
Accepted: 1 July 2025
© The Author(s) 2025

Communicated by: Janet Siegmund

Extended author information available on the last page of the article

On the structure and semantics of identifier names 
containing closed syntactic category words

Christian D. Newman1  · Anthony Peruma2 · Eman Abdullah AlOmar3 · 
Mahie Crabbe2 · Syreen Banabilah4 · Reem S. Alsuhaibani5 · Michael J. Decker6 · 
Farhad Akhbardeh7 · Marcos Zampieri8 · Mohamed Wiem Mkaouer9 ·  
Jonathan I. Maletic10

Empirical Software Engineering          (2025) 30:148 
https://doi.org/10.1007/s10664-025-10699-x

Abstract
Identifier names are crucial components of code, serving as primary clues for developers 
to understand program behavior. This paper investigates the linguistic structure of identi-
fier names by extending the concept of grammar patterns, which represent the part-of-
speech (PoS) sequences underlying identifier phrases. The specific focus is on closed syn-
tactic categories (e.g., prepositions, conjunctions, determiners), which are rarely studied in 
software engineering despite their central role in general natural language. To study these 
categories, the Closed Category Identifier Dataset (CCID), a new manually annotated 
dataset of 1,275 identifiers drawn from 30 open-source systems, is constructed and pre-
sented. The relationship between closed-category grammar patterns and program behavior 
is then analyzed using grounded-theory-inspired coding, statistical, and pattern analysis. 
The results reveal recurring structures that developers use to express concepts such as 
control flow, data transformation, temporal reasoning, and other behavioral roles through 
naming. This work contributes an empirical foundation for understanding how linguistic 
resources encode behavior in identifier names and supports new directions for research in 
naming, program comprehension, and education.

Keywords  Identifier naming · Program comprehension · Part of speech tagging · 
Software maintenance and evolution · Software linguistics · Closed category terms · 
Naming conventions

1  Introduction

Developers spend a significant amount of time reading and comprehending code (Corbi 
1989; Martin 2008), and identifier names play a central role in this process, accounting for 
roughly 70% of all code characters (Deissenboeck and Pizka 2005). Prior work shows that 

 et al. [full author details at the end of the article]

1 3

http://orcid.org/0000-0002-8838-4074
https://doi.org/10.1007/s10664-025-10699-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10699-x&domain=pdf&date_stamp=2025-7-24


Empirical Software Engineering          (2025) 30:148 

the quality of identifier names significantly impacts comprehension (Schankin et al. 2018; 
Lawrie et al. 2006; Hofmeister et al. 2017; Butler et al. 2010; Takang et al. 1996; Avidan 
and Feitelson 2017; Fakhoury et al. 2020), supports tooling (Binkley et al. 2018; Newman 
et al. 2019), and poses persistent pedagogical challenges (van der Werf et al. 2024; Glass-
man et al. 2015). These challenges motivate research into how naming practices encode 
meaning, and how we might better characterize or improve them.

A key obstacle in studying identifier names is measuring the semantics they convey, not 
just at the level of individual terms, but in the structure and composition of entire names. 
Some approaches cluster identifiers by terms or embeddings (Allamanis et al. 2015; Liu 
et al. 2019), while others analyze them using syntactic or static roles (Dragan et al. 2006; 
Alsuhaibani et al. 2015; Newman et al. 2017). In this work, we focus instead on grammar 
patterns (Newman et al. 2020): sequences of part-of-speech (PoS) tags that abstract the 
phrasal structure of identifiers. Grammar patterns provide a syntactic lens through which 
naming semantics can be studied at scale, offering insight into how term combinations con-
vey behavioral meaning.

At a high level, PoS can be split into two Syntactic Categories: open and closed. Most 
identifier naming research has focused on open-category, which includes nouns and verbs. 
The set of open category terms evolves and expands (in terms of new words) over time as 
new domains emerge and evolve. In contrast, closed-category (e.g., prepositions, conjunc-
tions, determiners) are drawn from a fixed set and serve functional roles in language; this 
set of terms rarely sees new words introduced over time. These terms have received little 
attention in the software literature, despite their importance in human languages. Identifying 
closed-category terms in code is also nontrivial: for example, the word and may represent a 
conjunction or a logical operator, depending on context, making PoS tagging a prerequisite 
for meaningful analysis.

The goal of this paper is to investigate how closed-category terms are used in identifier 
names to express program behavior, using the grammar patterns (see Section 3 for defini-
tions) that these terms appear within to provide insights into how these terms interact with 
the other terms around them. We extend prior research on general grammar patterns (New-
man et al. 2020, 2021) by introducing and analyzing the Closed Category Identifier Dataset 
(CCID), a manually annotated corpus of 1,275 identifiers from 30 open-source systems. 
Unlike raw term-based approaches, grammar patterns abstract away surface vocabulary, 
allowing us to characterize naming conventions by their syntactic structure. By examining 
both the patterns and the concrete terms that instantiate them, we explore how develop-
ers use compact linguistic forms to encode behavioral semantics in code. Specifically, we 
contribute:

	– A new dataset (CCID) of identifiers containing closed-category terms, annotated with 
PoS tags, grammar patterns, and contextual metadata.

	– A mixed-methods analysis combining grounded-theory-style coding with statistical 
evaluation to characterize the semantics of closed-category grammar patterns and their 
constituent terms.

	– An evaluation of how these patterns correlate with programming context, lan-
guage, and domain.

1 3

  148   Page 2 of 51



Empirical Software Engineering          (2025) 30:148 

Our findings have implications for both human and automated naming support. Grammar 
patterns provide a structured approach to analyzing naming behavior, identifying potential 
inconsistencies, and providing naming suggestions. For AI-based tools, they offer scaffold-
ing to align generated names with human conventions. For developers and educators, they 
reveal naming idioms that can support clearer communication and pedagogy. In this study, 
we address the following research questions:

RQ1: What behavioral roles do closed-category terms play in source code identifiers? To 
address this question, we conducted a grounded-theory-inspired study on a manually 
annotated dataset of identifiers containing closed-category terms: prepositions, con-
junctions, determiners, and numerals. Through open coding and memoing, we develop 
axial and selective codes that describe the behavioral functions these terms convey in 
source code, such as data flow, condition handling, or execution sequencing. This pro-
cess allows us to uncover not only common grammar patterns but also the communica-
tive intent behind developers’ use of closed-category terms. Our goal is to characterize 
the nuanced and purposeful ways in which these terms encode program behavior and 
convey information.

RQ2: How do closed-category terms correlate with structural, programming language, and 
domain-specific contexts in software? To answer this question, we quantitatively ana-
lyze the distribution of closed-category terms across multiple dimensions: source-code-
local structure (e.g., function names, parameters, class names), programming languages 
(e.g., Java, C++, C), and system domains (e.g., libraries, frameworks, domain-specific 
applications). We use statistical tests to examine whether these terms appear dispropor-
tionately in specific contexts. These correlations help us determine whether develop-
ers systematically leverage closed-category terms to express behavior in ways that are 
shaped by structural conventions, linguistic norms, or domain constraints.

This paper is organized as follows. Section 2 provides our reasoning on why it is essential to 
study this topic. Section 3 gives background on grammar patterns in the context of identifier 
names. Section 4 provides a detailed explanation of the methods used for conducting the 
investigation. Our Evaluations are presented in Sections 5 and 6. Related work on identi-
fier names is in Section 7. Discussion of the results is in section 8, followed by Threats to 
Validity in Section 9. Conclusions are in Section 10 and Data Availability in Section 11.5.

2  Why Study Closed-Category Naming Patterns?

Closed-category terms are relatively uncommon in identifier names. Because they are 
uncommon, their presence raises an important question: When developers do use these 
terms, what specific meaning or behavior are they trying to convey? We hypothesize that 
developers include closed-category terms deliberately, as a way to encode behaviorally spe-
cific semantics that are lost or obscured without them. Consider the following examples:

	– find_all_textures: The determiner all signals a universal scope, clarifying that 
this identifier refers to the entire set of textures, not a subset.

1 3

Page 3 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– on_start: The preposition on reflects event-driven logic, indicating that the associ-
ated behavior is triggered at the start of execution.

	– warn_if_error: The conjunction if embeds a conditional relationship, revealing 
that the action is contingent on an error occurring.

In each case, the closed-category term is essential to understanding the behavioral seman-
tics of the identifier. Without these terms, the names are more ambiguous or less informa-
tive. While uncommon in aggregate, closed-category terms often signal precise intent and 
encode logical structure in compact forms.

Despite their potential significance, these terms have received almost no attention in 
prior software development naming research, which has focused primarily on open-category 
words (e.g., nouns, verbs). As a result, we lack foundational knowledge about when and how 
closed-category terms are used in code and what they contribute to program comprehension.

Understanding these naming patterns has clear implications: it can inform naming tools, 
guide educational resources, improve automated name generation, and help researchers 
characterize naming conventions more precisely. Closed-category terms may be uncom-
mon, but we argue, in this paper, that their usage is not accidental; they significantly contrib-
ute to the meaning of identifier names, making it important to study them. More examples 
of identifiers containing closed-category terms can be found in Table 1.

3  Definitions & Grammar Pattern Generation

In this work, we analyze identifier names through the lens of grammar patterns, which 
are sequences of part-of-speech (PoS) tags assigned to the terms within an identifier. For 
example, the identifier GetUserToken is split into the terms Get, User, and Token, 
which are tagged as Verb Noun-adjunct Noun. This sequence, V NM N, represents 
the identifier’s grammar pattern. Crucially, this pattern generalizes across many identifiers: 
RunUserQuery and WriteAccessToken share the same structure, despite using dif-
ferent terms. Grammar patterns thus allow us to relate identifiers by their syntactic form.

We focus specifically on closed-category grammar patterns, which are patterns that 
contain at least one closed-class part of speech: a preposition, determiner, conjunction, 
or numeral. These categories are finite and rarely accept new terms, in contrast to open-
class categories like nouns and verbs, which grow over time as new domains introduce 
new concepts. Despite their rarity in code, closed-category terms often signal behavioral 
relationships such as event triggers, quantification, or conditional logic, making them criti-
cal to study.

Part-of-Speech Tags. Table 2 lists the PoS tags used in this study. Most are drawn from 
standard linguistic categories. We highlight one custom tag that is central to our analysis:

Identifier Example Grammar Pattern
action to index map N P NM N
as binary P N
time for each line N P DT N
server and port N CJ N
open if empty V CJ NM
adjust to camera V P N

Table 1  Examples of closed-
category grammar patterns
 

1 3

  148   Page 4 of 51



Empirical Software Engineering          (2025) 30:148 

	– Noun Modifier (NM): Includes adjectives as well as noun-adjuncts–nouns used to 
modify another noun (e.g., user in userToken, or content in contentBor-
der). Although standard PoS taggers do not typically distinguish noun-adjuncts, prior 
work shows their critical role in naming semantics (Newman et al. 2020).

	– Preamble (PRE): A prefix used to convey structural or language-specific metadata, 
rather than domain semantics. Common examples include Hungarian-style markers 
such as m_ for member variables, or project-level namespaces like gimp in gimp_
temp_file; a practice especially common in C. For a complete typology and discus-
sion, see Newman et al. (2020); we include preambles here since we do use them in the 
data set, but they are not the focus of this paper.

3.1  Phrasal Structures and Interpretation

While our analysis is based on PoS sequences rather than full parse trees, we draw on 
linguistic phrase structure to interpret identifier patterns. Specifically, we reference three 
example concepts to help the reader understand what we mean when we use the term 
‘phrase’ with respect to grammar patterns:

	– Noun Phrase (NP): A noun optionally preceded by one or more modifiers (e.g., 
accessLog, userToken, windowTitle).

	– Verb Phrase (VP): A verb followed by a noun phrase, often representing an action on a 
specific entity (e.g., getUserToken, drawContentBorder).

	– Prepositional Phrase (PP): A preposition followed by a noun phrase (e.g., onClick, 
fromCache).

These phrase structures help illustrate how grammar patterns support analysis of phrases. 
For instance, in drawContentBorder, the noun-modifier content refines the meaning 
of the head noun border, while the verb draw anchors the identifier as a behavior applied 
to that concept (i.e., draw applied to a specific type of border; a content-border). When 

Abbreviation Expanded 
Form

Examples

N noun stack, function, language
DT determiner the, this, that, these, those, which
CJ conjunction and, for, nor, but, or, yet, so
P preposition behind, in front of, at, under, 

beside, above, beneath, despite
NPL noun plural strings, identifiers, classes
NM (bold) noun modifier employeeName, tokenParser
V verb run, execute, implement, develop
VM verb modifier 

(adverb)
quickly, safely, eventually

PR pronoun she, he, her, him, it, we, us, they, 
them, I, me, you

D numeral 1, 2, 10, 4.12, 0xAF
PRE preamble* Gimp, GLEW, GL, G

Table 2  Part-of-speech catego-
ries used in study
 

1 3

Page 5 of 51    148 



Empirical Software Engineering          (2025) 30:148 

closed-category terms appear, they may indicate when an action should occur (onStart), 
under what condition (ifError), or which entities are included (allTextures). Fig-
ure 1 shows examples of NP, VP, and VP-with-PP constructions as derived from grammar 
patterns.

4  Methodology

For our study, identifiers are collected from and analyzed in the following contexts: class 
names, function names, parameter names, attribute names (i.e., data members), and decla-
ration-statement names. A declaration-statement name is a name belonging to a local (to a 
function) or global variable. We use this terminology because it is consistent with srcML’s 
terminology (Collard and Maletic 2016) for these variables, and we used srcML to col-
lect identifiers. Therefore, to study closed-category grammar patterns, we group identifiers 
based on these five categories. The purpose of this categorization is to examine the closed-
category grammar patterns based on their high-level semantic roles (e.g., class names have 
a different role than function names). We collected these identifiers from 30 open-source 
systems, which are listed in Table 3. These systems belonged to a curated dataset of engi-
neered software projects, synthesized by Reaper (Munaiah et al. 2017), a tool that measures 
how well different projects adhere to software engineering practices, such as documentation 
and continuous integration.

The set of systems has an average and median of 335,358 and 111,069 LOC, respec-
tively. 11 of the systems are primarily C systems, 9 are mainly C++, and 10 are primarily 
Java. We chose systems that have tests and use continuous integration (CI) under the idea 
that these represent systems with at least some basic process for ensuring quality; Reaper is 
able to automatically determine which systems have both CI and tests. Our primary concern 
in selecting systems is that they represent different programming languages, follow basic 
quality procedures, and are large enough for us to collect a sufficient number of identifiers. 
Given this, our choice of systems is designed to ensure that the grammar patterns in this 
study are applied across at least the languages under study.

