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Abstract

The research described in this paper is concerned with
the application of information retrieval to software mainte-
nance, and in particular to the problem of recovering trace-
ability links between the source code of a system and its free
text documentation.

We introduce a method based on the general idea of vec-
tor space information retrieval and apply it in two case
studies to trace C++ source code onto manual pages and
Java code onto functional requirements. The case studies
discussed in this paper replicate the studies presented in
references [3] and [2], respectively, where a probabilistic
information retrieval model was applied. We compare the
results of vector space and probabilistic models and formu-
late hypotheses to explain the differences.

1. Introduction

Automated Information Retrieval (IR) systems are con-
cerned with the retrieval of documents from (usually very
large) document databases, based on user information
needs [8]. They prepare the collection of documents for
retrieval through an indexing process; user needs are cap-
tured by phrases which are themselves indexed and used to
rank the documents.

IR has proven useful in many disparate areas, includ-
ing the management of huge scientific and legal literature,
office automation, and the support to complex engineering
projects such as software engineering projects.

We believe that IR techniques can help software mainte-
nance by providing a way to semi-automatically recovering
traceability links between the documentation of a system
and its source code. The underlying assumption is that pro-
grammers use meaningful names for code items; indeed, we
believe that most of the application domain knowledge that

programmers process when writing the code is captured by
the mnemonics for identifiers.

Most of the documentation that accompany large soft-
ware systems consists of free text documents expressed in
a natural language. Examples include requirements and de-
sign documents, user manuals, logs of errors, maintenance
journals, design decisions, reports from inspection and re-
view sessions, and also annotations of individual program-
mers and teams. In addition, free text documents often cap-
ture the available knowledge of the application domain, for
example in the form of laws and regulations or in techni-
cal/scientific handbooks. Therefore, techniques to recover
traceability links between code and free text documents are
a precious aid to software maintenance as they bridge the
gap between different views of a systems, and between the
system’s views and its domain of application.

Reference [3] highlights several scenarios of software
maintenance and evolution that would benefit from the ex-
istence of such links, including program comprehension,
design recovery, requirement tracing, impact analysis, and
reuse of existing software. The paper also introduces an IR
method to trace source code, and in particular C++ classes,
onto free text documents and discusses the results obtained
in a case study where the code of the LEDA library (Library
of Efficient Data Types and Algorithms — available from
http://www.mpi.sb.mpg.de/LEDA)was traced back onto the
manual pages. The results — measured in terms of two well
known IR metrics, namely precision and recall — were en-
couraging and, therefore, we applied the method in other
scenarios, such as impact analysis [1] and requirement trac-
ing [2]. In all cases the results were satisfactory and this
enforced our believe that IR can play a useful role in main-
tenance.

The case studies discussed in references [3, 2] applied
a probabilistic IR model. With this model, documents Di

are ranked according to the probability Pr(DijQ) of being
relevant to a query Q extracted from a source code com-
ponent. To compute this ranking we exploited the idea of
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a language model, i.e. a stochastic model that assigns a
probability to every string of words taken from a prescribed
vocabulary [7]. We estimated a language model (actually, a
unigram approximation of the model) for each document or
identifiable section and used a Bayesian classifier to score
the sequences of mnemonics extracted from each source
code class against the models. A high score indicated a
high probability that a particular sequence of mnemonics
be relevant to the document; therefore, we interpreted it as
an indication of the existence of a semantic link between the
class from which the sequence had been extracted and the
document.

In the present paper we test the hypothesis that using
other IR models could also give good results. In particular,
we describe a method to recover traceability links that uses
a vector space IR model [10, 15]. This model treats doc-
uments and queries as vectors in an n-dimensional space,
where n is the number of indexing features (in our case,
words in the vocabulary). Documents are ranked against
queries by computing some distance functions between the
corresponding vectors. In this paper, we use the cosine of
the angle between the vectors to rank the documents [10].

