUI all had the same struc-
ture independent of the particular data-set they managed).
In addition, the type of general comments were specified
and were mandatory for principal functions.

In conclusion, for the second of the two programs stud-
ied, the QALP score has an inverse correlation with defect
rate making it an effective part of a fault-predictor (in the
‘comment-lines’ model this is whenSLoC is greater than
166). Furthermore, it improves its effectiveness as the num-
ber of source lines of code increases.

4.3 Discussion

This section discusses three points: first an observation
made when comparing the models forMozilla andMP ,
second, a comparison of the source code for the two pro-
grams, and finally the two separate ‘kinds’ of comments that
appear in the code. To begin with, the observation deals
with cumulative defects. Previous empirical studies have
validated the 80:20 principle, which states that a large ma-
jority (around 80%) of problems (i.e., changes or defects)
are actually rooted in a small proportion (around 20%) of
the code [7, 21, 23]. Using this as a guideline, Bell et al. as-
sess their fault prediction model by ranking files based on
the model’s prediction and then selecting the top 20% of
the ranked files [2]. They report that these files contained
71.1% of the faults. However, this is not a complete pic-
ture of the approaches’ performance as it does not consider
the percentage of faults in the top 20% of files when ranked
by actualfaults. This percentage represents the best perfor-
mance that a fault predictor can hope for.

Following Bell et al., the top of Figure 5 shows the cumu-
lative percent of faults when modules are ranked using the
predictednumber of faults (gray line) and theactualnum-
ber of faults (black line). The gap between these two curves
(shown graphically in the lower part of Figure 5) captures
the room for improvement in the prediction. Comparing the
charts illustrates the superiority of the model forMP .

Looking at the 20% point in the upper graph forMozilla,
the top 20% of fault-containing modules include 83% of the
faults (thus,Mozilla is almost right in-line with the 80:20
rule). Graphically, when sorted on predicted faults, the top
20% of modules include 55% of the faults. Thus, there is
significant room for improvement in the prediction.

In comparison, the upper graph forMP shows the top
20% of fault-containing modules include 62% of the faults

Mozilla MP

Figure 5. Cumulative Faults

(thus the distribution of faults appears more uniform for
MP). When sorted on predicted faults, the top 20% of the
modules include only 54% of the faults. While this is sig-
nificantly less that the 80:20 rules would predict, it is quite
good considering that 62% is the best that could be attained
(the upper black line). In other words, the model generated
forMP only ‘misses’ 8% of the possible faults it could find
at the 20% point.

Given thatMozilla’s model is a comparatively poor pred-
icator of faults, a comparison of the source code forMP

andMozilla was performed. This comparison revealed that
the environment in whichMP was written includes strict
style guidelines that encourage a kind of uniformity across
all of the source code giving the engineers less freedom in
writing code, in writing comments, and in organizing mod-
ules. In contrast, the development of open-source software
includes “a spectrum of processes from undefined and flex-
ible processes to some extent defined and controlled pro-
cesses among open-source projects.” [10]. Consistent with
thisMozilla showed evidence of a diversity of programmers
and programming styles.

From the comparison one insight revealed is that QALP
scores appear to produce useful information in an environ-

ment where the coding style is homogeneous. The reason
for this is that extreme variation caused by programmer di-
versity dwarfs the current predictive ability using QALP
scores. Assuming that authorship of code can be ascer-
tained [11], QALP scores may be significant in theMozilla
environment for a particular author, since it can be assumed
that a given programmer would use consistent style.

Finally, source inspection also revealed that, in the light
of QALP scores, comments can (roughly) be divided into
two types: inward-lookingand outward-looking. In the
models forMP , the QALP score benefits from the pres-
ence ofinward-lookingcomments. In contrast, the absence
of such comments inMozilla leads, in part, to an inferior
model forMozilla. Together these observation suggest two
things: first, a need for increased inward-looking documen-
tation, and second, the QALP score would benefit from the
incorporation of techniques that better assess the value of
outward-looking comments.

5 Related Work
This section considers four recent projects in the area of

fault prediction. First, Gyimóthy et al. describe the calcula-
tion and validation of a collection of object-oriented metrics

for fault-proneness detection [9]. Many of these metrics
were originally proposed by Chidamber and Kemerer [3].
They evaluate the metrics by comparing fault predictions
against the defects extracted from the Bugzilla database us-
ing four assessment methods (e.g., one method used was
based on machine learning). The methods all yield simi-
lar results. They do note the need for measures not corre-
lated withLoC. As the QALP score is not correlated with
LoC [13], it would be interesting to include it in the predic-
tors generated by Gyimóthy et al.