Fig. 1  Examples of noun, verb, and prepositional phrases

 

1 3

  148   Page 6 of 51



Empirical Software Engineering          (2025) 30:148 

R
ep

o 
Li

nk
N

am
e

Pr
im

ar
y 

La
ng

ua
ge

D
at

e 
of

 m
os

t r
ec

en
t c

om
m

it
C

 L
O

C
C

++
 L

O
C

Ja
va

 L
O

C
To

ta
l L

O
C

ht
tp

s:
//g

ith
ub

.c
om

/li
ul

iu
/c

cv
cc

v
C

20
23

-0
7-

19
27

91
86

19
08

0
28

10
94

ht
tp

s:
//g

ith
ub

.c
om

/ro
pe

ns
ci

/g
it2

r
gi

t2
r

C
20

23
-0

5-
01

99
95

6
0

0
99

95
6

ht
tp

s:
//g

ith
ub

.c
om

/J
un

ip
er

/li
bx

o
lib

xo
C

20
23

-0
2-

08
93

61
0

0
93

61
ht

tp
s:

//g
ith

ub
.c

om
/m

gb
a-

em
u/

m
gb

a
m

gb
a

C
20

23
-0

7-
18

30
28

65
25

30
9

0
32

81
74

ht
tp

s:
//g

ith
ub

.c
om

/n
ae

m
on

/n
ae

m
on

-c
or

e
na

em
on

-c
or

e
C

20
23

-0
7-

07
40

99
1

0
0

40
99

1
ht

tp
s:

//g
ith

ub
.c

om
/o

pe
nv

sw
itc

h/
ov

s
ov

s
C

20
23

-0
7-

19
26

83
76

0
0

26
83

76
ht

tp
s:

//g
ith

ub
.c

om
/ig

ra
ph

/ri
gr

ap
h

rig
ra

ph
C

20
23

-0
7-

19
27

39
73

32
73

7
0

30
67

10
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​t​o

​​g​g
​l​-​o

​​p​e
​n​-

​s​​o
​u​r

​c​e
​/​​t​o

​g​g
​​l​d

​e​s
​k​t

​o​p
to

gg
ld

es
kt

op
C

20
23

-0
6-

22
58

20
87

26
91

05
0

85
11

92
ht

tp
s:

//g
ith

ub
.c

om
/ir

un
ge

nt
oo

/to
xc

or
e

to
xc

or
e

C
20

18
-1

0-
03

27
44

3
0

0
27

44
3

ht
tp

s:
//g

ith
ub

.c
om

/w
ee

ch
at

/w
ee

ch
at

w
ee

ch
at

C
20

23
-0

7-
20

19
76

08
31

17
5

0
22

87
83

ht
tp

s:
//g

ith
ub

.c
om

/w
ire

sh
ar

k/
w

ire
sh

ar
k

w
ire

sh
ar

k
C

20
23

-0
7-

20
41

71
79

0
10

28
48

0
42

74
63

8
ht

tp
s:

//g
ith

ub
.c

om
/B

V
LC

/c
aff

e
ca

ffe
C

++
20

20
-0

2-
13

0
42

85
6

0
42

85
6

ht
tp

s:
//g

ith
ub

.c
om

/v
gv

as
si

le
v/

cl
in

g
cl

in
g

C
++

20
23

-0
7-

18
57

28
34

2
0

28
39

9
ht

tp
s:

//g
ith

ub
.c

om
/ip

kn
/c

ro
w

cr
ow

C
++

20
22

-0
9-

20
0

14
34

0
14

34
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​f​a

​​k​e
​N

​e​t
​​f​l​i

​x​/
​​f​a

​c​e
​b​o

​​o​k
​-​r

​​e​p
​o​-

​d​s
​2

ds
2

C
++

20
19

-0
7-

17
36

7
27

01
1

0
27

37
8

ht
tp

s:
//g

ith
ub

.c
om

/fr
ee

m
in

er
/fr

ee
m

in
er

fr
ee

m
in

er
C

++
20

23
-0

4-
22

15
09

0
13

08
28

10
77

14
69

95
ht

tp
s:

//g
ith

ub
.c

om
/m

et
a-

to
ol

ki
t/m

et
a

m
et

a
C

++
20

17
-0

8-
19

13
2

25
45

1
0

25
58

3
ht

tp
s:

//g
ith

ub
.c

om
/p

an
da

3d
/p

an
da

3d
pa

nd
a3

d
C

++
20

23
-0

6-
13

44
67

1
41

62
12

17
5

46
10

58
ht

tp
s:

//g
ith

ub
.c

om
/fa

ce
bo

ok
/p

ro
xy

ge
n

pr
ox

yg
en

C
++

20
23

-0
7-

20
26

76
70

16
1

0
72

83
7

ht
tp

s:
//g

ith
ub

.c
om

/s
3f

s-
fu

se
/s

3f
s-

fu
se

s3
fs

-f
us

e
C

++
20

23
-0

7-
19

19
7

19
58

2
0

19
77

9
ht

tp
s:

//g
ith

ub
.c

om
/c

gl
ib

/c
gl

ib
cg

lib
Ja

va
20

22
-0

2-
08

0
0

15
18

7
15

18
7

​h​t
​t​p

​s​:
​​/​/​g

​i​t​​h
​u​b

​.​c
​o​​m

​/​d
​e​​e

​p​l
​e​a

​​r​n
​i​n

​g​​4
​j​/​d

​e​e
​​p​l

​e​a
​​r​n

​i​n
​g​4

​j
de

ep
le

ar
ni

ng
4j

Ja
va

20
23

-0
6-

21
0

22
49

97
69

67
17

92
17

14
ht

tp
s:

//g
ith

ub
.c

om
/a

pa
ch

e/
dr

ill
dr

ill
Ja

va
20

23
-0

6-
21

53
8

34
59

1
62

62
95

66
14

24
ht

tp
s:

//g
ith

ub
.c

om
/g

oo
gl

e/
gu

av
a

gu
av

a
Ja

va
20

23
-0

7-
18

0
0

35
66

51
35

66
51

ht
tp

s:
//g

ith
ub

.c
om

/im
m

ut
ab

le
s/

im
m

ut
ab

le
s

im
m

ut
ab

le
s

Ja
va

20
23

-0
6-

16
0

0
69

50
5

69
50

5
ht

tp
s:

//g
ith

ub
.c

om
/d

ro
pw

iz
ar

d/
m

et
ric

s
m

et
ric

s
Ja

va
20

23
-0

7-
20

0
0

31
31

7
31

31
7

ht
tp

s:
//g

ith
ub

.c
om

/ig
ni

te
re

al
tim

e/
O

pe
nfi

re
O

pe
nfi

re
Ja

va
20

23
-0

7-
20

12
0

0
12

21
86

12
23

06
ht

tp
s:

//g
ith

ub
.c

om
/H

ub
Sp

ot
/S

in
gu

la
rit

y
Si

ng
ul

ar
ity

Ja
va

20
22

-1
1-

18
0

0
12

21
83

12
21

83

Ta
bl

e 
3 

Li
st

 o
f 3

0 
op

en
 so

ur
ce

 sy
st

em
s i

nc
lu

de
d 

in
 st

ud
y

1 3

Page 7 of 51    148 

https://github.com/liuliu/ccv
https://github.com/ropensci/git2r
https://github.com/Juniper/libxo
https://github.com/mgba-emu/mgba
https://github.com/naemon/naemon-core
https://github.com/openvswitch/ovs
https://github.com/igraph/rigraph
https://github.com/toggl-open-source/toggldesktop
https://github.com/irungentoo/toxcore
https://github.com/weechat/weechat
https://github.com/wireshark/wireshark
https://github.com/BVLC/caffe
https://github.com/vgvassilev/cling
https://github.com/ipkn/crow
https://github.com/fakeNetflix/facebook-repo-ds2
https://github.com/freeminer/freeminer
https://github.com/meta-toolkit/meta
https://github.com/panda3d/panda3d
https://github.com/facebook/proxygen
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/cglib/cglib
https://github.com/deeplearning4j/deeplearning4j
https://github.com/apache/drill
https://github.com/google/guava
https://github.com/immutables/immutables
https://github.com/dropwizard/metrics
https://github.com/igniterealtime/Openfire
https://github.com/HubSpot/Singularity


Empirical Software Engineering          (2025) 30:148 

R
ep

o 
Li

nk
N

am
e

Pr
im

ar
y 

La
ng

ua
ge

D
at

e 
of

 m
os

t r
ec

en
t c

om
m

it
C

 L
O

C
C

++
 L

O
C

Ja
va

 L
O

C
To

ta
l L

O
C

ht
tp

s:
//g

ith
ub

.c
om

/ig
ni

te
re

al
tim

e/
Sm

ac
k

Sm
ac

k
Ja

va
20

23
-0

4-
26

0
0

12
55

47
12

55
47

ht
tp

s:
//g

ith
ub

.c
om

/ig
ni

te
re

al
tim

e/
Sp

ar
k

Sp
ar

k
Ja

va
20

23
-0

5-
11

9
0

91
88

6
91

89
5

TO
TA

L
63

17
49

3
14

84
54

7
22

58
72

6
10

06
07

66

Ta
bl

e 
3 

(c
on

tin
ue

d)
 

1 3

  148   Page 8 of 51

https://github.com/igniterealtime/Smack
https://github.com/igniterealtime/Spark


Empirical Software Engineering          (2025) 30:148 

4.1  Detecting and Sampling Identifiers with Closed-Category Terms

Sampling identifiers that contain closed-category terms is challenging for two reasons: (1) 
They are relatively uncommon in production code, and (2) many such terms are ambigu-
ous without context, making automatic tagging difficult. Table 4 shows the distribution 
of closed-category PoS tags present in a data set we constructed in prior work versus the 
CCID, which was constructed to explicitly increase the population of closed-category PoS. 
To address this, we implemented a two-phase sampling strategy: (1) filtering identifiers that 
potentially contain closed-category terms into candidate sets, and (2) manually verifying 
and annotating a statistically representative sample.

Phase 1: Filtering Candidate Identifiers
We began with the CCID corpus, which contains 279,000 unique identifiers from produc-

tion code. To collect these 279 K identifiers, we used the srcML identifier getter tool1 on the 
srcML archives resulting from running srcML (Collard and Maletic 2016) on the system 
repository directories (Table 3). To identify candidate sets:

	– Numerals (D): We selected identifiers containing at least one digit, using Python’s 
isdigit ( ) functionality. Numerals are easier to detect automatically and are unam-
biguous in token form. However, there are cases where a numeral will be annotated as 
part of another category. For example, str2int uses the numeral 2 as a preposition (to).

	– Determiners (DT), Conjunctions (CJ), and Prepositions (P): We constructed lexicons for 
each category using curated lists of common English terms234. We then filtered for identifi-
ers containing component words (i.e., split tokens) that matched a word in one of these lists. 
This approach is viable only because these categories are closed and finite in vocabulary.

This filtering process produced the following candidate counts:

	– 602 identifiers candidate conjunctions
	– 1,693 identifiers candidate determiners
	– 3,383 identifiers candidate prepositions
	– 4,630 identifiers candidate numerals

We use the term candidate because these filters do not account for context or usage, and 
thus include false positives. Still, they serve as an upper bound for the prevalence of each 
category in the corpus. Based on this, we estimate the proportion of identifiers containing 
each term type as follows:

	– 0.2% (602/279,000) contain conjunctions
	– 0.6% (1,693/279,000) contain determiners
	– 1.2% (3,383/279,000) contain prepositions
	– 1.7% (4,630/279,000) contain numeralsPhase 2: Balanced Sampling and Annotation

1 https://git​hub.com/SCA​NL/srcml_id​entifier​_getter_tool
2 ​h​t​t​p​s​:​​/​/​e​n​.​​w​i​k​i​p​e​​d​i​a​.​​o​r​g​/​w​​i​k​i​/​L​​i​s​t​_​o​f​​_​E​n​g​​l​i​s​h​_​d​e​t​e​r​m​i​n​e​r​s
3 ​h​t​t​p​s​:​​/​/​w​w​w​​.​e​n​g​l​i​​s​h​c​l​​u​b​.​c​o​​m​/​g​r​a​​m​m​a​r​/​p​​r​e​p​o​​s​i​t​i​o​n​s​-​l​i​s​t​.​p​h​p
4 https://7esl.com/conjunctions-list/

1 3

Page 9 of 51    148 

https://github.com/SCANL/srcml_identifier_getter_tool
https://en.wikipedia.org/wiki/List_of_English_determiners
https://www.englishclub.com/grammar/prepositions-list.php
https://7esl.com/conjunctions-list/


Empirical Software Engineering          (2025) 30:148 

Using a 95% confidence level and a 5% margin of error, we computed minimum sample 
sizes for each category. For example, a 95 and 5 sample for conjunctions (602 identifiers) 
is 235:

	– CJ: 235 candidate conjunction identifiers
	– DT: 313 candidate determiner identifiers
	– P: 345 candidate preposition identifiers
	– D: 355 candidate numeral identifiers

Before manual annotation, we stratified the candidate identifiers by their program context:

	– Function names
	– Parameters
	– Attributes (i.e., class members)
	– Function-local declarations
	– Class names

In some contexts, such as parameters and especially class names, terms were underrepre-
sented due to the natural scarcity of closed-category terms in those positions. To increase 
representation from underrepresented contexts, we attempted to oversample relevant sub-
groups. However, even with oversampling, the absolute number of qualifying identifiers 
(e.g., a parameter containing a conjunction) remained low. As our sampling was driven by 
the presence/population of closed-category terms in general, rather than population within 
our program contexts under study, we opted not to artificially balance the dataset further.

After sampling and stratification, we obtained a total of 1,275 identifiers across the four 
categories in our candidate set:

	– 364 candidate preposition identifiers
	– 363 candidate numeral identifiers
	– 313 candidate determiner identifiers
	– 235 candidate conjunction identifiers

Following manual verification and annotation (described in Section 4.2), we retained only 
those identifiers that were confirmed to contain closed-category terms. Table 5 summarizes 
both the sampled totals and the verified counts. The final dataset consists of 1,001 identifiers 
confirmed to include at least one closed-category term. These identifiers comprise the 
CCID. Table 6 shows the CCID, but broken down by program context instead of closed-
category type.

Annotation Notes. Some tools exist for part-of-speech tagging of source code identifiers 
(e.g., the ensemble tagger from Newman et al. (2022)), but these are slow at scale and are 
trained on datasets that underrepresent closed-category terms. For example, in our prior 
dataset (Newman et al. 2020), used to train the aforementioned tagging approach (Newman 
et  al. 2022); conjunctions, determiners, and prepositions made up only 0.2%, 0.4%, and 
2.6% of tags, respectively. Thus, we found manual annotation necessary to ensure sufficient 
coverage and correctness for our study.

1 3

  148   Page 10 of 51



Empirical Software Engineering          (2025) 30:148 

As we are primarily concerned with production code, and prior work shows that test 
name grammar patterns differ from production names (Peruma et al. 2021), we did not col-
lect any identifiers containing the word ‘test’, or that appeared in a clearly marked test file 
or directory. In addition, note that Table 4 counts tags at the word level (e.g., CJ CJ N counts 
two CJ tags), whereas Table 5 counts tags at the identifier level (e.g., one identifier with 
multiple CJ tags counts as one). This explains occasional mismatches between sampled and 
actual tag distributions.

CJ DT
Candidate Verified Candidate Verified

Attribute 66 (28.09%) 6 
(12.24%)

78 (24.92%) 84 
(27.54%)

Declaration 62 (26.38%) 10 
(20.41%)

79 (25.24%) 85 
(27.87%)

Parameter 44 (18.72%) 6 
(12.24%)

78 (24.92%) 58 
(19.02%)

Function 63 (26.81%) 27 
(55.10%)

78 (24.92%) 78 
(25.57%)

Class 0 (0.00%) 0 
(0.00%)

0 (0.00%) 0 
(0.00%)

Total 235 49 313 305
D P
Candidate Verified Candidate Verified

Attribute 80 (21.98%) 62 
(23.40%)

89 (24.45%) 103 
(26.96%)

Declaration 81 (22.25%) 70 
(26.42%)

88 (24.18%) 73 
(19.11%)

Parameter 81 (22.25%) 77 
(29.06%)

89 (24.45%) 60 
(15.71%)

Function 80 (21.98%) 41 
(15.47%)

88 (24.18%) 140 
(36.65%)

Class 42 (11.54%) 15 
(5.66%)

10 (2.75%) 6 
(1.57%)

Total 364 265 364 382

Table 5  Distribution of tags in 
candidate and verified (Manual-
ly-annotated) data set

 

Old Data Set CCID
TAG FREQUENCY TAG FREQUENCY
NM 1604 (45.2%) N 1141 (31.58%)
N 1141 (32.1%) NM 643 (17.79%)
V 305 (8.6%) P 398 (11.02%)
NPL 238 (6.7%) V 363 (10.04%)
PRE 105 (3%) DT 308 (8.52%)
P 94 (2.6%) D 283 (7.83%)
D 27 (0.8%) PRE 217 (6.00%)
DT 15 (0.4%) NPL 142 (3.93%)
VM 13 (0.4%) VM 69 (1.91%)
CJ 8 (0.2%) CJ 50 (1.38%)
Total 3550 Total 3614

Table 4  Distribution of part-of-
speech labels in Old Data Set 
and CCID

 

1 3

Page 11 of 51    148 



Empirical Software Engineering          (2025) 30:148 

4.2  Manual Process for Annotating Part-of-Speech

Initially, one author (annotator) is assigned annotate each identifier in the CCID with its 
grammar pattern. The annotator has experience annotating identifiers with part-of-speech 
(PoS) tags from prior work (Newman et al. 2020; Peruma et al. 2021). The process is as 
follows: The annotator is given a split (using Spiral Hucka 2018) identifier, along with 
its type, file path, and line number, to facilitate easy identification of the identifier in the 
original code. The annotator is permitted to examine the source code from which the iden-
tifier originated, if necessary. The annotator is asked to additionally identify and correct 
mistakes made by Spiral. When the annotator is finished, two additional annotators are 
asked to validate (agree or disagree) with the annotations created by the original annotator. 
Any disagreements are discussed and fixed, if required. Furthermore, a fourth annotator 
assigned their own annotations, which are then compared to the original annotator’s work. 
Again, disagreements are discussed and fixed. An example disagreement is with the identi-
fier where_len, which is a tricky one because ‘where’ is typically an adverb or conjunction. 
However, in this case ‘where’ is a reference to a void pointer variable called ‘where’ within 
the code. So ‘where_len’ is the length of the memory this pointer points to, making ‘where’ 
a noun-adjunct in this case; describing the type of length. Thus, its grammar pattern is NM 
N. The Fleiss’ Kappa for this process was.916.

We did not expand abbreviations for a couple reasons. The first is that some abbrevia-
tions are more meaningful than their expanded terms (e.g., HTTP, IPv4, SSL) due to their 
frequent use in abbreviated form by the community. The second reason is that abbreviation 
expansion techniques are not widely available and vary widely in terms of effectiveness 
on different types of terms (Newman et al. 2019; Zhang et al. 2023). Therefore, a realis-
tic worst-case scenario for developers and researchers is that no abbreviation-expansion 
technique is available to use, and their PoS taggers must work in this worst-case scenario. 
Whenever we recognize one, we do not split domain-term abbreviations (e.g., Spiral will 
make IPv4 into IPv 4; we corrected this to IPv4). We do this because it is the view of the 
authors that they should be recognized and appropriately tagged in their abbreviated (i.e., 
their most common) form.