The method has been applied in two case studies to trace
C++ source code onto manual pages and Java code onto
functional requirements. These case studies replicate the
studies described in references [3] and [2], respectively. The
results are in both cases satisfactory and confirm the hy-
pothesis that IR, either probabilistic or vector space mod-
els, provides a practicable solution to the problem of semi-
automatically recovering traceability links.

There are three main intended contribution of this paper:

� we present a method to recover traceability links be-
tween source code and free text documentation based
on the general idea of vector space IR;

� we provide experimental results of applying the
method in two case studies;

� we compare the performances of probabilistic and vec-
tor space IR models when applied to the particular
problem of traceability link recovery and formulate hy-
potheses to explain the differences.

The reminder of the paper is organized as follows. Sec-
tion 2 presents the traceability link recovery process and
discusses the IR model exploited. Experimental results are
presented in section 3, while section 4 discusses the perfor-
mances of IR models when applied to the problem of recov-
ering traceability links. Concluding remarks and a discus-
sion of related and future work are given in section 5.

2. An IR method to recover traceability links

Our method to recover traceability links between code
and free text documentation uses the identifiers extracted
from a class as a query to retrieve the documents relevant to
the class. In particular, we apply a vector space IR model to
rank the available documents against the class.

This section describes the overall traceability link recov-
ery process, gives background information on the IR model
applied, and discusses tool support.

2.1 The process

Figure 1 shows the overall process of traceability link
recovery using IR models. The figure highlights two paths
of activities, one to prepare the document for retrieval (the
lower path) and the other to extract the queries from code
(the upper path).

In the first path, documents are indexed based on a vo-
cabulary that is extracted from the documents themselves.
The construction of the vocabulary and the indexing of the
documents are preceded by a text normalization phase per-
formed at three levels of accuracy:

1. at the first level all capital letters are transformed into
lower case letters;

2. at the second level stop-words (such as articles, punc-
tuation, numbers, etc) are removed;

3. at the third level a morphological analysis is used to
convert plurals into singulars and to reconduct all the
flexed verbs to the infinity form.

The second path builds and indexes a query for each
source code class. The construction of a query consists of
three steps:

1. identifier extraction, that parses class source code and
extracts the list of its identifiers;

2. identifier separation, that splits into separate words
the identifiers composed of two or more words (i.e.
AmountDue and amount due);

3. text normalization, that applies the three steps de-
scribed above for document indexing.

Finally, a classifier computes the similarity between
queries and documents and returns, for each class, a ranked
list of documents.

Of course, indexing the documents and the queries and
ranking the documents against a query depend on the par-
ticular IR model adopted. For example, the probabilistic
model applied in references [3, 2] indexes a document by
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Figure 1. Traceability Recovery Process.

computing its stochastic language model [7], whereas the
list of identifiers that define a query is not indexed at all.
The similarity between a document and a query is computed
as the product of the probabilities that each identifier in the
query appears in the document too.

2.2 Vector space IR: background notions

Vector space IR models map each document and each
query onto a vector [10]. In our case, each element of the
vector corresponds to a word (or term) in a vocabulary ex-
tracted from the documents themselves. If V is the size
of the vocabulary, then the vector [di;1; di;2; : : : di;V ] repre-
sents the document Di. The j-th element di;j is a measure
of the weight of the j-th term of the vocabulary in the doc-
ument Di. Different measures have been proposed for this
weight. In the simplest case it is a boolean value, either 1 if
the j-th term occurs in the document Di, or 0 otherwise; in
other cases more complex measures are constructed based
on the frequency of the terms in the documents.