Second, Koru and Tian show that the top modules in
change-count rankings and those with the highest measure-
ment values are different [10]. The authors use change
count in preference to defect count as they reported several
issues when collecting defect data, such as completeness,
consistency in data collection, and problems with mapping
defects onto modules. They observe that, at the signifi-
cance level ofα = 0.01, the top-change modules are nei-
ther the top-measurement modules when identified by rank-
ing nor the top measurement modules when identified by
a voting mechanism. Furthermore, using clustering to par-
tition modules into those with similar number of changes,
they again observe that the high-change modules are not
the modules with the highest measurement values. (The
high-change models do have fairly high measurement val-
ues.) That structural measures alone do not detect the top-
change modules, suggests the need for non-structural mea-
sures, such as the information-retrieval based QALP score.

Third, Bell et al. build a fault predictor based on file char-
acteristics that can be objectively assessed: LoC, whether
this was the first release in which the file appeared, how
many previous releases the file occurred in, how many faults
were detected in the file during the previous release, etc. [2].
Based on these characteristics, they build negative binomial
regression models to predict files that are likely to contain
faults in the next release. Such models are an extension
of linear regression designed to handle outcomes for non-
negative integers. The advantage of using such a technique
is that it allows for some degree of additional variability in
fault counts that is not explained by any of the available
predicator variables. The use of more sophisticated statisti-
cal modelling, as done by Bell et al., partially motivated the
use of linear mixed-effects regression models in this study
of the QALP score.

Finally, Menzies et al. report that how the attributes are
used to build a fault predictor is much more important than
which particular attributes are used [16]. They build several
predictors using a variety of techniques all starting from the
same set of measures. Many of the measures bring similar
information to a model and thus different techniques often
choose different subsets of the measures, while achieving
similar results. The authors note the value that diversity
brings to the set of measures. Again, the QALP score, not

being correlated with the structural measures, would make
an interesting addition.

6 Summary and Future Work

A number of studies have validated the relationship be-
tween structural measures and some external attributes as-
sociated with problems, such as defectiveness, change-
proneness, maintenance difficulty, etc. [2, 7, 9, 10, 16, 19].
One theme noted in many of these studies is the need for
more complex, non-structural measures.

This paper presents two case studies of the QALP score,
a non-structural IR-based measure that assesses module
quality and thus fault proneness. One advantage of the
QALP score is that it is applicable during both initial devel-
opment, and maintenance and evolution. The QALP score
is useful in one of two statistical models, which suggests
two things: first, the measure has room for improvement,
and second information retrieval based measures warrant
future study in fault predictors.

Two promising areas of future work include investigat-
ing scoring techniques for functions with outward-looking
comments and incorporating some measure of ‘concept cap-
turing’ in the score. In the first area, quality of outward-
looking comments might be measured by considering their
similarity with the external documentation. The second area
is based on the observation of Deissenböck and Pizka that
“a reader of a program tries to map the identifiers read to
the concepts they may refer to” [5]. Future improvements
to the QALP score will attempt to use ideas from machine
learning [17] to identify the concepts captured in program
identifiers.

7 Acknowledgments

This work is supported by National Science Founda-
tion grant CCR0305330. The authors wish to thank Ti-
bor Gyimóthy’s research group for providing theMozilla
fault data and the anonymous referees for providing such
extremely helpful comments.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation.IEEE Transactions on Soft-
ware Engineering, 28(10), October 2002.

[2] R. Bell, T. Ostrand, and E. Weyuker. Looking for bugs
in all the right places. InProceedings of the 2006 In-
ternational Symposium on Software Testing and Anal-
ysis (ISSTA), Portland, MA, July 2006.

[3] S. Chidamber and C. Kemerer. A metrics suite for ob-
ject oriented design.IEEE Transactions on Software
Engineering, 20(6), June 1994.

[4] ML Collard, HH Kagdi, and JI Maletic. An XML-
based lightweight C++ fact extractor.Program Com-
prehension, 2003. 11th IEEE International Workshop
on, pages 134–143, 2003.