5  Evaluation of RQ1: What behavioral roles do closed-category terms 
play in source code identifiers?

Our evaluation aims to establish, through RQ1 and RQ2: 1) how closed-category terms are 
used to convey differing types of program behavior, 2) the typical grammatical structure 
of identifiers containing closed-category terms, and 3) how closed-category term distribu-
tions differ across programming context, language, and system domains. This first research 
question investigates the semantic role of closed-category grammatical patterns in identifier 
naming. We focus on four closed-category part-of-speech types: prepositions, numerals, 
determiners, and conjunctions. We present our findings by (1) describing each category’s 
semantic function using axial codes, (2) summarizing behavioral trends via selective cod-
ing, and (3) highlighting shared trends through cross-category synthesis.

1 3

  148   Page 12 of 51



Empirical Software Engineering          (2025) 30:148 

5.1  Methodology: Manual Process for Behavioral Annotations

We employed an approach inspired by Straussian grounded theory to analyze variable 
names in source code and their relationship to program behavior. This multi-phase coding 
process involved four annotators, combining individual annotations with iterative validation 
and synthesis to construct a theory grounded in observed naming patterns. The sample used 
in this study is a subset of the CCID described in Section 4. To construct this subset, we took 
the top 10 most common grammar patterns (Table 7) and collected all identifiers that fol-
lowed these patterns; randomly selecting the 10th grammar pattern if multiple patterns had 
the same frequency. These represent the most common names (i.e., from the perspective of 
grammatical structure) used in the data set. This totals to 618 identifiers.

Four annotators participated in the process, comprising both faculty and graduate students 
with prior experience in natural language processing and software engineering research. All 
annotators had previously worked on part-of-speech annotation tasks. Before formal anno-
tation began, the team conducted a one-hour training and calibration session to discuss the 
guidelines, walk through examples, and establish expectations and deadlines.

Coding Platform  Annotations are conducted collaboratively using a shared Google Sheets 
document. Each row in the sheet contained an identifier along with contextual metadata, 
including:

Table 7  Most common patterns
Determiner Conjunction Preposition Numeral
DT N 109 

(35.74%)
N CJ N 6 (12.24%) P N 70 (18.32%) N D 125 

(47.17%)
DT NM N 40 

(13.11%)
V CJ N 3 (6.12%) P NM N 31 (8.12%) NM N D 33 

(12.45%)
DT NPL 20 (6.56%) CJ NM 2 (4.08%) P V 13 (3.40%) N D N 9 (3.40%)
DT V 7 (2.30%) NM CJ 

NM
2 (4.08%) N P N 12 (3.14%) PRE N D 8 (3.02%)

DT NM 
NM N

6 (1.97%) V CJ V 2 (4.08%) V P N 12 (3.14%) V N D 8 (3.02%)

N DT 6 (1.97%) V N CJ N 2 (4.08%) P 10 (2.62%) NPL D 6 (2.26%)
V DT 6 (1.97%) CJ 1 (2.04%) NM N 

P N
9 (2.36%) N D NM 

N
3 (1.13%)

DT NM NPL 5 (1.64%) CJ DT N 1 (2.04%) V P 9 (2.36%) V NM 
N D

3 (1.13%)

V DT N 5 (1.64%) CJ NM N 1 (2.04%) N P 8 (2.09%) N D NPL 2 (0.75%)
DT 4 (1.31%) CJ V 1 (2.04%) NPL P N 8 (2.09%) N P D 

NPL
2 (0.75%)

Context Sample Population
Attribute 312 (24.47%)
Declaration 306 (24.00%)
Function 313 (24.55%)
Class 52 (4.08%)
Parameter 292 (22.90%)
Total 1275

Table 6  Balanced population of 
identifiers per context
 

1 3

Page 13 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– Identifier Name
	– Source Code Context
	– Programming Language
	– GitHub Commit Link
	– Split Identifier Name (tokenized form)
	– Grammar Pattern (POS sequence)
	– Notes (for open coding and memoing)
	– Axial Code (for grouping behavioral patterns)

Open coding and memoing are captured directly in the Notes column. The final axial 
codes were recorded in the corresponding column once annotators had synthesized their 
observations.

Phase 1: Familiarization  All annotators reviewed the dataset to build familiarity with the 
variable names, associated grammar patterns, and program contexts. They discussed ambig-
uous or novel constructions in group chats to align interpretations and maintain consistency.

Phase 2: Open coding  Annotators examined each variable name in its context and assigned 
a free-form behavioral interpretation based on how the variable is used in the surrounding 
code. These open codes and rationale are documented in the Notes column. The goal was 
to capture a grounded understanding of what each identifier conveyed, informed by both 
linguistic structure and program behavior.

Phase 3: Axial coding  Annotators grouped similar open codes into higher-level axial codes, 
focusing on patterns where particular grammatical structures consistently aligned with spe-
cific behavioral roles. These axial codes captured mid-level abstractions (e.g., State Vari-
ables, Event Triggers), and were documented in the spreadsheet alongside notes justifying 
the grouping where needed. Each annotator’s axial codes were reviewed by a different anno-
tator for validation. This cross-review process involved reading both the open codes and the 
proposed axial codes, discussing disagreements, and refining the categories until consensus 
was reached. The Fleiss’ Kappa for this phase was: .971 for numerals, .996 for Determin-
ers, .976 for Prepositions, and 1.0 for Conjunctions.

Phase 4: Selective coding  One annotator synthesized the final, validated axial codes across 
all annotations and constructed a set of selective codes representing core theoretical cat-
egories that linked grammar structure to program intent. These selective codes were then 
shared with the remaining annotators, who were asked to evaluate whether they reflected 
the themes and relationships they had observed during their own coding work. Annotators 
agreed or suggested revisions to finalize the theory.

5.2  Numerals in Identifiers

Overview  Numerals in identifiers act as compact, semantic indicators of structure, ordering, 
or version. They are also often used to disambiguate entities and encode numeric conven-
tions. Their meaning is typically inferred through domain knowledge, making them power-
ful, but potentially hard to understand for those without the requisite domain knowledge.

1 3

  148   Page 14 of 51



Empirical Software Engineering          (2025) 30:148 

Axial codes  We created a dual-axis framework for interpreting the meaning of numerals, 
inspired by a single-axis framework we created in prior work on numerals in identifiers 
(Peruma and Newman 2023). This framework reflects our observation that numerals con-
tribute information in two distinct ways: (1) the role they play within the local context (e.g., 
indexing, versioning), and (2) the source of meaning they draw from, which is often exter-
nal to the immediate source code scope (e.g., domain conventions, technical standards). 
Every numeral in the set has both a role and a source of meaning; they must be com-
bined to fully understand the numeral. We put an ‘x’ between each combination of ‘Role’ 
and ‘Source of Meaning’ Axial Code.

	– Role: What functional purpose the numeral serves in the identifier.

	– Distinguisher: The numeral differentiates conceptually similar entities, typically to 
avoid name collision errors from the compiler (e.g., arg1, tile2).

	– Version Identifier: The numeral encodes versioning information such as protocol 
revisions or data format versions (e.g., http2, v1).

	– Source of Meaning: Where the interpretation of the numeral originates, typically via 
convention, tooling, or domain-specific logic.

	– Auto-Generated: The numeral is added automatically by tools, compilers, or nam-
ing systems to avoid conflicts (e.g., var1_2, jButton3).

	– Human-Named Convention: The numeral’s meaning is primarily derived from ad 
hoc developer intent and is not more complex than distinguishing entities manually 
(e.g., str1, feature2).

	– Locally Specific Concept: The numeral conveys project- or context-specific infor-
mation, often related to coordinate systems, data structures, or memory layouts 
(e.g., m33 for matrix row 3 col 3).

	– Technology Term/Standard: The numeral is part of a recognized domain-specific 
label, format, or protocol (e.g., HTTP2, Neo4j).

Role x Source of Meaning   

1.	 Distinguisher × Human-Named Convention (122 items) Description: This group 
captures identifiers that use manually assigned numeric suffixes to distinguish concep-
tually and lexically similar entities. Examples: host1 (first of 2 host variables), e8 
(element 8 in a parameter list) Grammar patterns:

	– N D (73)
	– NM N D (21)
	– V N D (6)
	– NPL D (6)
	– N D N (5)
	– PRE N D (3)
	– N D NM N (2)
	– P D (2)

1 3

Page 15 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– PRE NM N D (2)
	– V NM N D (2)

2.	 Distinguisher × Locally Specific Concept (45 items) Description: This group cap-
tures identifiers where numerals encode positional or logical roles based on system-
specific conventions, such as grid layout or data structure indexing. Examples: dist2 
(squared distance calculation), col1 (first column of a matrix) Grammar patterns:

	– N D (32)
	– NM N D (5)
	– PRE N D (3)
	– N D N (2)
	– NM N D P D (2)
	– V N D (1)

3.	 Distinguisher × Technology Term/Standard (17 items) Description: This group cap-
tures identifiers that include numerals as part of standardized or domain-specific nam-
ing conventions, often encoding formats or specifications. Examples: b1110 (binary 
for UTF8 byte sequences), count32 (32-bit count value) Grammar patterns:

	– N D (7)
	– NM N D (5)
	– PRE N D (2)
	– N D N (1)
	– V N D (1)
	– V NM N D (1)

4.	 Version Identifier × Technology Term/Standard (9 items) Description: This group 
captures identifiers where the numeral signals the version number of a protocol, tool, or 
technology component. Examples: gw6 (gateway addr for IPV6), httperf2 (version 
2 of the httperf tool) Grammar patterns:

	– N D (5)
	– NM N D (2)
	– N D N (1)
	– N D NM N (1)

5.	 Distinguisher × Auto-Generated (8 items) Description: This group captures identifi-
ers that are automatically suffixed with a numeral to ensure uniqueness, often generated 
by tools or compilers. Examples: field37, field4 (numbers are generated to avoid 
name collissions) Grammar patterns:

	– N D (8)

Example  Consider the identifier m34, which appears in the context of a matrix operation. 
To fully interpret the numeral 3 in this name, we must consider both its Role and its Source 

1 3

  148   Page 16 of 51



Empirical Software Engineering          (2025) 30:148 

of Meaning. Semantically, the numeral serves as a Distinguisher; uniquely identifying this 
variable apart from its siblings (such as m32 and m31). However, its complete interpretation 
depends on its Locally Specific Concept source: the developers have an internal convention 
that 3 refers to the row index, while 4 refers to the column. Without knowing the Source of 
Meaning, the numbers can only be interpreted as distinguishing one identifier from another; 
the meaning of the numerals would remain ambiguous. This illustrates how both axes work 
together–Role tells us what the numeral is doing, while Source of Meaning tells us how to 
interpret the value.

Selective Coding Insight  Numerals serve as semantic compression tools in source code: 
conveying versioning, layout, ordering, or configuration state using a minimal footprint. 
Their power lies in the idea that both the identifier’s author and readers share a certain level 
of domain knowledge, and thus can understand the meaning of the numeral. Whether distin-
guishing hosts (host1, host2), signaling protocol versions (http2), or denoting matrix 
dimensions (m33), numerals rely on prior knowledge to be effective, this makes them:

	– Easy to understand when used in well-known conventions (e.g., 3D, utf8)
	– Hard to understand when overused without documentation or when the reader lacks 

background information/experience that the author assumed they would have

Numerals are structural shortcuts in the mental models of developers; a quick way to con-
vey a lot of information in a small number of characters.

5.3  Prepositions in Identifiers

Overview  Prepositions in identifiers express spatial, temporal, or logical relationships. They 
are the most versatile (i.e., most axial codes) and frequently used closed-class grammatical 
structure in our dataset. Prepositions typically convey transformation, control conditions, 
event triggers, source origin, or context membership. Because only a subset of these are 
dual-axis (Boolean Flow), we inline the definitions with our examples, unlike with numer-
als, where we separate them.

Axial Codes  Through axial coding, we identified several recurring behavioral roles that 
prepositions play in identifier names. These axial codes describe the functional semantics 
conveyed by the preposition within the naming context: 

1.	 Type Casting/Interpretation (38 items) Definition: This group captures identifiers 
that signify transformation from one type, format, or abstraction to another. Examples: 
str_2_int, as_field Grammar patterns:

	– P N (18)
	– P NM N (9)
	– N P N (4)
	– V P N (2)
	– P NM NM N (2)
	– P V (1)

1 3

Page 17 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– NM N P N (1)
	– V P (1)

2.	 Position/Ordering in Time or Space (28 items) Definition: This group captures 
identifiers that indicate relative position or sequencing within a spatial, temporal, or 
execution context. Examples: before_major, after_first_batch Grammar 
patterns:

	– P N (8)
	– P (4)
	– N P N (3)
	– P NM N (3)
	– V P N (3)
	– P V (2)
	– V P (2)
	– NM N P N (2)
	– N P (1)

3.	 Boolean Flow/Control Flag (26 items) Definition: This group captures identifiers 
that encode boolean flags which both guard execution and describe the behavior they 
enable. This group is somewhat special, as their name implies other axial codes, but 
they are boolean variables. Thus, many of the identifiers in this group are dual-axis, 
where the 1 st axis is boolean, and the 2nd is one of the other preposition axes. These 
variables are typically guards, used in branching logic that:

	– Activate based on position or sequencing (e.g., after_equals)
	– Govern strategy or type casting/interpretation behavior (e.g., for_backprop, 
as_array)

	– Reflect data provenance or deferred logic (e.g., from_docker_config, wait_
for_reload) Examples: obsess_over_host, for_backprop Grammar 
patterns:

	– P N (12)
	– P NM N (6)
	– V P N (2)
	– V P (2)
	– N P N (2)
	– N P (1)
	– P (1)

4.	 Data Source/Origin (20 items) Definition: This group captures identifiers that refer to 
the source from which data or configuration is retrieved. Examples: from_context, 
from_id Grammar patterns:

	– P N (10)
	– P NM N (1)
	– N P N (2)

1 3

  148   Page 18 of 51



Empirical Software Engineering          (2025) 30:148 

	– P (3)
	– NM N P N (1)
	– V P (1)
	– N P (2)

5.	 Event Callback/Trigger (17 items) Definition: This group captures identifiers that 
define behavior executed in response to user or system events. Examples: on_rea-
son, on_start Grammar patterns:

	– P N (6)
	– P NM N (5)
	– P NM NM N (4)
	– V P N (1)
	– NM N P N (1)

6.	 Deferred Processing/Pending Action (13 items) Definition: This group captures iden-
tifiers that signal actions or data awaiting future handling. Examples: to_ack, to_
count Grammar patterns:

	– P V (10)
	– P N (2)
	– P NM N (1)

7.	 Unit-Based Decomposition/Measurement (11 items) Definition: This group captures 
identifiers that describe per-unit measurement, processing, or aggregation. Examples: 
down_time, size_in_datum Grammar patterns:

	– NPL P N (8)
	– P N (1)
	– N P N (1)
	– NM N P N (1)

8.	 Purpose/Role Annotation (10 items) Definition: This group captures identifiers that 
clarify the functional role or use-case of a value. Examples: for_avg, for_class 
Grammar patterns:

	– P N (6)
	– NM N P N (2)
	– P NM N (1)
	– V P (1)

9.	 Data Movement/Transfer (9 items) Definition: This group captures identifiers that 
represent movement of data or control between locations, buffers, or components. 
Examples: to_repo, to_header Grammar patterns:

	– P N (3)

1 3

Page 19 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– N P (3)
	– P NM N (1)
	– NM N P N (1)
	– P NM NM N (1)

10.	 Operation Basis/Strategy (8 items) Definition: This group captures identifiers that 
describe the method, or trait that determines how operations may/should be carried out. 
Examples: extend_by_hexahedron, with_unary_operator Grammar 
patterns:

	– P N (2)
	– P NM N (2)
	– V P N (2)
	– P (1)
	– V P (1)

11.	 Membership/Peer Grouping (7 items) Definition: This group captures identifiers that 
signal inclusion in a group, scope, or set of peer entities. Examples: in_neighbour_
heap, in_for Grammar patterns:

	– P (2)
	– P N (1)
	– P NM N (1)
	– V P N (1)
	– V P (1)
	– N P (1)

12.	 Mathematical/Constraint Context (2 items) Definition: This group captures identi-
fiers that encode numerical limits, bounds, or ratios that constrain behavior. Examples: 
over_size, vmax_over_base Grammar patterns:

	– P N (1)
	– N P N (1)

Selective Coding Insight  Prepositions in identifier names serve as compact, highly expres-
sive relational markers. Across the dataset, prepositions consistently support four core 
semantic roles:

	– Transformation and Directionality: Prepositions like to, from, and as signal type 
casting, movement, or format conversion.

	– Execution and Conditional Control: Prepositions such as after, on, and for 
often signal when or whether an action should occur, especially within event-driven 
operations and boolean flags that gate execution.

	– Role and Configuration Semantics: Prepositions like with, by, and in clarify how 
values contribute to a process or how behavior is scoped or grouped.

1 3

  148   Page 20 of 51



Empirical Software Engineering          (2025) 30:148 

	– Quantification and Unit-Based Aggregation: Prepositions such as per and in 
describe how quantities are measured, normalized, or decomposed across units (e.g., 
iterations_per_sample, size_in_datum).

	– Future-Intent or Deferred Action: Especially with to, some identifiers encode pending 
or scheduled behavior (e.g., to_merge, wait_for_reload).