We use a well known IR metric called tf � idf [15]. Ac-
cording to this metric, the j-th element di;j is derived from
the term frequency tfi;j of the j-th term in the documentDi

and the inverse document frequency idfj of the term over
the entire set of documents. The term frequency tfi;j is the
ratio between the number of occurrences of word j-th over
the total number of words contained in the document Di.
The inverse document frequency idfj is defined as:

idfj =
Total Number of Documents

Number of Documents containing the jth term

The vector element di;j is:

di;j = tfi;j � log(idfj)

The term log(idfj) acts as a weight for the frequency of
a word in a document: the more the word is specific to the
document, the higher the weight.

The list of identifiers extracted from a class Q — that
is, a query Q — is represented in a similar way by a vec-
tor [q1; q2; :::qV ]. The similarity between a document Di

and a class/query Q is computed as the cosine of the angle
between the corresponding vectors:

Similarity(Di; Q) = si;Q =

=

PV

j=1
di;jqjqPV

h=1
(di;h)2 �

PV

k=1
(qk)2

Documents are ranked against a class by decreasing sim-
ilarity.

2.3 Tool support

We have developed a toolkit that supports, and partially
automates, the process shown in Figure 1.

We use top-down recursive parsers to analyze C++ and
Java source code. The parse trees are traversed and each
time a class is encountered the comments, if any, and the
identifiers of attributes, methods, and method parameters
are stored in support files. For the present study comments
were disregarded: the entire traceability link recovery pro-
cess relies on the mnemonics used for classes, attributes,
methods and parameters.
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We have integrated public domain facilities and tools de-
veloped in house to assist text processing for the English
and Italian languages. Identifier separation is performed in
two steps: the first step is completely automated and rec-
ognizes words separated by underscore and sequences of
words starting with capital letters. The second step is semi-
automatic: the tool exploits spelling facilities to prompt
the software engineer with the words that might be sep-
arated. The first two steps of text normalization, namely
letter transformation and stop-word removing, have also
been completely automated. Finally, we have implemented
a semi-automatic stemmer that uses thesaurus facilities to
help users to reconduct flexed words to their roots.

The final step of cosine computation and document rank-
ing is implemented by simple Perl scripts.

3. Case studies

In previous papers [3, 2], we applied a traceability link
recovery method based on the probabilistic IR model in two
case studies with different characteristics. The case studies
have been replicated using the vector space IR model pre-
sented in the previous section, and the results are discussed
in this section.

We assess the results using two widely accepted IR met-
rics, namely recall and precision [8].

Recall is the ratio of the number of relevant documents
retrieved for a given query over the total number of relevant
documents for that query. Precision is the ratio of the num-
ber of relevant documents retrieved over the total number of
documents retrieved.

Recovering traceability links is a semi-automatic pro-
cess. The main role of IR tools consists of restricting the
document space, while recovering all the documents rele-
vant to each source code component. Without tool support,
one must analyze all the documents before discovering that
a given class is not described by any document; with a re-
stricted document space the number of documents to ana-
lyze is generally much lower. This means that high recall
values (possibly 100 %) should be pursued; of course, in
this case higher precision values reduce the effort required
to discard false positives (documents that are retrieved but
are not relevant to a given query).

It is worth noting that the recall is undefined for queries
that do not have relevant documents associated. However,
these queries may retrieve false positives that have to be
discarded by the software engineer. To take into account
such queries we used the following aggregate formulas:

Recall =

P
i
#(Relevanti ^Retrievedi)P

i
#Relevanti

%

Precision =

P
i
#(Relevanti ^Retrievedi)P

i
#Retrievedi

%

where i ranges over the entire query set, including the
queries with no associated documents. These queries do not
affect the computation of the recall (Relevanti is the empty
set), while they negatively affect the computation of the pre-
cision whenever Retrievedi is not the empty set. This neg-
ative influence takes into account the effort required to dis-
card false positives.

3.1 LEDA case study

The first case study was a freely available C++ library of
foundation classes, called LEDA (Library of Efficient Data
types and Algorithms), developed and distributed by Max-
Planck-Institut für Informatik, Saarbrücken, Germany. We
analyzed the code and the documentation of the release 3.4,
consisting of 95 KLOC, 208 Classes and 88 manual pages.
The aim was to map source code classes onto manual pages.