[5] F. Deißenböck and M. Pizka. Concise and consis-
tent naming. InProceedings of the 13th International
Workshop on Program Comprehension (IWPC 2005),
St. Louis, MO, USA, May 2005. IEEE Computer So-
ciety.

[6] H. Feild, D. Binkley, and D. Lawrie. An empiri-
cal comparison of techniques for extracting concept
abbreviations from identifiers. InProceedings of
IASTED International Conference on Software Engi-
neering and Applications (SEA 2006), Dallas, TX,
November 2006.

[7] N.E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system.IEEE
Transactions on Software Engineering, 26(8), 2000.

[8] R. Ferenc, A. Beszédes, M. Tarkiainen, and
T. Gyimóthy. Columbus - reverse engineering tool
and schema for C++. InIEEE International Confer-
ence on Software Maintenance (ICSM 2002), Mon-
treal, Canada, October 2002. IEEE Computer Society
Press, Los Alamitos, California, USA.

[9] T. Gyimóthy, R. Ferenc, and I. Siket. Emperical vali-
dation of object-oriented metrics on open source soft-
ware for fault prediction.IEEE Transactions on Soft-
ware Engineering, 31(10), October 2005.

[10] G. Koru and J. Tian. Comparing high-change modules
and modules with the highest measurement values in
two large-scale open-source products.IEEE Transac-
tions on Software Engineering, 33(8), August 2007.

[11] J. Kothari, M. Shevertalov, E. Stehle, and Spiros Man-
coridis. A probabilistic approach to source code au-
thorship identification. InProceedings of the 4th Inter-
national Conference on Information technology: New
Generations, Las Vegas, NV, April 2007.

[12] V. Lavrenko and W.B. Croft. Relevance-based lan-
guage models. In W. B. Croft, D. J. Harper, D. H.
Kraft, and J. Zobel, editors,Proceedings on the
24th annual international ACM SIGIR conference on
Research and development in information retrieval,
2001.

[13] D. Lawrie, D. Binkley, and H. Feild. Syntactic iden-
tifier conciseness and consistency. InProceedings of
2006 IEEE Workshop on Source Code Analysis and
Manipulation (SCAM’06), Phidelphia, USA, Septem-
ber 2006.

[14] D. Lawrie, H. Feild, and D. Binkley. Leveraged qual-
ity assessment using information retrieval techniques.
In 14th International Conference on Program Com-
prehension, 2006.

[15] A. Marcus and J. Maletic. Recovering documentation-
to-source-code traceability links using latent semantic
indexing. InProceedings of the25th IEEE/ACM Inter-
national Conference on Software Engineering, Port-
land, OR, May 2003.

[16] T. Menzies, J. Greenwald, and A. Fransk. Data mining
static code attributes to learn defect predictors.IEEE
Transactions on Software Engineering, 33(1), January
2007.

[17] T. Mitchell. Machine learning. WCB McGraw-Hill,
1997.

[18] C. Morrell, J. Pearson, and L. Brant. Linear transfor-
mation of linear mixed effects models.The American
Statistician, 51, 1997.

[19] J.C. Munson and T.M. Khoshgoftaar. The detection of
fault-prone programs.IEEE Transactions on Software
Engineering, 18(5), 1992.

[20] T. Ostrand and E. Weyuker. On the automation of soft-
ware fault prediction. InProceedings of1st Testing:
Academic and Industrial Conference (TAIC-PART),
Windor, UK, August 2006.

[21] A.A. Porter and R.W. Selby. Empirically guided soft-
ware development using metric-based classification
trees.IEEE Software, 7(2), 1990.

[22] G. Salton and M. McGill. Introduction to modern
information retrieval. McGraw-Hill Book Company,
1983.

[23] J. Tian and J. Troster. A comparison of measurement
and defect characteristics of new and legacy software
systems.Systems and Software, 44(12), 1998.

[24] C.J. van Rijsbergen.Information retrieval. Butter-
worths, London, second edition, 1979.

[25] G. Verbeke and G. Molenberghs.Linear mixed mod-
els for longitudinal data. Springer-Verlag, New York,
second edition, 2001.

[26] David A. Wheeler. SLOC count user’s guide, 2005.
http://www.dwheeler.com/sloccount/sloccount.html.