Importantly, boolean flags that include prepositions do not form a distinct behavioral class, 
but instead overlay these four functions; gating type conversions, controlling source-based 
logic, or scoping strategies. These flags act as behavioral summaries, where the identifier 
directly reflects the guarded behavior (e.g., send_to_buffer reflects that the guarded 
code sends data to a buffer).

In short, prepositions make invisible system relationships visible. They map the logic of 
control, transformation, and association directly into identifier structure, enabling expres-
sive, intention-revealing naming in complex systems.

5.4  Determiners in Identifiers

Overview  Determiners in identifiers help interpret values in relation to a set. They often 
signal positional reasoning, filtering criteria, relative thresholds, control flow, or scoping 
rules. In our analysis, we treat terms like next and last as determiners, even though 
they are typically categorized as adjectives in general English. In source code, however, 
these terms function more like determiners because they specify a particular entity within 
a sequence or collection rather than merely describing its properties. For example, the 
next pointer in a linked list does not describe a type of pointer, but rather identifies the 
specific node that follows in the structure. In this way, such terms serve a determinative 
function.

Axial Codes  We identified the following eight categories of determiner-based behavior: 

1.	 Temporal/Most Recent Element (60 items) Definition: This group captures identifiers 
that refer to the most recently computed, stored, or observed value, often used for com-
puting prior state, and in sequence-based data structures. Examples: last_bucket, 
last_builder Grammar patterns:

	– DT N (32)
	– DT NM N (19)
	– DT NM NM N (4)
	– DT V (2)
	– V DT N (2)
	– DT NPL (1)

2.	 Temporal/Upcoming Element (54 items) Definition: This group captures iden-
tifiers that denote the next item in a sequence or timeline, often used in look-ahead 
and sequence-based data structures. Examples: next_tex, next_bar Grammar 
patterns:

1 3

Page 21 of 51    148 



Empirical Software Engineering          (2025) 30:148 

	– DT N (35)
	– DT NM N (9)
	– DT V (3)
	– N DT (3)
	– DT NPL (2)
	– DT NM NM N (1)
	– V DT N (1)

3.	 Population/Subpopulation Reference (42 items) Definition: This group encompasses 
identifiers that reference a population or subset, typically using quantifiers such as all, 
any, or some to guide iteration, filtering, or policy logic. Examples: any_diffuse, 
all_set Grammar patterns:

	– DT NPL (13)
	– DT N (9)
	– V DT (6)
	– DT NM NPL (4)
	– V DT NPL (4)
	– DT NM N (2)
	– N DT (2)
	– DT V (1)
	– V DT N (1)

4.	 Immediate Context Reference (26 items) Definition: This group captures identifi-
ers that refer to the current instance, scope, or runtime context–emphasizing locality, 
such as this, another, or a. Examples: this_node, another_id Grammar 
patterns:

	– DT N (17)
	– DT NM N (6)
	– DT NM NM N (1)
	– N DT (1)
	– V DT N (1)

5.	 Negation/Exclusion Flag (18 items) Definition: This group captures identifiers that 
indicate something is explicitly disabled, excluded, or absent; commonly using no to 
toggle features or signal null conditions. Examples: no_callback, no_log Gram-
mar patterns:

	– DT N (12)
	– DT NM N (2)
	– DT NPL (2)
	– DT NM NPL (1)
	– DT V (1)

1 3

  148   Page 22 of 51



Empirical Software Engineering          (2025) 30:148 

6.	 Quantity Threshold/Optional Extensibility (4 items) Definition: This group captures 
identifiers that express minimum thresholds, or the possibility of extending beyond a 
baseline. Examples: enough_memory, more_data Grammar patterns:

	– DT N (2)
	– DT NPL (2)

7.	 Default/Fallback Value Representation (2 items) Definition: This group captures 
identifiers that represent placeholder or fallback values, used when a field must be filled 
or a default condition must be satisfied. Examples: a_void, no_val Grammar 
patterns:

	– DT N (2)

8.	 Boolean Multi-Condition Test (2 items) Definition: This group captures boolean 
identifiers representing conjunctions of multiple conditions, usually requiring all to be 
satisfied (e.g., both X and Y must be true). Examples: both_empty_selection, 
both_NonEmpty_Selection Grammar patterns:

	– DT NM N (2)

Selective Coding Insight  Determiner-based identifiers help interpret values in relation to a 
set–by signaling position, filtering criteria, thresholds, or scoping rules. These are closed-
category terms that enable programmers to express set logic, entity selection, and relative 
capacity or validity. They typically support:

	– Positional reasoning (next, last, this): Indicates where a value occurs in a 
temporal or structural sequence, helping to track state progression, history, or future 
execution.

	– Population membership and filtering (some, any, each, least, which): 
Refers to selecting or referencing members within a larger set, expressing scope, quan-
tification, or comparison.

	– Thresholding and extensibility (enough, more, additional): Indicates 
whether a minimum condition is met or whether more values can be included beyond a 
base requirement.

	– Identity negation or fallback (no, none, a, without): Flags exclusion, absence, 
or placeholder values–often tied to feature toggles or default logic.

5.5  Conjunctions in Identifiers

Overview  Conjunction-based identifiers are rare but expressive. They signal compound 
behavior, dual-mode interfaces, or gated logic–often making hidden control flow or seman-
tic relationships visible. Their rarity likely stems from the fact that developers often express 
conjunctions in logic rather than names. But when used, they highlight either an intent to 
emphasize control-flow behavior or to capture structural duality within a single name.

1 3

Page 23 of 51    148 



Empirical Software Engineering          (2025) 30:148 

Axial Codes  We identified seven categories of conjunctional behavior, each reflecting a dif-
ferent type of pairing, conditionality, or combination: 

1.	 Data Pair/Composite Value (7 items) Definition: This group captures identifiers that 
hold or refer to two values used together or in alternation, typically for a shared behav-
ioral role or composite purpose. Examples: data_or_diff, function_and_
data Grammar patterns:

	– N CJ N (6)
	– V CJ N (1)

2.	 Guarded Action/Conditional Enablement (6 items) Definition: This group captures 
identifiers that encode actions gated by internal logic; executing only if a condition 
is satisfied. The conjunction expresses conditional enablement or guarded behavior. 
Examples: if_present, if_unique Grammar patterns:

	– CJ NM (2)
	– V CJ N (2)
	– V CJ V (1)
	– V CJ VM P (1)

3.	 Combined Action/Sequential Behavior (3 items) Definition: This group captures 
identifiers that describe a sequence of operations performed together, often represent-
ing merged behaviors. Examples: hash_and_save, print_and_free_json 
Grammar patterns:

	– V CJ V (1)
	– V CJ V N (1)
	– V N CJ N (1)

4.	 Shared Interface for Alternatives (1 item) Definition: This group captures identifiers 
that define a shared interface or behavior over mutually exclusive alternatives, with the 
conjunction indicating a choice, not a combination. Example: generate_key_or_
iv Grammar pattern:

	– V N CJ N (1)

5.	 Combined Configuration/UI Concept (1 item) Definition: This group captures identi-
fiers that refer to compound interface or configuration concepts, often blending multiple 
traits into a unified design or behavioral setting. Example: look_and_feel Gram-
mar pattern:

	– NM CJ NM (1)

1 3

  148   Page 24 of 51



Empirical Software Engineering          (2025) 30:148 

6.	 Boolean Concept Name (1 item) Definition: This group captures identifiers that 
encode a named logical or boolean relationship, usually by treating the conjunction 
itself as a symbolic concept. Example: and Grammar pattern:

	– CJ (1)

7.	 Boolean Multi-Condition Test (1 item) Definition: This group captures identifiers 
that evaluate multiple conditions simultaneously; typically for readiness or validation 
checks, returning true only if all constraints are met. Example: null_or_empty 
Grammar pattern:

	– NM CJ NM (1)

Selective Coding Insight  Conjunction-based identifiers are especially useful when modeling:

	– Duality: Representing more than one entity or mode simultaneously (e.g., input_
and_output, key_or_iv)

	– Mutual Exclusion: Encoding choices between alternatives–only one active at a time 
(e.g., stream_or_cache)

	– Preconditions: Embedding logic into the name that would otherwise be hidden in 
branching statements (e.g., load_if_needed, trigger_if_active)

Conjunctions are the rarest category in our data, and while it is difficult to draw firm conclu-
sions about them, it is clear that ‘and’, ‘or’, and ‘if’ are go-to conjunctions, particularly for 
Data Pairs and Guarded actions.

5.6  Cross-Category Synthesis

Across numerals, determiners, prepositions, and conjunctions, developers use closed-class 
grammatical structures to encode compact, behavior-rich semantics in identifiers. While 
each PoS category exhibits distinct tendencies, analysis of grammar patterns reveals broader 
functional themes and stylistic consistencies across categories.

Boolean Semantics and Execution Control  Our first cross-category behavior is the use of 
closed-class elements to encode boolean conditions, execution control, or logical gating: 

1.	 Determiners such as no, some, this, and both signal presence, exclusion, or multi-con-
dition boolean evaluation.

2.	 When used as booleans, Prepositions like as, and with tend to guard sections of code 
that implement the behavior described in the identifier name.

3.	 Conjunctions surface explicitly in guarded or compound logic names (e.g., load_if_
enabled, both_ready) using patterns like V CJ N, NM CJ NM.

Interestingly, booleans appear in all three of these contexts, but each is a different flavor; a 
way of expressing behavior that is unique to the closed-category terms used in the boolean 
identifier.

1 3

Page 25 of 51    148 



Empirical Software Engineering          (2025) 30:148 

Control Flow and Event Signaling Across Categories  Closed-category terms across all four 
categories reflect a tendency to encode temporal, reactive, or preconditioned behavior: 

1.	 Prepositions like on, before, after, and by appear in structures such as P N and V P N, 
signaling timing, triggers, or basis for operation.

2.	 Conjunctions explicitly model control conditions (if, and) or mutual exclusivity (or), 
often appearing in V CJ N or N CJ N structures.

3.	 Determiners frequently encode sequence through next and last, realized in DT N and 
DT NM N patterns.

4.	 Numerals imply procedural differentiation (method1, step2) or timeline indexing when 
appearing in coordinated identifiers (m31, m32).

These names act as micro-control structures, embedding state transitions and flow logic 
directly into identifier names to help the reader understand when or how an identifier will/
should be used.

Multi-Dimensional Semantic Layering  Grammar pattern analysis highlights how identifiers 
stack multiple behavioral dimensions: 

1.	 Prepositions convey direction, transformation, measurement, and order
2.	 Determiners convey selection, quantity, and scope
3.	 Numerals embed indexing, uniqueness, and domain roles
4.	 Conjunctions encode logic composition and structural alternatives.

These layered forms serve as semantic shortcuts to convey complex behavior with minimal 
words. They compress conditions, transformations, order, and relationships into concise 
forms that aim to assist program comprehension and understanding without excess verbiage.

Finally, the grammar patterns observed across our axial codings provide structural 
insight into how behavioral semantics are composed. When the closed-category term 
appears as the first token in a grammar pattern, such as in DT NM N or P NM N, it typically 
modifies or qualifies a single operand, forming a unary relation (e.g., temporal status or 
transformation of a noun phrase). In contrast, when the closed term is flanked by open-class 
terms, such as in N P N or N CJ N, the structure reflects a binary relation: two operands 
connected through a behavioral or logical relationship (e.g., data flow or choice).

By combining our axial and selective codes with these syntactic patterns, we gain a 
fuller picture of identifier meaning: the open-category terms indicate *which* entities are 
involved, while the closed-category term signals *how* they are related or behave with 
respect to one another.

5.7  Summary of RQ1

Through qualitative analysis of closed-category terms in identifiers, we have uncovered and 
explored how these compact grammatical forms play a central role in expressing program 
behavior. Each part-of-speech category contributes distinct semantic functions, ranging 
from transformation and scoping to control flow and logical composition.

1 3

  148   Page 26 of 51



Empirical Software Engineering          (2025) 30:148 

Together, they reveal how developers construct concise, behavior-rich identifiers that 
encode structure, timing, intent, and logic. Whether signaling preconditions (load_if_
enabled), alternatives (data_or_diff), state (last_bucket), or structural roles (col1), 
these terms form a functional lexicon that bridges source code, cognition, and context.

6  Evaluation of RQ2: How do closed-category terms correlate with 
structural, programming language, and domain-specific contexts in 
software?

One interesting aspect of closed-category terms is that they appear in different contexts 
within source code with varying frequency. This variation provides insight into how devel-
opers use these terms to express different types of meaning. For RQ2, we investigate how 
closed-category terms correlate with three types of context: (1) the local programming 
context in which a variable is declared (e.g., Function, Attribute), (2) the programming 
language of the source code in which the identifier was found, and (3) the broader system-
level domain of the software in which it appears (e.g., domain-specific vs general-purpose 
projects). This 3-way perspective allows us to examine both how these terms are used within 
individual source code structures, between programming languages, and how they reflect 
distinctions across different kinds of systems.

We begin by analyzing the distribution of four closed categories: prepositions, determin-
ers, conjunctions, and numerals, across five programming contexts and three programming 
languages. We discuss which categories are most frequent in which contexts/languages and 
consider how those patterns may reflect the communicative goals of the developer. We then 
extend this analysis to system-level domain context, comparing the normalized frequency of 
closed-category term usage between domain-specific and general-purpose systems.

6.1  Closed-Category Term Usage Across Programming Contexts, Programming 
Languages, and System Domains

We now examine how differing contexts and closed-category grammar patterns relate to one 
another, and whether programming language further conditions their usage. We begin by 
analyzing cross-language correlations in the usage of closed-category terms, followed by an 
exploration of correlations in how these terms are used across different program contexts. 
We provide Table 8, which shows frequencies and percentages for PoS and terms, to help the 
reader understand what types of terms are most prevalent. However, for this research ques-
tion, we rely primarily on Tables 9, 10, 11, and 12, which present the results of our Pearson 
Chi-square tests and standardized Pearson residuals. Using these, we highlight common 
patterns, terms, and the contexts or languages to which these patterns are correlated.

6.1.1   Language-Specific Differences in Closed-Category Term Usage

Starting with an analysis of closed category terms and programming language, our null 
hypothesis is that there is no relationship between identifiers containing closed category 
terms and the programming language in which they appear. Our alternative hypothesis 

1 3

Page 27 of 51    148 



Empirical Software Engineering          (2025) 30:148 

Table 11  Results of Pearson’s Chi-Squared Test. df = 12, α = 0.05, critical value = 21.026, test statistic = 
88.893567

Attribute Class Declaration Function Parameter Chi-
square per 
row

D 0.44932 16.031139 0.776138 15.916173 10.634467 43.807237
DT 0.511266 6.398601 2.14863 0.959251 0.171805 10.189553
P 0.332388 0.506133 3.498335 8.724009 3.63817 16.699033
CJ 3.366551 1.027972 0.233783 12.071429 1.498009 18.197744
Chi-square per 
column

4.659525 23.963845 6.656886 37.670861 15.942451 88.893567

C C++ Java
D 0.953270 0.740778 −1.649081
DT −0.986465 −0.279221 1.233406
P −0.367728 −0.189311 0.542514
CJ 0.983056 −0.492859 −0.480581

Table 10  Standardized Pearson 
residuals results. With Bonfer-
roni Correction, a significant 
result is α = 0.05/12 = 0.0042, 
which translates to a ±2.87 criti-
cal value

 

C C++ Java Chi-
square 
per row

D 0.451887 0.275300 1.282415 2.009603
DT 0.457607 0.036988 0.678404 1.172999
P 0.056554 0.015121 0.116729 0.188405
CJ 0.621604 0.157629 0.140876 0.920108
Chi-square per 
column

1.587652 0.485038 2.218424 4.291115

Table 9  Results of Pearson’s 
Chi-Squared Test. df = 6, α = 
0.05, critical value = 12.592, test 
statistic = 4.291

 

 Determiner  Conjunction  Numeral  Preposition
last (79, 25.65%) and (18, 

36.00%)
1 (77, 27.21%) to (76, 

19.10%)
next (69, 22.40%) if (16, 

32.00%)
2 (71, 25.09%) for (37, 

9.30%)
all (52, 16.88%) or (13, 

26.00%)
0 (20, 7.07%) on (36, 

9.05%)
no (31, 10.06%) than (1, 

2.00%)
3 (17, 6.01%) as (35, 8.79%)

this (21, 6.82%) since (1, 
2.00%)

4 (15, 5.30%) from (33, 
8.29%)

each (7, 2.27%) when (1, 
2.00%)

16 (13, 4.59%) in (25, 6.28%)

the (6, 1.95%) - 8 (8, 2.83%) after (21, 
5.28%)

more (5, 1.62%) - 6 (6, 2.12%) 2 (to) (17, 
4.27%)

a (4, 1.30%) - 64 (4, 1.41%) of (15, 3.77%)
some (4, 1.30%) - 32 (3, 1.06%) with (14, 

3.52%)

Table 8  Top 10 terms per closed-
category part-of-speech tag
 

1 3

  148   Page 28 of 51



Empirical Software Engineering          (2025) 30:148 

is that there is a relationship between identifiers that contain closed category terms and the 
programming language.