The LEDA manual pages contain a high number of iden-
tifiers that also appear in the source code. Actually, the
LEDA team generated manual pages with scripts that ex-
tract comments from the source files. A markup language
was used to identify the comment fragments to be extracted.
Function names, parameter names, and data type names
contained in these comments appear in the manual pages,
thus making the traceability link recovery task easier. For
this reason, and to make the results comparable with those
obtained with the probabilistic model [3], we applied a
simplified version of the process shown in Figure 1. The
simplification concerned the identifier separation and the
text normalization activities: in particular, identifier sepa-
ration only consisted of splitting identifiers containing un-
derscores, while text normalization was performed only at
the first level of accuracy, i.e. the transformation of capital
letters into lower case letters.

To validate the results, we used a 208 � 88 traceability
matrix linking each class to the manual page describing it.
As outlined in [3], each class was described by at most one
manual page, and many classes (110) were not described
by any manual page. The number of links in the traceability
matrix was 98. Ten manual pages did not describe LEDA
classes, but basic concepts and algorithms, thus the number
of relevant manual pages was 78. This means that some
manual pages described more than one class: for example,
very often an abstract class and its derived concrete classes
were described by the same manual page.

Table 1 shows the results. The first columns (Cut) shows
the number of documents retained for each query (first N
documents in the ranked list); the second and the third
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Cut Retrieved Relevant Precision Recall Prob. Rel.
1 208 52 25.00 % 53.06 % 81
2 416 71 17.06 % 72.44 % 88
3 624 79 12.66 % 80.61 % 93
4 832 82 9.85 % 83.67 % 93
5 1040 85 8.17 % 86.73 % 93
6 1248 89 7.13 % 90.81 % 93
7 1456 90 6.18 % 91.83 % 94
8 1664 93 5.58 % 94.89 % 94
9 1872 95 5.07 % 96.93 % 95

10 2080 96 4.61 % 97.95 % 95
11 2288 96 4.19 % 97.95 % 95
12 2496 98 3.92 % 100.00 % 96

Table 1. LEDA results

columns show (for each cut level) the total number of re-
trieved documents (for all queries) and the total number
of retrieved documents that are also relevant, respectively;
the third and fourth columns show the aggregate precision
and recall for all queries, respectively; finally, last column
shows the total number of relevant documents retrieved by
applying the probabilistic model [3].

The poor results of the precision are due to the fact that
most of the queries (110) were derived from classes without
relevant manual pages associated (these queries contribute
to the total number of retrieved documents). A moderate
number of retained candidates (12) was required to recover
all the traceability links (100 % of recall). This provides
evidence to support our hypothesis that IR models are suit-
able for recovering traceability links between code and doc-
umentation. A further favorable argument is the fact that the
results are not very different from those achieved in [3] with
a probabilistic model: indeed, the main difference is that the
results of the vector space model are more smoothed, while
the probabilistic model tends to retrieve very soon a high
number of relevant documents (see Figure 2). However,
both models converge to 100 % of recall with a moderate
number of retained candidates; for the probabilistic model
100 % of recall is achieved when cutting the ranked list of
retrieved documents at 17 candidates [3] (not shown in the
table), thus confirming a more irregular behavior.

3.2 Albergate case study

The second case study was a software system, called Al-
bergate, developed in Java according to a waterfall process.
For this system all the documentation prescribed by the soft-
ware development process was available (e.g., requirement
documents, design documents, test cases, etc.). Albergate
is a software system designed to implement all the opera-
tions required to administrate and manage a small/medium
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Figure 2. LEDA Precision/Recall results.

size hotel (room reservation, bill calculation, etc.). It was
developed from scratch by a team of final year students at
the University of Verona (Italy) on the basis of 16 functional
requirements expressed (as well as all the other system doc-
umentation) in the Italian language. Albergate exploits a
relational database and consists of 95 classes and about 20
KLOC. The aim of this case study was to trace source code
classes onto functional requirements. We focused on the
60 classes implementing the user interface of the software
system.

To validate the results, the original developers were re-
quired to provide a 16� 60 traceability matrix linking each
requirement to the classes implementing it. Most of the
functional requirements were implemented by a low num-
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Cut Retrieved Relevant Precision Recall Prob. Rel.
1 60 29 48.33 % 50.00 % 29
2 120 34 28.33 % 58.62 % 41
3 180 46 25.55 % 79.31 % 45
4 240 51 21.25 % 87.93 % 51
5 300 54 18.00 % 93.10 % 57
6 360 55 15.27 % 94.82 % 58
7 420 58 13.80 % 100.00 % 58

Table 2. Albergate results with improved process

ber of classes: on the average, a requirement was imple-
mented by about 4 classes with a maximum of 10. Most
classes were associated to one requirement, only 6 classes
were associated to two requirements, and 8 classes were not
associated to any functional requirement. The total number
of links in the traceability matrix was 58.

In this case study we applied the full version of the text
processing steps in Figure 1 (these steps are described in
section 2.1). The motivation was that the relative distance
between source code and documents was higher than in the
LEDA case study. Common words between requirements
and classes were quite infrequent in the Albergate system:
in fact unlike LEDA manual pages, Albergate functional re-
quirements were produced in the early phases of the soft-
ware development life cycle. Moreover, the Italian language
has a complex grammar: verbs have much more forms than
English verbs, plurals are almost always irregular, and ad-
verbs and adjectives have irregular forms too.

Table 2 shows the results of this case study (the meaning
of the columns is the same as in Table 1). Unlike the LEDA
case study, the results of the vector space model are not very
different than those produced by the probabilistic model [2]
(see Figure 3). All the traceability links were recovered by
considering the first seven documents for each class. How-
ever, the probabilistic model tends to retrieve sooner most
of the relevant documents (100 % of recall was obtained by
considering the first six documents for each class).

4. Discussion

This section analyzes and discusses the results achieved
in the two case studies and draw some lessons learned. Al-
though the limitations of the two case studies (in particu-
lar, the small size of Albergate and the fact that the LEDA
documentation is extracted from comments contained in the
source files) do not allow to draw definitive conclusions,
some basic considerations can be already outlined. We ad-
dress three points:

� how helpful is an IR model in a traceability link recov-
ery process ?

� why the performances of the probabilistic and the vec-
tor space models are different ?

� how precision could be improved ?

The following subsections attempt to provide an answer
to the questions above.
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Figure 3. Albergate Precision/Recall results
with improved process.

4.1 Benefits of IR

To demonstrate the benefits of using an IR model for
recovering traceability links between code and documen-
tation, we compared the results achieved in the two case
studies with the probabilistic and vector space IR models
with the results obtained by using the grep UNIX com-
mand, as proposed by Maarek et al. [12]. In fact, grep
provides the simplest way to trace source code components
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Single Code Item Code Items or Combined
#Queries #Empty Set Mean Size Max Size #Queries #Empty Set Mean Size Max Size

Albergate 4834 4575 5 14 60 0 11 13
LEDA 4670 451 20 88 208 1 75 88

Table 3. grep results.

(e.g., classes) onto high level documentation (e.g., manual
pages and/or requirements). The search can be done at least
in two ways: in the first approach each class identifier is
used as the string to be searched into the files of high level
artifacts while the second approach considers the or of the
class identifiers.

Table 3 shows the results of the grep approach: it is
worth noting that for the Albergate system 94% of the single
item queries gave empty results while if items are or com-
bined 94% of classed were traced onto 10 or more require-
ments. Empty sets are less frequent for LEDA; however, the
average number of traced manual pages is quite high (20
and 75, respectively). Even worse the grep approach did
not offer any way to rank the retrieved requirements. From
a practical point of view this means that the maintainer has
to examine a large number of candidates with the same pri-
ority. grep baseline results were thus judged quite unsatis-
factory compared with IR results.