Methodology. To perform our Chi-Square test, we use the CCID described in Sec-
tion 4.1. We count how many times each closed-category PoS appears in C++, Java, or C 
code by analyzing all 1,001 identifiers that contain closed-category terms. For example, we 
might find that there were 20 numerals in our data set found in C++ code, and 5 numerals in 
Java code. Once we have these frequencies, we apply the Chi-Square test and Standardized 
Pearson residuals with Bonferroni correction to determine overall significance and per-part-
of-speech significance, respectively.

Results. The Chi-square test for programming language (Table  9) did not produce a 
statistically significant result. Thus, we do not reject the null hypothesis: there is no strong 
evidence that closed-category tag usage differs significantly by programming lan-
guage. However, exploratory analysis of the Standardized Pearson residuals in Table 10 
offers insight into modest trends worth noting:

	– Numerals (D) are modestly underrepresented in Java (residual =–1.65), suggesting a 
mild tendency to avoid numeric suffixes in Java naming.

	– Determiners (DT) are slightly overrepresented in Java (residual = 1.23), potentially 
reflecting more frequent use of quantifying or contextual modifiers.

Summary  While we did not find significant statistical evidence linking closed-category 
tag usage to programming language, the residual analysis and qualitative trends suggest 
mild idiomatic differences, particularly around numeral usage and determiner phrasing. For 
example, in our Axial Code data from RQ1, Population/Subpopulation Reference identi-
fiers were found in Java (21, 50%) and C++ (18, 42%) more than in C(3, 7%). These pat-
terns may reflect broader stylistic conventions or design idioms of each language, but should 
be interpreted cautiously given the statistical outcome.

6.1.2   Context-Specific Differences in Closed-Category Term Usage

Next, we analyze the correlation between closed-category terms and program contexts such 
as Function names, Attributes, and Class names. Our null hypothesis is that there is no 
relationship between identifiers containing closed-category terms and the context in which 
they appear. Our alternative hypothesis is that there is a relationship between identifiers 
containing closed-category terms and the context in which they appear.

Methodology. To perform our Chi-Square test, we use the CCID described in Sec-
tion 4.1. We analyzed all 1,001 identifiers that contained closed-category terms, and counted 
how many times a closed-category term appears in one of our five code contexts: Attribute, 
Function, Class, Declaration, or Parameter. Once we have these frequencies, we apply the 

Attribute Class Declaration Function Parameter
D −0.905532 4.719156 1.1768 −5.505053 4.254103
DT 0.993307 −3.065907 2.013483 −1.389769 −0.556035
P 0.849262 −0.91434 −2.724314 4.444202 −2.713221
CJ  −2.179409 −1.050735 −0.567884 4.21543 −1.403873

Table 12  Standardized Pearson 
residuals. With Bonferroni 
correction, a significant result is 
α = 0.05/20 = 0.0025, which 
translates to a ±3.02 critical 
value

 

1 3

Page 29 of 51    148 



Empirical Software Engineering          (2025) 30:148 

Chi-Square test and Standardized Pearson residuals with Bonferroni correction to determine 
overall significance and per-part-of-speech significance, respectively.

Results. The Chi-squared test for context (Table  11) shows a significant result 
(88.89 > 21.026), allowing us to reject the null hypothesis. As before, we analyze the Stan-
dardized Pearson Residuals (Table 12) to understand where the largest deviations appeared.

Conjunctions (CJ). Closed-category grammar patterns that include conjunctions typi-
cally feature the terms ‘and’, ‘or’, or ‘if’, as reflected in Table 8. Although rare overall, these 
patterns are significantly positively correlated with function names (Standardized Pearson 
residual = 4.22, Table 12). This indicates that when conjunctions do appear, they are far 
more likely to occur in function names than in other contexts.

The selective coding data from RQ1 explains this pattern. Conjunction-based gram-
mar patterns tend to express compound logic, dual-purpose behavior, or guarded activa-
tion, which are most relevant when naming behaviors or actions rather than static values. 
For example, Guarded Action/Conditional Enablement patterns such as load_if_needed 
or activate_if_enabled appear in function names to encode preconditions or gating logic 
directly into the identifier.

Conjunction-based names are largely absent from declarations and classes, likely because 
those contexts do not typically represent conditional or compound operations. The data sup-
ports the interpretation that developers strategically use conjunctions in function names to 
foreground complex control logic or behavioral nuance at the point of execution.

While we did find a significant correlation between conjunctions and functions, it is 
essential to note that our dataset contains 50 conjunctions, meaning that while we have 
identified potential trends, further research on a larger sample is likely necessary.

Determiners (DT). Closed-category grammar patterns that include determiners typically 
feature the terms last, next, all, no, or this, as shown in Table 8. While deter-
miners are not significantly positively correlated with any specific context, they are modestly 
negatively correlated with class names (Standardized Pearson residual =–3.07, Table 12), 
suggesting that developers tend to avoid determiner-based grammar patterns in class names.

The selective coding analysis offers a plausible explanation: the most common roles 
for determiners involve expressing temporal or positional relationships–such as Temporal/
Most Recent Element and Temporal/Upcoming Element (over 100 instances)–as well as 
set-based semantics, such as Population/Subpopulation Reference (38 instances). These 
patterns commonly use terms like next, last, prev, all, and any to indicate an 
element’s position in a sequence or its membership in a filtered subset.

These naming strategies are well-suited to attributes, parameters, and declarations, where 
variables often represent dynamic state or bounded subsets. In contrast, class names are gen-
erally used to describe abstract data types or roles, where positional or filtering semantics 
are less relevant. The relative absence of determiners in class contexts thus reflects their 
semantic focus: determiners foreground state, scope, or specificity, whereas class names 
typically signal structural purpose or generalization.

Numerals (D). Closed-category grammar patterns that include numerals often feature 
numerals such as 1, 2, 0, 3, and 4, as shown in Table 8. Numerals are significantly 
positively correlated with parameter names and class names, and significantly negatively 
correlated with function names (Standardized Pearson residual = 4.72 for class names, 4.25 
for parameters, and–5.51 for functions; Table 12). Notably, numerals are the only closed-
category category to exhibit a positive correlation with class names.

1 3

  148   Page 30 of 51



Empirical Software Engineering          (2025) 30:148 

The selective coding data sheds light on this trend. The most frequent numeral-related 
patterns in our dataset fall under Distinguisher × Human-Named Convention and Dis-
tinguisher × Locally Specific Concept. These naming strategies are used to distinguish 
among similar entities (e.g., arg1, arg2, tile3) or to embed system-specific refer-
ences (e.g., m34, cp437) into variable or type names. Such distinctions are especially 
useful in parameters and declarations, where there is no syntactic support for disambigua-
tion outside of naming.

In contrast, function-level disambiguation is often handled by the language itself, through 
overloading, polymorphism, or naming conventions focused on behavior; making numerals 
largely unnecessary or even undesirable in that context. Their absence from function names 
reflects this shift: numerals encode identity, that is, they serve as a means of traceability to 
specific domain concepts and distinguish entities with similar names, rather than encoding 
purpose or behavior.

Taken together, these findings suggest that numerals serve primarily as disambiguators 
or protocol markers rather than communicative devices for expressing behavior. Their pres-
ence in class and parameter names signals static or structural variation, while their avoid-
ance in function names underscores a developer’s preference for meaningful, descriptive 
action labels over numerical markers.

Prepositions (P). Closed-category grammar patterns that include prepositions frequently 
feature terms such as to, for, as, on, or from, as shown in Table 8. These patterns 
are significantly positively correlated with function names (Standardized Pearson residual = 
4.44, Table 12), suggesting that developers are particularly likely to use prepositional gram-
mar when naming behaviors or operations.

This strong correlation reflects the behavioral semantics that prepositions convey in iden-
tifier names. As detailed in our selective coding, prepositions frequently express directional-
ity, transformation, conditional activation, or event-driven execution; all of which are highly 
function-oriented behaviors, requiring action to be taken.

Summary  The results of our analysis support the alternative hypothesis: closed-category 
parts of speech are meaningfully correlated with specific roles and contexts in source code. 
Prepositions and conjunctions appear more frequently in function names, where they help 
express behavioral nuances such as guarded actions, type casting, or alternative execution 
paths. Numerals, by contrast, are most commonly found in class names and parameter dec-
larations, where they signal disambiguation, indexing, or versioning; identifiers rooted in 
identity rather than behavior.

6.1.3   Closed-Category Term Usage Across System Domains

Having established correlations between closed-category terms, source code context, and 
programming language, we now turn to a broader question: do these terms also vary with 
the domain of the software system itself? This sub-question allows us to further test our 
central hypothesis, that closed-category terms are not used arbitrarily, but instead reflect 
domain-relevant distinctions in how behavior and structure are communicated. If certain 
domains make more frequent or specialized use of closed-category terms, this suggests that 
such terms play a role in expressing concepts tightly coupled to those domains. Understand-

1 3

Page 31 of 51    148 



Empirical Software Engineering          (2025) 30:148 

ing and appropriately using these terms may therefore be critical for accurate communica-
tion of behavior in domain-specific software.

Methodology. In RQ1, we developed a set of Axial Codes to describe the behavioral 
roles of closed-category terms in identifiers. To explore their importance at the level of 
system domain, we selected the two most common Axial Codes from each closed-category 
group (e.g., Prepositions, Determiners). For each code, we identified two software domains 
that we hypothesized would frequently use identifiers expressing that behavior. For exam-
ple, in the Preposition group, the top two Axial Codes were:

	– Type Casting/Interpretation
	– Position/Ordering in Time/Space/Execution Context

Based on these, we selected four relevant software domains:

	– For Type Casting/Interpretation:

	– Serialization/deserialization libraries
	– Polyglot interop tools or type bridge layers

	– For Position/Ordering in Time/Space/Execution Context:

	– Data structure and algorithm libraries
	– Compiler or intermediate representation (IR) tooling

Table 13 lists all selected systems, the domain they represent, and the Axial Code that moti-
vated their inclusion. To fit the table, we omitted a few details like system size; this infor-
mation can be found in our open data set (Section 11.5). We analyzed identifiers drawn 
from five programming contexts–attributes, parameters, functions, declarations, and class 
names–across two groups of systems: one curated for domain-specific relevance and one 
composed of general-purpose projects, which were used to construct the CCID (Table 3). 
The general-purpose group serves as a baseline, as these systems were not selected based 
on any particular domain hypothesis. Our underlying assumption is that, if closed-category 
terms are meaningfully correlated with domain-specific concerns, we will observe statisti-
cally significant differences in their usage between these two groups.

For each system, we extracted all identifiers and segmented them using Spiral (Hucka 
2018). We then filtered out all terms that are neither numerals nor included in our predefined 
lists of closed-category terms (as defined in Section 4). After filtering, we compute the nor-
malized frequency of closed-category term usage by dividing the count of qualifying terms 
by the system’s total lines of code. To assess whether the differences in usage were statisti-
cally significant, we applied a Mann-Whitney U test to compare the distributions between 
domain-specific and general-purpose systems.

Results. To mitigate the risk of a small number of systems dominating the term distribu-
tion, and to better understand how widely closed-category terms are used, we introduce a 
support threshold that controls how many systems a term must appear in to be included in 
the Mann-Whitney U test. Increasing the threshold emphasizes more widely used (ubiq-
uitous) closed-category terms; decreasing it emphasizes more narrowly distributed (spe-

1 3

  148   Page 32 of 51



Empirical Software Engineering          (2025) 30:148 

cific) closed-category terms that may signal domain-specific behavior. Significance at high 
thresholds implies that there are terms that are important to all of our domain-specific sys-
tems; significance at lower thresholds implies that there are subsets of the domain-systems 
that make use of terms that are not very universal, but nevertheless set these systems apart 
from the general set.

To explore how these different usage profiles affect our results, we conducted a threshold 
sweep. At each level, a term had to appear in at least a given proportion of systems to be 
retained. This allowed us to systematically vary our emphasis between ubiquity (terms com-
mon across many systems) and specificity (terms concentrated in a smaller, domain-aligned 
subset). The results, shown in Figure 2, reveal the most substantial distributional divergence 
at thresholds around 0.6 and 0.8. These peaks suggest that both common and moderately 
specific terms help distinguish domain-specific systems. By contrast, thresholds between 
0.1 and 0.3 yielded little significance, likely reflecting linguistic noise from terms with low 
usage or ambiguous semantic function.

We repeat the analysis at the level of individual closed-category types (prepositions, 
determiners, conjunctions, numerals) to identify which groups drive the observed differ-
ences. As shown in Figure 3, prepositions exhibit consistently strong significance across 
thresholds, particularly between 0.6 and 0.8. Numerals and conjunctions show more vari-
able but still notable divergence, while determiners contribute the weakest and least consis-
tent signal. These trends suggest that domain-specific systems rely more heavily on certain 
linguistic forms, especially prepositions, to express structural or behavioral distinctions 
central to their design.

To complement the significance testing, we examine Cliff’s Delta as a non-parametric 
effect size estimate, plotted in Figure 4. This allows us to assess not only whether closed-
category usage differs between system types, but also how strongly. The results show that 
prepositions and numerals increasingly favor domain-specific systems at higher thresh-
olds, reaching small to medium effect sizes. Determiners, by contrast, exhibit weak or 
even negative effect sizes, suggesting a more general-purpose usage profile. Conjunctions 
remain close to the negligible–small range, with mild domain skew. These patterns reinforce 
the idea that domain-specific systems do not just differ in which closed-category terms they 
use, but in how salient those terms are among their most widely reused identifiers.

Summary  Our findings suggest that domain-specific systems tend to use closed-category 
terms more frequently than general-purpose baselines, particularly in ways that align with 
the communicative roles captured by our Selective Codes. While we rely on predefined lists 
of closed-category terms–without verifying each term’s function in context–our goal in this 
evaluation was not to establish definitive usage, but to assess whether these terms might 
play a heightened role in domain-specific software. The statistical results support that pos-
sibility. As such, we argue that further research into how closed-category terms contribute 
to domain-specific expression is both warranted and promising. These findings offer initial 
evidence that supporting developers in the effective use of such terms could benefit certain 
styles or domains of software development.

1 3

Page 33 of 51    148 



Empirical Software Engineering          (2025) 30:148 

C
lo

se
d-

C
at

eg
or

y 
Ty

pe
A

xi
al

 C
od

e
D

om
ai

n
G

itH
ub

 U
R

L
La

n-
gu

ag
e

Pr
ep

os
iti

on
s

Ty
pe

 C
as

tin
g/

In
te

rp
re

ta
tio

n
Se

ria
liz

at
io

n/
D

es
er

ia
liz

at
io

n 
Li

br
ar

ie
s

ht
tp

s:
//g

ith
ub

.c
om

/m
sg

pa
ck

/m
sg

pa
ck

-c
/

C
Pr

ep
os

iti
on

s
Ty

pe
 C

as
tin

g/
In

te
rp

re
ta

tio
n

Se
ria

liz
at

io
n/

D
es

er
ia

liz
at

io
n 

Li
br

ar
ie

s
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​o

​p​​e
​n​-

​s​o
​​u​r

​c​e
​-​​p

​a​r
​s​e

​r​​s
​/​j​s

​​o​n
​c​p

​p​.
​g​i

​t
C

++
Pr

ep
os

iti
on

s
Ty

pe
 C

as
tin

g/
In

te
rp

re
ta

tio
n

Po
ly

gl
ot

 In
te

ro
p 

To
ol

s/
Ty

pe
 B

rid
ge

 L
ay

er
s

ht
tp

s:
//g

ith
ub

.c
om

/p
yb

in
d/

py
bi

nd
11

C
++

Pr
ep

os
iti

on
s

Ty
pe

 C
as

tin
g/

In
te

rp
re

ta
tio

n
Po

ly
gl

ot
 In

te
ro

p 
To

ol
s/

Ty
pe

 B
rid

ge
 L

ay
er

s
ht

tp
s:

//g
ith

ub
.c

om
/s

w
ig

/s
w

ig
C

++
D

et
er

m
in

er
s

Po
si

tio
n 

in
 S

eq
ue

nc
e 

(T
em

po
ra

l/R
ec

en
t &

 
U

pc
om

in
g)

Pa
rs

er
 G

en
er

at
or

s/
To

ke
n 

St
re

am
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/a
ki

m
d/

bi
so

n
C

D
et

er
m

in
er

s
Po

si
tio

n 
in

 S
eq

ue
nc

e 
(T

em
po

ra
l/R

ec
en

t &
 

U
pc

om
in

g)
Pa

rs
er

 G
en

er
at

or
s/

To
ke

n 
St

re
am

 L
ib

ra
rie

s
ht

tp
s:

//g
ith

ub
.c

om
/a

nt
lr/

an
tlr

4
Ja

va

D
et

er
m

in
er

s
Po

si
tio

n 
in

 S
eq

ue
nc

e 
(T

em
po

ra
l/R

ec
en

t &
 

U
pc

om
in

g)
Jo

b 
Q

ue
ue

s/
Sc

he
du

le
rs

ht
tp

s:
//g

ith
ub

.c
om

/P
er

M
al

m
be

rg
/li

bc
ro

n
C

++

D
et

er
m

in
er

s
Po

si
tio

n 
in

 S
eq

ue
nc

e 
(T

em
po

ra
l/R

ec
en

t &
 

U
pc

om
in

g)
Jo

b 
Q

ue
ue

s/
Sc

he
du

le
rs

ht
tp

s:
//g

ith
ub

.c
om

/q
ua

rtz
-s

ch
ed

ul
er

/q
ua

rtz
Ja

va

Pr
ep

os
iti

on
s

Po
si

tio
n/

O
rd

er
in

g 
in

 T
im

e 
or

 S
pa

ce
D

at
a 

St
ru

ct
ur

e/
A

lg
or

ith
m

 L
ib

ra
rie

s
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​a

​p​​a
​c​h

​e​/
​​c​o

​m
​m

​o​​n
​s​-

​c​o
​l​​l​e

​c​t
​​i​o

​n​s
Ja

va
Pr

ep
os

iti
on

s
Po

si
tio

n/
O

rd
er

in
g 

in
 T

im
e 

or
 S

pa
ce

D
at

a 
St

ru
ct

ur
e/

A
lg

or
ith

m
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/b
oo

st
or

g/
co

nt
ai

ne
r

C
++

Pr
ep

os
iti

on
s

Po
si

tio
n/

O
rd

er
in

g 
in

 T
im

e 
or

 S
pa

ce
C

om
pi

le
r/I

nt
er

m
ed

ia
te

 R
ep

re
se

nt
at

io
n 

To
ol

s
ht

tp
s:

//g
ith

ub
.c

om
/ro

se
-c

om
pi

le
r/r

os
e

C

Pr
ep

os
iti

on
s

Po
si

tio
n/

O
rd

er
in

g 
in

 T
im

e 
or

 S
pa

ce
C

om
pi

le
r/I

nt
er

m
ed

ia
te

 R
ep

re
se

nt
at

io
n 

To
ol

s
ht

tp
s:

//g
ith

ub
.c

om
/T

in
yC

C
/ti

ny
cc

C

D
et

er
m

in
er

s
Po

pu
la

tio
n/

Su
bp

op
ul

at
io

n 
R

ef
er

en
ce

D
at

af
ra

m
e/

M
at

rix
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/a
pa

ch
e/

ar
ro

w
C

++
D

et
er

m
in

er
s

Po
pu

la
tio

n/
Su

bp
op

ul
at

io
n 

R
ef

er
en

ce
M

L 
Pr

ep
ro

ce
ss

in
g/

Fe
at

ur
e 

Se
le

ct
io

n
ht

tp
s:

//g
ith

ub
.c

om
/h

ai
fe

ng
l/s

m
ile

Ja
va

D
et

er
m

in
er

s
Po

pu
la

tio
n/

Su
bp

op
ul

at
io

n 
R

ef
er

en
ce

D
at

af
ra

m
e/

M
at

rix
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/jt
ab

le
sa

w
/ta

bl
es

aw
Ja

va
D

et
er

m
in

er
s

Po
pu

la
tio

n/
Su

bp
op

ul
at

io
n 

R
ef

er
en

ce
M

L 
Pr

ep
ro

ce
ss

in
g/

Fe
at

ur
e 

Se
le

ct
io

n
ht

tp
s:

//g
ith

ub
.c

om
/p

jre
dd

ie
/d

ar
kn

et
C

C
on

ju
nc

tio
ns

G
ua

rd
ed

 A
ct

io
n/

C
on

di
tio

na
l E

na
bl

em
en

t
U

I L
ib

ra
rie

s/
Ev

en
t D

is
pa

tc
h 

Sy
st

em
s

ht
tp

s:
//g

ith
ub

.c
om

/G
N

O
M

E/
gt

k
C

C
on

ju
nc

tio
ns

G
ua

rd
ed

 A
ct

io
n/

C
on

di
tio

na
l E

na
bl

em
en

t
Fe

at
ur

e 
Fl

ag
 S

ys
te

m
s/

C
on

fig
-D

riv
en

 
Ex

ec
ut

io
n

ht
tp

s:
//g

ith
ub

.c
om

/li
gh

tb
en

d/
co

nfi
g

Ja
va

C
on

ju
nc

tio
ns

G
ua

rd
ed

 A
ct

io
n/

C
on

di
tio

na
l E

na
bl

em
en

t
U

I L
ib

ra
rie

s/
Ev

en
t D

is
pa

tc
h 

Sy
st

em
s

ht
tp

s:
//g

ith
ub

.c
om

/o
co

rn
ut

/im
gu

i
C

++
C

on
ju

nc
tio

ns
G

ua
rd

ed
 A

ct
io

n/
C

on
di

tio
na

l E
na

bl
em

en
t

Fe
at

ur
e 

Fl
ag

 S
ys

te
m

s/
C

on
fig

-D
riv

en
 

Ex
ec

ut
io

n
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​s

​p​​r
​i​n

​g​-
​​p​r

​o​j
​e​​c

​t​s
​/​s

​p​​r
​i​n

​g​​-
​b​o

​o​t
Ja

va

D
ig

its
D

is
tin

gu
is

he
r ×

 L
oc

al
ly

 S
pe

ci
fic

 C
on

ce
pt

G
am

e 
En

gi
ne

s/
G

rid
-b

as
ed

 G
am

es
ht

tp
s:

//g
ith

ub
.c

om
/g

od
ot

en
gi

ne
/g

od
ot

C
++

Ta
bl

e 
13

 S
ys

te
m

s a
nd

 sy
st

em
 d

om
ai

ns
 se

le
ct

ed
 b

as
ed

 o
n 

ax
ia

l c
od

es
 fo

r e
ac

h 
cl

os
ed

-c
at

eg
or

y 
ty

pe

1 3

  148   Page 34 of 51

https://github.com/msgpack/msgpack-c/
https://github.com/open-source-parsers/jsoncpp.git
https://github.com/pybind/pybind11
https://github.com/swig/swig
https://github.com/akimd/bison
https://github.com/antlr/antlr4
https://github.com/PerMalmberg/libcron
https://github.com/quartz-scheduler/quartz
https://github.com/apache/commons-collections
https://github.com/boostorg/container
https://github.com/rose-compiler/rose
https://github.com/TinyCC/tinycc
https://github.com/apache/arrow
https://github.com/haifengl/smile
https://github.com/jtablesaw/tablesaw
https://github.com/pjreddie/darknet
https://github.com/GNOME/gtk
https://github.com/lightbend/config
https://github.com/ocornut/imgui
https://github.com/spring-projects/spring-boot
https://github.com/godotengine/godot


Empirical Software Engineering          (2025) 30:148 

C
lo

se
d-

C
at

eg
or

y 
Ty

pe
A

xi
al

 C
od

e
D

om
ai

n
G

itH
ub

 U
R

L
La

n-
gu

ag
e

D
ig

its
D

is
tin

gu
is

he
r ×

 L
oc

al
ly

 S
pe

ci
fic

 C
on

ce
pt

G
am

e 
En

gi
ne

s/
G

rid
-b

as
ed

 G
am

es
​h​t

​t​p
​s​:

​​/​/​g
​i​t​​h

​u​b
​.​c

​o​​m
​/​j​M

​​o​n
​k​e

​y​​E
​n​g

​i​n
​​e​/

​j​m
​o​n

​​k​e
​y​e

​​n​g
​i​n

​e
Ja

va
D

ig
its

D
is

tin
gu

is
he

r ×
 L

oc
al

ly
 S

pe
ci

fic
 C

on
ce

pt
Sc

ie
nt

ifi
c 

C
om

pu
tin

g/
M

at
rix

 L
ib

ra
rie

s
ht

tp
s:

//g
ith

ub
.c

om
/O

pe
nM

at
hL

ib
/O

pe
nB

LA
S

C
D

ig
its

D
is

tin
gu

is
he

r ×
 L

oc
al

ly
 S

pe
ci

fic
 C

on
ce

pt
Sc

ie
nt

ifi
c 

C
om

pu
tin

g/
M

at
rix

 L
ib

ra
rie

s
ht

tp
s:

//g
ith

ub
.c

om
/P

X
4/

ei
ge

n
C

++
D

ig
its

D
is

tin
gu

is
he

r ×
 H

um
an

-N
am

ed
 C

on
ve

nt
io

n
C

od
e 

G
en

er
at

or
s/

M
ac

ro
 F

ra
m

ew
or

ks
ht

tp
s:

//g
ith

ub
.c

om
/jh

ip
st

er
/jh

ip
st

er
-b

om
Ja

va
D

ig
its

D
is

tin
gu

is
he

r ×
 H

um
an

-N
am

ed
 C

on
ve

nt
io

n
G

U
I B

ui
ld

er
s/

Fo
rm

 D
es

ig
ne

rs
ht

tp
s:

//g
ith

ub
.c

om
/q

t/q
tb

as
e

C
++

C
on

ju
nc

tio
ns

D
at

a 
Pa

ir/
C

om
po

si
te

 V
al

ue
M

ul
ti-

fo
rm

at
 I/

O
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/a
pa

ch
e/

pa
rq

ue
t-j

av
a

Ja
va

C
on

ju
nc

tio
ns

D
at

a 
Pa

ir/
C

om
po

si
te

 V
al

ue
C

ry
pt

og
ra

ph
ic

 L
ib

ra
rie

s
ht

tp
s:

//g
ith

ub
.c

om
/je

di
sc

t1
/li

bs
od

iu
m

C
C

on
ju

nc
tio

ns
D

at
a 

Pa
ir/

C
om

po
si

te
 V

al
ue

M
ul

ti-
fo

rm
at

 I/
O

 L
ib

ra
rie

s
​h​t

​t​p
​s​:

​​​/​​/​g
​i​t​h

​u​​b
​.​c

​o​​m
​/​l​​i

​b​j
​p​​​e

​g​-
​t​u

​r​​​b
​o​/

​l​i​​b
​j​​p

​​e​g
​-​t​u

​r​b
​o

C
C

on
ju

nc
tio

ns
D

at
a 

Pa
ir/

C
om

po
si

te
 V

al
ue

C
ry

pt
og

ra
ph

ic
 L

ib
ra

rie
s

ht
tp

s:
//g

ith
ub

.c
om

/o
pe

ns
sl

/o
pe

ns
sl

C

Ta
bl

e 
13

 (
co

nt
in

ue
d)

 

1 3

Page 35 of 51    148 

https://github.com/jMonkeyEngine/jmonkeyengine
https://github.com/OpenMathLib/OpenBLAS
https://github.com/PX4/eigen
https://github.com/jhipster/jhipster-bom
https://github.com/qt/qtbase
https://github.com/apache/parquet-java
https://github.com/jedisct1/libsodium
https://github.com/libjpeg-turbo/libjpeg-turbo
https://github.com/openssl/openssl


Empirical Software Engineering          (2025) 30:148 

6.2  Summary of RQ2

For RQ2, we examine how closed-category terms correlate with multiple forms of context: 
(1) source-code-local structure, (2) programming language, and (3) broader system domain. 
Our findings reveal several consistent trends. First, there is no statistically significant differ-
ence in the distribution of closed-category terms across the three programming languages 

Fig. 3  Per-category Mann-Whitney U test significance across thresholds. Prepositions dominate across 
thresholds, while conjunctions and numerals contribute more variably

 

Fig. 2  Global Mann-Whitney U test significance across thresholds, showing divergence between domain-
specific and general systems. Peaks at 0.6 and 0.8 suggest the importance of both ubiquitous and moder-
ately specific closed-category terms

 

1 3

  148   Page 36 of 51



Empirical Software Engineering          (2025) 30:148 

under study, though there are some trends that indicate how they may differ in minor (i.e., 
non-statistically-significant) ways. Second, source code context plays a significant role: 
Prepositions and conjunctions are used disproportionately in function names; numerals are 
significantly positively correlated with parameters and class names while significantly 
negatively correlated with function names; and Determiners are significantly negatively 
correlated with class names. These patterns align with the communicative roles uncovered 
in our Selective Codes, such as the use of prepositions to express behavior or data flow, and 
numerals to distinguish instances or versions.

Finally, we found statistical evidence that domain-specific systems use closed-category 
terms more frequently than general-purpose ones. This suggests that these terms serve as 
meaningful signals of domain-relevant behavior. Taken together, our results demonstrate 
that closed-category terms have specific, purposeful usage in software development.

One of the broader aims of RQ2 is to assess whether closed-category terms are meaning-
ful enough to warrant a dedicated study. We argue that their statistically significant correla-
tions with specific code contexts support the need for further research: such terms appear 
deliberately and consistently in ways that reflect their natural language functions. While 
our domain-level comparison relies on predefined lists of closed-category terms, without 
manual verification of each term’s grammatical role, the results nonetheless suggest that 
these terms may hold particular communicative importance in domain-specific software. 
Supporting the appropriate use of closed-category terms through tools, naming conventions, 
or educational interventions may ultimately benefit program comprehension and internal 
quality, particularly in domains where such terms help convey behavioral intent.

Fig. 4  Cliff’s Delta for closed-category terms across system support thresholds

 

1 3

Page 37 of 51    148 



Empirical Software Engineering          (2025) 30:148 

7  Related Work

While numerous studies have been conducted on identifier names, this paper represents 
one of the few to address closed-category terms, and the only paper to conduct an in-depth 
analysis of their usage in open-source systems. We discuss relevant related literature below, 
and how our work can be improved by, or improve upon, their outcomes.

7.1  Grounded Theory in Software Engineering

Our methodology is inspired by Straussian grounded theory (Corbin and Strauss 1990), 
which emphasizes iterative coding, constant comparison, and the development of conceptual 
categories grounded in data. While we drew inspiration from classic Straussian grounded 
theory, our approach adapts it to the structure of source code, treating identifiers as theory-
generating artifacts rather than unstructured text or human narratives. We employed several 
key components of the method, including open coding, memoing, axial coding, selective 
coding, and constant comparison, to analyze identifier names in the context of surrounding 
code and comments.

Our analysis reached theoretical saturation in that we developed axial codes iteratively 
until they accounted for all observed behaviors, refining them as new cases emerged. We 
also engaged in a form of core category development through cross-category synthesis, 
identifying broader trends that link behavioral interpretations across different grammatical 
constructs such as determiners, prepositions, digits, and conjunctions.

As grounded theory was originally developed in sociology, its application to the semi-
structured nature of software artifacts, including lexical constructs like variable names, 
presents unique challenges. Some of these challenges have been explored in prior work on 
grounded theory in software engineering (Adolph et al. 2011; Stol et al. 2016; Hoda 2022), 
which informed our adapted approach. Our methodology is an example of how grounded-
theory-based techniques can support the analysis of naming practices, particularly when 
grammar patterns and part-of-speech information are involved.

7.2  Part of Speech Taggers

POSSE (Gupta et al. 2013) and SWUM (Hill 2010), and SCANL tagger (Newman et al. 
2022) are part-of-speech taggers created specifically to be run on software identifiers; they 
are trained to deal with the specialized context in which identifiers appear. Both POSSE and 
SWUM take advantage of static analysis to provide annotations. For example, they will look 
at the return type of a function to determine whether the word set is a noun or a verb. Addi-
tionally, they are both aware of common naming structures in identifier names. For example, 
methods are more likely to contain a verb in certain positions within their name (e.g., at the 
beginning) (Gupta et al. 2013; Hill 2010). They leverage this information to help determine 
what POS to assign different words. Newman et al. (Newman et al. 2020) compared these 
taggers on a larger dataset than their original evaluation (1,335 identifiers) using five identi-
fier categories: function, class, attribute, parameter, and declaration statement. They found 
that SWUM was the most accurate overall, with an average accuracy around 59.4% at the 
identifier level. Later, Newman et al. created a new tagger that ensembled SWUM, POSSE, 
and Stanford together, then compared with SWUM, POSSE, and Stanford (Toutanova and 

1 3

  148   Page 38 of 51



Empirical Software Engineering          (2025) 30:148 

Manning 2000) individually, finding that the ensembled tagger exceeded the others’ perfor-
mance metrics on identifiers (Newman et al. 2022).

7.3  Human-subjects Studies

Several studies use human subjects to understand the influence and importance of different 
characteristics of identifiers. Our work is largely complementary to these studies, as it can 
be used in conjunction with data from these studies to create/support naming techniques. 
Alsuhaibani et al. (2021) conducted a survey of 1100 professional developers, shedding light 
on developer preferences and practices regarding the content of identifier names, including 
the use of abbreviations and preferred identifier length. Etgar et al. (2022) studied how the 
information content of identifiers named affected their memorability, and concluded that 
short names that contain focused information are likely optimal. van der Werf et al. (2024) 
find, among other things, that while instructors agree on the importance of naming, there 
is disagreement between their teaching practices. Even internally, teachers are generally 
inconsistent in how they teach and practice identifier naming in the classroom. The results 
of their study highlight the importance of increasing our formal understanding of naming, 
which can help grow and support the consistency of teaching materials and practices in the 
classroom.