In the previous sections we have evaluated the results
using the IR metrics recall and precision. To achieve an
indication of the benefits of using an IR approach in a trace-
ability link recovery process, we have also introduced a Re-
covery Effort Index (REI), defined as the ratio between the
number of documents retrieved and the total number of doc-
uments available:

REI =
#Retrieved

#Available
%

This metric can be used to estimate the percentage of the
effort required to manually analyze the results achieved by
an IR tool (and discard false positive), when the recall is
100 %, with respect to a completely manual analysis1. For
a given software system, the quantity 1 � REI estimates
the effort saving deriving from the use of an IR method to
recover traceability links, with respect a completely manual
analysis. The lower the REI the higher the benefits of the
IR approach.

This metric also measures the ratio between the preci-
sion of the results achieved on the same software system
by a completely manual process, namely Pm, and a semi-
automatic process, namely Pt, that exploits IR, when the
recall is 100 %:

1At the moment we have not statistically validated the relation between
this metric and the traceability link recovery effort; this will be part of
future work.

Precisionm

Precisiont
=

#(Relevant ^Retrievedm)

#(Relevant ^Retrievedt)

#Retrievedt

#Retrievedm

Note that the number of relevant documents retrieved is
the same in both processes (all relevant documents) and that
the documents retrieved with a manual analysis are just all
documents available, then:

Precisionm

Precisiont
% =

#Retrievedt

#Available
%

that is the REI for the semi-automatic process.
The values of REI registered in the two case studies for

the vector space IR model are rather different: Albergate re-
quires 43.75 % REI to achieve 100 % recall, whereas LEDA
only requires 13.63 % REI. A possible explanation is that
the set of available documents in the Albergate case study
is smaller (16 functional requirements versus the 88 manual
pages of LEDA); to get the same REI as in the LEDA case
study the maximum recall would have to be achieved with
about 2 documents retrieved (that also means about 50 %
of precision). However, this is very unlikely to be achieved
with IR methods, that generally aim to retrieve a small per-
centage of a huge document space. Therefore, it is likely to
hypothesize that greater benefits (and lower values of REI)
are achieved for document spaces of greater size.

Alternatively, the REI could be computed with respect
to a manual analysis supported by grep (queries with or
combined items). In this case, the REI is computed as the
ration between the number of relevant documents retrieved
with an IR approach and the number of documents retrieved
by grep2. For the vector space model the values for REI
are 54.54 % in the Albergate case study and 16 % in LEDA.

4.2 Probabilistic versus vector space model

The two case studies suggest that both IR models (vec-
tor space and probabilistic) are suitable for the problem of
recovering traceability links between code and documenta-
tion. The results are very similar, in particular with respect
to the number of documents a software engineer needs to
analyze to get high values of recall. This also means that

2Of course, this requires that grep based approach achieves 100 % re-
call, as in our case.
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Cut Retrieved Relevant Precision Recall Prob. Rel.
1 60 23 38.33 % 39.65 % 15
2 120 33 27.50 % 56.89 % 17
3 180 38 21.11 % 65.51 % 20
4 240 46 19.16 % 78.86 % 23
5 300 48 16.00 % 82.75 % 28
6 360 52 14.44 % 89.65 % 30
7 420 54 12.85 % 93.10 % 32

Table 4. Albergate results with simplified process
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Figure 4. Albergate Precision/Recall results.

the two models achieve similar values of REI. However,
Figures 2 and 3 show that the results of the vector space
model are more smoothed than the corresponding results
achieved with a probabilistic model. Moreover, the proba-
bilistic model tends to retrieve sooner most of the relevant
documents.