7.4  Rename Analysis

Arnaoudova et al. (2014) present an approach to analyze and classify identifier renamings. 
The authors show the impact of proper naming on minimizing software development effort 
and find that 68% of developers think recommending identifier names would be useful. 
They also defined a catalog of linguistic anti-patterns (Arnaoudova et al. 2013). Liu et al. 
(2015) proposed an approach that recommends a batch of rename operations to code ele-
ments closely related to the rename. They also studied the relationship between argument 
and parameter names to detect naming anomalies and suggest renames (Liu et al. 2016). 
Peruma et al. (2018) studied how terms in an identifier change and contextualized these 
changes by analyzing commit messages using a topic modeler. They later extend this work 
to include refactorings (Peruma et al. 2019) and data type changes (Peruma et al. 2020) 
that co-occur with renames. Osumi et al. (2022) studied terms that were co-renamed with a 
goal of supporting developers in deciding when identifiers should be renamed together. In 
particular, they studied how location, data dependencies, type relationships, and inflections 
affected co-renaming.

These techniques are concerned with examining the structure and semantics of names 
as they evolve through renames. By contrast, we present the structure and semantics of 
names as they stand at a single point in the version history of a set of systems. Rename 
analysis and our work are complementary; our analysis of naming structure can be used 
to help improve how these techniques analyze changes between two versions of a name 
by examining changes in their grammar pattern. In particular, since we specifically study 
closed-category terms, rename analysis can leverage our results to improve its behavior on 
identifiers that contain these terms. For example, they might use our results to determine 
when to recommend a closed-category term during a rename operation.

1 3

Page 39 of 51    148 



Empirical Software Engineering          (2025) 30:148 

7.5  Identifier Type and Name Generation

There are many recent approaches to appraising identifier names for variables, functions, 
and classes. Kashiwabara et al. (2014) use association rule mining to identify verbs that 
might be good candidates for use in method names. Abebe and Tonella (2013) uses an 
ontology that models the word relationships within a piece of software. Parsa et al. (2023) 
vectorize methods based on metrics and use the K-Nearst Neighbors algorithm with these 
vectors, and a large data set of methods, to recommend method names. Allamanis et  al. 
(2015) introduce a novel language model called the Subtoken Context Model. There has 
also been work to reverse engineer data types from identifiers (Malik et al. 2019; Hellen-
doorn et al. 2018). One thing these approaches have in common is the use of frequent tokens 
and source code context to try and generate high-quality identifier names (or understand 
their behavior for the purpose of generating types). There is a lot of work in this subfield, but 
the contrast to our work remains the same for all of them: These approaches aim to predict 
strong identifier names based on history. Our approach can help, since an understanding 
of common naming structures can support filtering out names that are inappropriate based 
on their grammatical structure; teach AI-based approaches how to optimize the identifiers 
they generate, or at least avoid using bad grammar structure; or help reverse-engineer the 
semantics of an identifier name based on its grammatical properties. In addition, automated 
name generation approaches cannot teach us much about naming practices on their own, nor 
can they help us formalize our understanding of strong naming structures and how those can 
be taught in a classroom. Thus, our work is novel, and complementary to identifier name 
generation approaches.

7.6  Software Ontology Creation Using Identifier Names

A lot of work has been done in the area of modeling domain knowledge and word relation-
ships by leveraging identifiers (Abebe and Tonella 2011; Ratiu and Deissenboeck 2006, 
2007; Deissenboeck and Ratiu 2006; Falleri et al. 2010). Abebe and Tonella (2011) ana-
lyze the effectiveness of information retrieval-based techniques for filtering domain con-
cepts and relations from implementation details. They show that fully automated techniques 
based on keywords or topics have low performance but that a semi-automated approach can 
significantly improve results. Falleri et al., present a way to automatically construct a word-
net-like (Miller 1995) identifier network from software. Their model is based on synonymy, 
hypernymy and hyponymy, which are types of relationships between words. Synonyms 
are words with similar or equivalent meaning; hyper/hyponyms are words which, relative 
to one another, have a broader or more narrow domain (e.g., dog is a hyponym of animal, 
animal is a hypernym of dog). Ratiu and Deissenboeck (Ratiu and Deissenboeck 2007) 
present a framework for mapping real world concepts to program elements bi-directionally. 
They use a set of object-oriented properties (e.g., isA, hasA) to map relationships between 
program elements and string matching to map these elements to external concepts. This 
extends two prior works of theirs: one paper on a previous version of their metamodel (Deis-
senboeck and Ratiu 2006) and a second paper on linking programs to ontologies (Ratiu and 
Deissenboeck 2006). Many of these approaches need to split and analyze words found in an 
identifier in order to connect these identifiers to a model of program semantics (e.g., class 
hierarchies). All of these approaches rely on identifiers.

1 3

  148   Page 40 of 51



Empirical Software Engineering          (2025) 30:148 

Many software word ontologies use meta-data about words to understand the relation-
ship between different words. There is a synergistic relationship between the work presented 
here and software ontologies, as stronger ontologies can facilitate the effective generation 
and study of grammar patterns, and the CCID can aid in constructing stronger software 
word ontologies. In particular, studying closed-category terms helps strengthen the meta-
data used to generate an ontology that seeks to map how words are related to one another, 
or code behavior.

7.7  Identifier Structure and Semantics Analysis

Liblit et al. (2006) discuss naming in several programming languages and make observa-
tions about how natural language influences the use of words in these languages. Schankin 
et al. (2018) focus on investigating the impact of more informative identifiers on code com-
prehension. Their findings show the advantage of descriptive, compound identifiers over 
short single-word ones. Hofmeister et  al. (2017) compared comprehension of identifiers 
containing words against identifiers containing letters and/or abbreviations. Their results 
show that when identifiers contained only words instead of abbreviations or letters, devel-
oper comprehension speed increased by 19% on average. Lawrie et al. (2006) did a study 
and used three different “levels” of identifiers. The results show that full-word identifiers 
lead to the best comprehension compared to the other levels studied. Butler’s work (Butler 
et al. 2010) extends their previous work on Java class identifiers (Butler et al. 2009) to show 
that flawed method identifiers are also associated with low-quality code according to static 
analysis-based metrics. These papers primarily study the words found in identifiers and how 
they relate to code behavior or comprehension rather than word metadata (e.g., PoS).

Caprile and Tonella (1999) analyze the syntax and semantics of function identifiers. They 
create classes which can be used to understand the behavior of a function; grouping func-
tion identifiers by leveraging the words within them to understand some of the semantics 
of those identifiers. While they do not identify particular grammar patterns, this study does 
identify grammatical elements in function identifiers, such as noun and verb, and discusses 
different roles that they play in expressing behavior both independently, and in conjunction, 
using the classes they propose. They also used the classes identified in this previous work to 
propose methods for restructuring program identifiers (Caprile and Tonella 2000). Shepherd 
et al. (2007); Fry et al. (2008) study verb-direct objects to link verbs to the natural-language-
representation of the entity they act upon, in order to assist in locating action-oriented con-
cerns. The primary concern in this work is identifying the entity (e.g., an object) which a 
verb is targeting (e.g., the action part of a method name).

Høst and Østvold study method names as part of a line of work discussed in Høst’s 
dissertation (Høst 2011). This line of work starts by analyzing a corpus of Java method 
implementations to establish the meanings of verbs in method names based on method 
behavior, which they measure using a set of attributes which they define (Host and Ostvold 
2007). They automatically create a lexicon of verbs that are commonly used by developers 
and a way to compare verbs in this lexicon by analyzing their program semantics. They 
build on this work in Høst and Østvold (2009) by using full method names, which they 
refer to as phrases, and augment their semantic model by considering a richer set of attri-
butes. The outcome is that they were able to aggregate methods by their phrases and come 
up with the semantics behind those phrases using their semantic model, therefore model-

1 3

Page 41 of 51    148 



Empirical Software Engineering          (2025) 30:148 

ing the relationship between method names and method behavior. The phrases they dis-
cuss are similar to the general grammar patterns studied in our prior work (Newman et al. 
2020). They extend this use of phrases by presenting an approach to debug method names 
(Høst and Østvold 2009). In this work, they designed automated naming rules using method 
signature elements. They use the phrase refinement from their prior paper, which takes a 
sequence of PoS tags (i.e., phrases) and concretizes them by substituting real words. (e.g., 
the phrase <verb>-<adjective>might refine to is-empty). They connect these patterns to dif-
ferent method behaviors and use this to determine when a method’s name and implementa-
tion do not match. They consider this a naming bug. Finally, in Høst and Østvold (2011), 
Høst and Østvold analyzed how ambiguous verbs in method names makes comprehension 
of Java programs more difficult. They proposed a method to detect when two or more verbs 
are synonymous and used to describe the same behavior in a program, aiming to eliminate 
these redundancies while increasing naming consistency and correctness. They perform this 
detection using two metrics which they introduce, called nominal and semantic entropy. 
Høst and Østvold’s work focuses heavily on method naming patterns; connecting these to 
the implementation of the method to both understand and critique method naming.

Butler et al. (2011) studied class identifier names and lexical inheritance, analyzing the 
effect that interfaces or inheritance has on the name of a given class. For example, a class 
may inherit from a super class or implement a particular interface. Sometimes this class will 
incorporate words from the interface name or inherited class in its name. His study builds 
on work by Singer and Kirkham (2008), who identified a grammar pattern for class names 
of (adjective)* (noun)+ and studies how class names correlate with micro patterns. Among 
Butler’s findings, he identifies a number of grammar patterns for class names: (noun)+, 
(adjective)+ (noun)+, (noun)+ (adjective)+ (noun)+, (verb) (noun)+ and extends these pat-
terns to identify where inherited names and interface names appear in the pattern. The same 
author also studies Java field, argument, and variable naming structures (Butler et al. 2015). 
Among other results, they identify noun phrases as the most common pattern for field, argu-
ment, and variable names. Verb phrases are the second most common. Further, they discuss 
phrase structures for boolean variables; finding an increase in verb phrases compared to 
non-boolean variables. Olney et al. (2016) compared taggers for accuracy on identifiers, 
but only on Java method names which were curated to remove ambiguous words (e.g., 
abbreviations).

Binkley et al. (2011) studied grammar patterns for attribute names in classes. They come 
up with four rules for how to write attribute names: 1) Non-boolean field names should 
not contain a present tense verb, 2) field names should never only be a verb, 3) field names 
should never only be an adjective, and 4) boolean field names should contain a third-person 
form of the verb “to be” or the auxiliary verb “should”. Al Madi (2023) created a tool for 
performing lexical analysis of identifier names based on phonological, semantic, and ortho-
graphic similarity. Techniques that normalize identifiers, such as the one presented by Zhang 
et al. (2023), or by Hill et al. (2008) can help make generating grammar patterns easier by 
expanding abbreviations into full words that a tagger can recognize more accurately. Aman 
et al. (2024) studied confusing variable pairs, which are variables with very similar names, 
to understand how/if they are changed over time, and how pervasive they are.

None of the projects in this subsection deal specifically with closed-category grammar 
patterns, or even terms that fall within a closed PoS category. Many of them, particularly 
the work on PoS taggers, on grammar patterns in differing contexts, normalizing identifier 

1 3

  148   Page 42 of 51



Empirical Software Engineering          (2025) 30:148 

names, and on grammatical anti-patterns, are likely mutually-synergistic to our work. This 
is because a stronger understanding of closed-category terms/patterns, and how they relate 
to program behavior, can help support the style of analysis these works leverage.

8  Discussion and Future Work

Closed-category terms–including determiners, prepositions, conjunctions, and numerals–
are compact grammatical structures that carry dense behavioral meaning in source code. 
Developers use them to embed logical cues, control flow, and intent directly into identifiers. 
Based on our findings, we outline several actionable implications for tool builders, educa-
tors, and developers: 

1.	 Treat closed-category terms as lightweight cognitive annotations. Developers 
should consider how they might improve identifier clarity by deliberately using closed-
category terms to signal concepts such as selection (allItems), temporality (next-
Node), negation (noCache), disjunction (keyOrIV), or encode system-specific 
roles/concepts (e.g., arg1, Neo4j). These terms encode behavioral roles that may 
be missed in names relying solely on open-class words. Naming checkers, LLMs, or 
documentation generators should highlight or recommend these roles to aid consis-
tency and reader comprehension, as well as assist developers in reflecting on how they 
might improve their terminology usage in identifiers. Our axial codes offer a schema 
that could seed such tools.

2.	 Augment use of closed-category terms by considering code context. Our data 
show that closed-category term usage varies systematically across code contexts. For 
example, determiners like no, next, and this are very unlikely to appear in class 
names, while prepositions such as on or to are common in function names but rare 
elsewhere. As developers consider when to use closed category terms in their coding, 
they can leverage context to help in their decision making. Tool support can make this 
easier– IDEs and linters should offer context-aware naming prompts, e.g., flagging 
uncommon use of conjunctions in class names or suggesting appropriate determiners 
for declarations.

3.	 Use grammar patterns to reveal relational structure. Closed-category terms not only 
express behavior, they also help structure it. Patterns like DT NM N and P NM N typi-
cally signal unary relations (e.g., lastError, asFloat), while N CJ N or N P N 
often signal binary ones (e.g., dataOrLogger, readFromDisk). Function names 
with final prepositions (e.g., sendTo) sometimes encode a second operand passed via 
parameters. Developers should consider the latent logical structure of the grammatical 
patterns they use when naming. Static analyzers or naming tools could infer missing 
operand roles or flag relational ambiguity. For example, encountering a binary-looking 
pattern in a context that provides only one operand could trigger a naming prompt.

These findings have practical implications for tool builders and educators interested in 
improving naming support. For example, grammar patterns could be integrated into static 
analysis or IDE plugins to provide optional, contextual suggestions; highlighting when an 
identifier follows an uncommon structure or when the pattern contrasts with its code con-

1 3

Page 43 of 51    148 



Empirical Software Engineering          (2025) 30:148 

text. This does not imply the name is incorrect, but it may prompt a developer or reviewer 
to reflect on whether the chosen pattern aligns with the intended semantics. For instance, 
encountering a pattern like N CJ N (e.g., dataOrLogger) in a constant declaration could 
trigger a soft prompt: “This naming pattern is rare in this context–consider whether it clearly 
communicates its role.”

Grammar patterns can also be used to scaffold naming suggestions in LLM-driven tools. 
Instead of generating identifiers purely from task descriptions, models could be prompted to 
produce names that instantiate common open- or closed-category structures (e.g., DT NM N, 
P N), which are frequently associated with behavioral semantics. This approach may help align 
completions with human naming conventions, while still allowing flexibility in term choice.

Beyond tooling, grammar pattern awareness can enhance educational workflows. Instruc-
tors could use pattern frequency and semantics to illustrate naming “idioms,” helping stu-
dents understand how experienced developers encode behavior through compact syntactic 
forms. Similarly, code review tools might use grammar pattern summaries to draw atten-
tion to unconventional naming constructs, offering reviewers an additional signal without 
enforcing rigid standards.

In future work, we plan to evaluate these ideas empirically: measuring whether adher-
ence to common patterns improves comprehension, how grammar scaffolding affects nam-
ing quality in LLM-generated identifiers, and whether tools that surface grammar patterns 
can meaningfully assist developers. In addition, it would be interesting to perform studies 
simialar to Schankin et al. (2018) and Hofmeister et al. (2017)’s work on how the descrip-
tiveness of names influence comprehension; or Arnaoudova et  al. (2013), and Høst and 
Østvold (2009) who looked at how code behavior and naming structure could be used to 
measure name quality. Specifically, we could study how closed-category terms change or 
augment the outcomes of their studies.

9  Threats to Validity

Construct Validity: This study is conducted on a manually annotated dataset of 1,275 iden-
tifiers containing closed-category terms, the largest of its kind at the time of writing. A 
potential threat lies in the completeness of our closed-category term list: we relied on a 
predefined lexicon (Section 4), meaning novel or unlisted terms may be absent from the 
dataset. However, their absence would likely expand our results rather than refute them. 
Our identifier sample is restricted to production code, and although we excluded known test 
files, developers may occasionally include test logic in production files. To mitigate this, we 
manually reviewed each identifier and its source context. Furthermore, while we used file 
extensions to distinguish C (.c,.h) from C++ (.cpp,.hpp), these conventions are not absolute. 
We addressed this by manually validating the source language of each identifier.

Internal Validity: Abbreviations within identifiers were not expanded, which may have 
caused occasional misinterpretation by annotators. However, annotators had access to the 
surrounding source code, reducing the risk of misannotation. Grammar pattern tagging and 
axial coding for each closed-category term were both subject to cross-annotation by three 
independent annotators and evaluated using Fleiss’ Kappa to assess agreement. We used a 
grounded-theory-inspired approach to develop our behavioral codes. Four coders partici-
pated in open and axial coding; during the selective coding phase, one coder proposed all 

1 3

  148   Page 44 of 51



Empirical Software Engineering          (2025) 30:148 

selective codes, which were then validated and refined collaboratively by the other three 
through discussion until thematic saturation was reached.

We used statistical methods to examine correlations between closed-category terms and 
contextual variables. We performed two chi-square tests: one to assess correlation between 
closed-category part-of-speech categories (e.g., Determiner, Preposition) and programming 
language (Java, C, C++), and another for their correlation with code context (Attribute, Func-
tion, Declaration, Parameter, Class), derived automatically via srcML (Collard and Maletic 
2016). We applied Bonferroni correction to account for multiple comparisons. A threat to 
internal validity is the assumption of independence in the chi-squared test. If violated, some 
significant values may be distorted. However, the primary insights of RQ1, which focus on 
behavioral coding through qualitative analysis, are unaffected by this statistical assumption.