A possible explanation is in the nature of the two mod-
els. The probabilistic model associates a source code com-
ponent (in our case studies a class) to a document based on
the product of the probabilities that each code component
identifier appears in the software document [3, 2]:

Similarity(Di; Q) =

mY
k=1

Pr(wk j Di) '

' Pr(Q j Di) ' Pr(Di j Q)

These probabilities are computed on a statistical basis

and code component identifiers that do not appear in the
document are assigned a very low probability. Conversely,
the similarity measure of a vector space model only takes
into account the code identifiers that also appear in the doc-
ument and weight the frequencies of the occurrences of such
words in the document (code component) with respect to a
measure of the diffusion of such words in other documents
(code components, respectively).

Therefore, the probabilistic model is more suitable for
cases where the presence of code component identifiers
that do not belong to the software document is low: this
is also the reason why, with respect to the best match, the
probabilistic model performs better in the LEDA case study
(82.65 % of recall) than in the Albergate case study (50 % of
recall). It is worth noting that the probabilistic model is also
used in speech recognition [7] and information theory [6]
fields, where the aim is to associate a received sentence to a
possible transmitted sentence, with a very low error proba-
bility. Conversely, the vector space model fits cases where
each group of words is common to a relatively small num-
ber of software documents. This means that the vector space
model does not aim to the best match, but rather to regularly
achieve the maximum recall with a moderate number of re-
tained documents.

This hypothesis is supported by the results obtained by
applying the simplified version of the text processing steps
in Figure 1 to the Albergate case study, with both the prob-
abilistic and the vector space models. The simplified ver-
sions of the identifier separation and text normalization
steps produce code components and software documents
with a higher number of different words. Table 4 shows the
results achieved, while Figure 4 depicts the Precision/Recall
curves of the two IR models, in both simplified and im-
proved processes. For the vector space model the results of
the simplified and improved processes are not very differ-
ent. Conversely, the differences are evident when applying
the two versions of the text processing steps with the prob-
abilistic model [2]. This means that unlike the probabilistic
model, the vector space model is able to achieve higher re-
call values based on a smaller number of relevant words in
a source code component.
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Percentage Retrieved Relevant Precision Recall
90 % 59 29 49.15 % 50.00 %
70 % 101 38 37.62 % 65.51 %
50 % 158 50 31.64 % 86.20 %
30 % 265 55 20.75 % 94.82 %
10 % 484 58 11.98 % 100.00 %

min(10 %, best 7) 329 58 17.62 % 100.00 %

Table 5. Albergate results using a threshold

4.3 Retrieving a variable number of documents
per query

In our case study we have retained for each query a fixed
number of documents. The results achieved for the recall
can be considered good, as in both case studies we were
able to achieve 100 % of recall with a moderate number of
retained candidates per query.

We wondered if with a variable number of retained
candidates per query we could improve precision and
REI, while maintaining a maximum recall. The approach
adopted to test this hypothesis consisted of using a thresh-
old on the similarity values to prune the ranked list of doc-
uments retrieved by a query. In particular, for each query Q
we computed the value of such a threshold tQ as a percent-
age of the similarity measure of the best match:

tQ = c � [max
i

si;Q]

where 0 � c � 1. A query Q returns all and only the
documents Dk such that sk;Q � tQ. Of course, the higher
the value of the parameter c the smaller the set of documents
returned by a query.

Table 5 shows the results achieved with the Albergate
case study using different values of the parameter c (and
then different thresholds). The results are not very encour-
aging, as the maximum recall is achieved when setting the
threshold to only 10 % of the highest similarity measure.
Using this percentage, the average number of retrieved doc-
uments per query is 9, while 3 documents are retrieved in
the best case, and 15 documents in the worst case.

Although the results are worse than the results achieved
with a fixed cut (first 7 documents in table 2), they still
demonstrate the benefits of using an IR approach: indeed,
when the recall is 100 % (c = 10 %) the REI is 50.41 %;
this means that presumably about 50 % of the effort can be
saved by only discarding the documents whose similarity
measure is below 10 % of the best match.

Of course, the results can be improved by mixing a vari-
able and fixed cut: each query retrieves only the documents
with a similarity measure greater than a given threshold,
but no more than a fixed number. As an example, last row

in table 5 shows the results achieved by considering as the
number of documents retrieved by each query the minimum
between 7 and the number of documents whose similarity
value is higher than 10 % of the best match. In this case the
results are much better than the results achieved with a fixed
cut (the first 7 documents in table 2): the average number of
retrieved documents is 6 and the REI is 34.27 %, that means
that the percentage of effort saved might be more than 65 %.

The issue of retrieving a variable number of documents
per query needs further statistical investigations and this
will be part of our future work.

5. Concluding remarks

We have presented an IR method to recover traceability
links between code and free text documentation and have
applied it to trace C++ and Java source classes onto man-
ual pages and functional requirements, respectively. The
method relies on a vector space IR model and ranks docu-
ments against a query (a list of identifiers extracted from a
classe) by computing a distance between the corresponding
vector representations.

A goal of this paper was to demonstrate that vector space
IR performs as well as probabilistic IR. We have replicated
the case studies presented in references [3] and [2] (which
applied probabilistic IR), using a vector space model and
the results support our hypothesis that IR, either probabilis-
tic or vector space models, provides a practicable solution
to the problem of semi-automatically recovering traceabil-
ity links between code and documentation.

The paper has discussed the differences between the two
IR models. In particular, the vector space model exhibits
a behavior more regular than the probabilistic model and
requires less effort in the preparation of the query and doc-
ument representations. On the other hand, the probabilis-
tic model performs better when the constraint of manually
analyzing a reduced number of documents is stronger than
achieving 100 % recall.

In our knowledge, the issue of recovering traceabil-
ity links between code and free text documentation is not
largely investigated and very few contributions appear in the

Proceedings of the International Conference on Software Maintenance (ICSM'00)
1063-6773/00 $10.00 @ 2000 IEEE



literature. A number of related papers are in the area of im-
pact analysis. They assume the existence of some forms of
ripple propagation graph describing relations between soft-
ware artifacts, including code and documentation, and fo-
cus on the prediction of the effects of a maintenance change
request on both the source code and the specification and
design documents [16].

TOOR [13], IBIS [11], and REMAP [14] are a few
examples of CASE tools that maintain traceability links
among various software artifacts. However, these tools are
focused on the development phase and either force nam-
ing conventions or require human interventions to define the
links.

Reference [12] introduces an IR method to automati-
cally assemble software libraries based on a free text in-
dexing scheme. The method uses attributes automatically
extracted from natural language IBM RISC System/6000
AIX 3 documentation to build a browsing hierarchy which
accepts queries expressed in natural language.

Several software reuse environments use IR to index and
retrieve the reusable assets. The RSL [5] system extracts
free-text single-term indices from comments in source code
files looking for keywords like “author”, “date created”, etc.
REUSE [4] is an information retrieval system which stores
software objects as textual documents in view of retrieval
for reuse. Similarly, CATALOG [9] stores and retrieves C
components each of which is individually characterized by a
set of single-term indexing features automatically extracted
from natural language headers of C programs.

Future work will be devoted to further investigate
the factors that produce differences between the results
achieved by the vector space and the probabilistic mod-
els. We are also working on the definition of an improved
method to prune the ranked list of documents by analyz-
ing the distribution of the similarity measures. Finally, we
aim to a major improvement of the traceability link recov-
ery process by removing the constraints that documents and
code insist on the same vocabulary. In particular, our hy-
pothesis of investigation is that for software systems avail-
able in multiple releases, a probabilistic mapping between
the vocabularies of documents and source code can be sta-
tistically established.
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