External Validity: Our data includes identifiers from C, C++, and Java, three widely 
used languages with similar syntactic and object-oriented paradigms. While this helps 
reduce language-specific bias, our findings may not generalize to other paradigms such as 
functional or logic-based languages, where naming conventions and code contexts may dif-
fer significantly.

Mitigation Strategies: To ensure transparency and reproducibility, the dataset will be 
made publicly available (Section 11.5). Annotators were allowed to inspect source code 
when labeling identifiers, and each identifier was independently annotated twice. Grammar 
patterns and axial codes were validated by multiple annotators, with inter-rater agreement 
assessed using Fleiss’ Kappa. We selected a representative sample from 30 software sys-
tems, sized to meet a 95% confidence level with a 5% confidence interval. Code context 
was derived automatically using srcML. Finally, to evaluate whether closed-category term 
usage varies by domain, we curated a domain-specific dataset (e.g., compilers, databases, 
networking tools) and compared it against a general-purpose set selected without regard to 
domain. We applied a Mann-Whitney U test to compare term frequencies between these 
groups, normalizing by lines of code to control for system size.

10  Conclusions

This paper presents a detailed empirical study of closed-category terms in identifier 
names, highlighting how they function semantically across a wide range of software arti-
facts. Our contributions include: 

1.	 The CCID dataset: A new, part-of-speech–annotated dataset of identifier names contain-
ing closed-category terms, released with this paper. It supplements prior datasets focused 
on open-class lexical items, enabling more nuanced research into naming semantics.

2.	 A dual-level coding framework: We introduce a combined selective and axial cod-
ing scheme to interpret the semantics of determiners, prepositions, conjunctions, and 
numerals in identifiers. This framework maps grammar structure to conceptual behavior 
in a way not previously formalized, and provides a solid basis for future research and 
development of naming practices.

3.	 Insights into the distinct semantic roles of closed-category words: Our study shows 
how programming diverges from natural language in its use of terms like next, both, 
and or, and how these terms reflect functional intent embedded in code structure.

1 3

Page 45 of 51    148 



Empirical Software Engineering          (2025) 30:148 

These findings have practical implications for code review, refactoring, and intelligent nam-
ing support. Automated tools can leverage our work to suggest context-appropriate names, 
detect inconsistent patterns, or provide just-in-time feedback during the development process. 
The insights we have uncovered can be packaged and curated by educators to teach semantic 
clarity in naming, moving beyond generic best practices to behavior-specific guidance.

We also outline several promising directions for future research: 

1.	 Further validation of the behavioral categories we propose, especially through compre-
hension studies that measure how different naming structures affect developer under-
standing. This could also extend to examining the correlation between the beahvoral 
categories and software quality metrics.

2.	 Experimental work to test which closed-category naming patterns improve or hinder 
program comprehension, while controlling for code context and developer experience.

3.	 Integration of our findings into intelligent development tools, including naming rec-
ommendation systems, refactoring support, and automated code reviewers capable of 
detecting semantic mismatches or naming anti-patterns.

This work demonstrates that closed-category terms are not linguistic noise; they are deliber-
ate, behaviorally meaningful tools in the software naming arsenal. By mapping their roles 
across grammar patterns and program contexts, we provide a foundation for future studies 
in naming semantics and for tools that support naming literacy. We believe our findings raise 
the question: Should closed-category terms be used more often in naming? It is clear that 
they are used purposefully, and we believe that their use does help comprehension, but in 
which situations is that true? And how can we detect when such terms should be used, as 
opposed to another naming pattern? We believe these findings can help guide tool builders 
and researchers in novel, fruitful directions that formalize and improve naming practices 
among developers.

Author Contributions  Conceptualization: Christian D. Newman. Data curation: Christian D. Newman, 
Anthony Peruma, Syreen Banabilah, Michael J. Decker, Reem S. AlSuhaibani, Eman Abdullah Alomar, 
Mahie Crabbe. Formal analysis: Christian D. Newman. Investigation: Christian D. Newman. Methodology: 
Christian D. Newman. Project administration: Christian D. Newman. Resources: Christian D. Newman. 
Software: Christian D. Newman, Farhad Akhbardeh, Anthony Peruma. Supervision: Christian D. Newman. 
Validation: Christian D. Newman, Anthony Peruma, Syreen Banabilah, Eman Abdullah Alomar. Visualiza-
tion: Christian D. Newman. Writing– original draft: Christian D. Newman, Jonathan I Maletic, Mohamed 
Wiem Mkaouer, Marcos Zampieri. Writing– review & editing: Christian D. Newman, Jonathan I Maletic, 
Anthony Peruma, Syreen Banabilah, Michael J. Decker, Reem S. AlSuhaibani, Eman Abdullah Alomar, Mar-
cos Zampieri.

Funding  This work was not funded by any agency.

Data Availability  We have created a repository that contains the data and scripts needed to generate the 
numbers and statistical analysis from the RQs. The scripts are in the scripts directory and need only to be run 
(they take no arguments). The data directory contains all annotation data broken down by closed category. 
Each file is named after the category it contains, and they are amalgamated in a single file (called Tagger 
Open Coding). This repository can be found at this link (​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​S​C​​A​N​L​/​c​​l​o​s​e​d​​_​c​a​t​e​g​​o​r​y​_​​e​m​s​e​
_​a​n​a​l​y​s​i​s​_​s​c​r​i​p​t​s).

1 3

  148   Page 46 of 51

https://github.com/SCANL/closed_category_emse_analysis_scripts
https://github.com/SCANL/closed_category_emse_analysis_scripts


Empirical Software Engineering          (2025) 30:148 

Declarations

Ethical Approval  This work does not involve human or animal subjects and does not require IRB approval.

Informed Consent  This work does not involve human or animal subjects and does not require informed 
consent.

Conflict of interests  We have no competing/conflicting interests to report.

Clinical Trial Number  Not Applicable.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abebe SL, Tonella P (2011) Towards the extraction of domain concepts from the identifiers. In: Proceedings 
of the 2011 18th Working Conference on Reverse Engineering, WCRE ’11, p. 77–86. IEEE Computer 
Society, USA. https://doi.org/10.1109/WCRE.2011.19

Abebe SL, Tonella P (2013) Automated identifier completion and replacement. In: 2013 17th European Con-
ference on Software Maintenance and Reengineering, pp. 263–272. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​C​S​M​R​.​2​0​
1​3​.​3​5​​​​​​​

Adolph S, Hall W, Kruchten P (2011) Using grounded theory to study the experience of software develop-
ment. Empir. Softw. Eng. 16:487–513. https://doi.org/10.1007/s10664-010-9152-6

Al Madi N (2023) Namesake: A checker of lexical similarity in identifier names. In: Proceedings of the 37th 
IEEE/ACM International Conference on Automated Software Engineering, ASE ’22. Association for 
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3551349.3560441

Allamanis M, Barr ET, Bird C, Sutton C (2015) Suggesting accurate method and class names. In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 
38–49. ACM, New York, NY, USA. https://doi.org/10.1145/2786805.2786849

Alsuhaibani R, Newman C, Decker M, Collard M, Maletic J (2021) On the naming of methods: A survey of 
professional developers. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering 
(ICSE), pp. 587–599. https://doi.org/10.1109/ICSE43902.2021.00061

Alsuhaibani RS, Newman CD, Collard ML, Maletic JI (2015) Heuristic-based part-of-speech tagging of 
source code identifiers and comments. In: 2015 IEEE 5th Workshop on Mining Unstructured Data 
(MUD), pp. 1–6. https://doi.org/10.1109/MUD.2015.7327960

Aman H, Amasaki S, Yokogawa T, Kawahara M (2024) A quantitative investigation of trends in confus-
ing variable pairs through commits: Do confusing variable pairs survive? In: Proceedings of the 28th 
International Conference on Evaluation and Assessment in Software Engineering, EASE ’24, p. 90–99. 
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3661167.3661228

Arnaoudova V, Di Penta M, Antoniol G, Guéhéneuc Y (2013) A new family of software anti-patterns: Lin-
guistic anti-patterns. In: 2013 17th European Conference on Software Maintenance and Reengineering, 
pp. 187–196. https://doi.org/10.1109/CSMR.2013.28

Arnaoudova V, Eshkevari LM, Penta MD, Oliveto R, Antoniol G, Gueheneuc YG (2014) Repent: Analyzing 
the nature of identifier renamings. IEEE Trans. Softw. Eng. 40(5):502–532. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​S​
E​.​2​0​1​4​.​2​3​1​2​9​4​2​​​​​​​

Avidan E, Feitelson DG (2017) Effects of variable names on comprehension: An empirical study. In: 2017 
IEEE/ACM 25th International Conference on Program Comprehension (ICPC), pp. 55–65. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​1​0​9​/​I​C​P​C​.​2​0​1​7​.​2​7​​​​​​​

1 3

Page 47 of 51    148 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/WCRE.2011.19
https://doi.org/10.1109/CSMR.2013.35
https://doi.org/10.1109/CSMR.2013.35
https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1145/3551349.3560441
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1109/ICSE43902.2021.00061
https://doi.org/10.1109/MUD.2015.7327960
https://doi.org/10.1145/3661167.3661228
https://doi.org/10.1109/CSMR.2013.28
https://doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1109/TSE.2014.2312942
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.27


Empirical Software Engineering          (2025) 30:148 

Binkley D, Hearn M, Lawrie D (2011) Improving identifier informativeness using part of speech informa-
tion. In: Proceedings of the 8th Working Conference on Mining Software Repositories, MSR ’11, pp. 
203–206. ACM, New York, NY, USA. https://doi.org/10.1145/1985441.1985471

Binkley D, Lawrie D, Morrell C (2018) The need for software specific natural language techniques. Empiri-
cal Softw. Engg. 23(4):2398–2425. https://doi.org/10.1007/s10664-017-9566-5

Butler S, Wermelinger M, Yu Y (2015) A survey of the forms of java reference names. In: 2015 IEEE 23rd 
International Conference on Program Comprehension, pp. 196–206. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​P​C​.​2​0​1​
5​.​3​0​​​​​​​

Butler S, Wermelinger M, Yu Y, Sharp H (2009) Relating identifier naming flaws and code quality: An empir-
ical study. In: 2009 16th Working Conference on Reverse Engineering, pp. 31–35. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
1​0​9​/​W​C​R​E​.​2​0​0​9​.​5​0​​​​​​​

Butler S, Wermelinger M, Yu Y, Sharp H (2010) Exploring the influence of identifier names on code qual-
ity: An empirical study. In: Software Maintenance and Reengineering (CSMR), 2010 14th European 
Conference on, pp. 156–165. IEEE

Butler S, Wermelinger M, Yu Y, Sharp H (2011) Mining java class naming conventions. In: 2011 27th IEEE 
International Conference on Software Maintenance (ICSM), pp. 93–102. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​S​M​
.​2​0​1​1​.​6​0​8​0​7​7​6​​​​​​​

Caprile, Tonella (2000) Restructuring program identifier names. In: Proceedings 2000 International Confer-
ence on Software Maintenance, pp. 97–107. https://doi.org/10.1109/ICSM.2000.883022

Caprile C, Tonella P (1999) Nomen est omen: analyzing the language of function identifiers. In: Sixth Work-
ing Conference on Reverse Engineering (Cat. No.PR00303), pp. 112–122. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​W​C​
R​E​.​1​9​9​9​.​8​0​6​9​5​2​​​​​​​

Collard ML, Maletic JI (2016) srcml 1.0: Explore, analyze, and manipulate source code. In: 2016 IEEE 
International Conference on Software Maintenance and Evolution (ICSME), pp. 649–649. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​1​0​9​/​I​C​S​M​E​.​2​0​1​6​.​3​6​​​​​​​

Corbi TA (1989) Program understanding: Challenge for the 1990s. IBM Syst. J. 28(2):294–306. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​1​4​7​/​s​j​.​2​8​2​.​0​2​9​4​​​​​​​

Corbin J, Strauss A (1990) Grounded theory research: Procedures, canons and evaluative criteria. Qual. Sociol. 
19(6):3–21. https://doi.org/10.1007/BF00988593. URL https://doi.org/10.1515/zfsoz-1990-0602

Deissenboeck F, Pizka M (2006) Concise and consistent naming. Software Qual. J. 14(3):261–282. ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​1​2​1​9​-​0​0​6​-​9​2​1​9​-​1​​​​​​​

Deissenboeck F, Ratiu D (2006) A unified meta-model for concept-based reverse engineering. In: In Proceed-
ings of the 3rd International Workshop on Metamodels, Schemas, Grammars and Ontologies (ATEM’06

Dragan N, Collard ML, Maletic JI (2006) Reverse engineering method stereotypes. In: Proceedings of the 
22Nd IEEE International Conference on Software Maintenance, ICSM ’06, pp. 24–34. IEEE Computer 
Society, Washington, DC, USA. https://doi.org/10.1109/ICSM.2006.54

Etgar A, Friedman R, Haiman S, Perez D, Feitelson DG (2022) The effect of information content and length 
on name recollection. In: Proceedings of the 30th IEEE/ACM International Conference on Program 
Comprehension, ICPC ’22, p. 141–151. Association for Computing Machinery, New York, NY, USA. 
https://doi.org/10.1145/3524610.3529159

Fakhoury S, Roy D, Ma Y, Arnaoudova V, Adesope O (2020) Measuring the impact of lexical and struc-
tural inconsistencies on developers’ cognitive load during bug localization. Empirical Softw. Engg 
25(3):2140–2178. https://doi.org/10.1007/s10664-019-09751-4

Falleri JR, Huchard M, Lafourcade M, Nebut C, Prince V, Dao M (2010) Automatic extraction of a wordnet-
like identifier network from software. In: Proceedings of the 2010 IEEE 18th International Conference 
on Program Comprehension, ICPC ’10, p. 4–13. IEEE Computer Society, USA. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​
9​/​I​C​P​C​.​2​0​1​0​.​1​2​​​​​​​

Fry ZP, Shepherd D, Hill E, Pollock L, Vijay-Shanker K (2008) Analysing source code: looking for useful 
verb-direct object pairs in all the right places. IET Software 2(1):27–36. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​4​9​/​i​e​t​-​s​e​
n​:​2​0​0​7​0​1​1​2​​​​​​​

Glassman EL, Fischer L, Scott J, Miller R (2015) Foobaz: Variable name feedback for student code at scale. 
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. URL ​h​t​t​p​
s​:​​/​/​a​p​i​​.​s​e​m​a​n​​t​i​c​s​​c​h​o​l​a​​r​.​o​r​g​​/​C​o​r​p​u​​s​I​D​:​​1​5​8​1​0​0​2​3

Gupta S, Malik S, Pollock L, Vijay-Shanker K (2013) Part-of-speech tagging of program identifiers for 
improved text-based software engineering tools. In: 2013 21st International Conference on Program 
Comprehension (ICPC), pp. 3–12. https://doi.org/10.1109/ICPC.2013.6613828

Hellendoorn VJ, Bird C, Barr ET, Allamanis M (2018) Deep learning type inference. In: Proceedings of the 
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering, ESEC/FSE 2018, p. 152–162. Association for Computing 
Machinery, New York, NY, USA. https://doi.org/10.1145/3236024.3236051

1 3

  148   Page 48 of 51

https://doi.org/10.1145/1985441.1985471
https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1109/ICPC.2015.30
https://doi.org/10.1109/ICPC.2015.30
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/ICSM.2011.6080776
https://doi.org/10.1109/ICSM.2011.6080776
https://doi.org/10.1109/ICSM.2000.883022
https://doi.org/10.1109/WCRE.1999.806952
https://doi.org/10.1109/WCRE.1999.806952
https://doi.org/10.1109/ICSME.2016.36
https://doi.org/10.1109/ICSME.2016.36
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1007/BF00988593
https://doi.org/10.1515/zfsoz-1990-0602
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.1109/ICSM.2006.54
https://doi.org/10.1145/3524610.3529159
https://doi.org/10.1007/s10664-019-09751-4
https://doi.org/10.1109/ICPC.2010.12
https://doi.org/10.1109/ICPC.2010.12
https://doi.org/10.1049/iet-sen:20070112
https://doi.org/10.1049/iet-sen:20070112
https://api.semanticscholar.org/CorpusID:15810023
https://api.semanticscholar.org/CorpusID:15810023
https://doi.org/10.1109/ICPC.2013.6613828
https://doi.org/10.1145/3236024.3236051


Empirical Software Engineering          (2025) 30:148 

Hill E (2010) Integrating natural language and program structure information to improve software search and 
exploration. Ph.D. thesis, Newark, DE, USA. AAI3423409

Hill E, Fry ZP, Boyd H, Sridhara G, Novikova Y, Pollock L, Vijay-Shanker K (2008) Amap: Automatically 
mining abbreviation expansions in programs to enhance software maintenance tools. In: Proceedings 
of the 2008 International Working Conference on Mining Software Repositories, MSR ’08, p. 79–88. 
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1370750.1370771

Hoda R (2022) Socio-technical grounded theory for software engineering. IEEE Trans. Software Eng. 
48(10):3808–3832. https://doi.org/10.1109/TSE.2021.3106280

Hofmeister J, Siegmund J, Holt DV (2017) Shorter identifier names take longer to comprehend. In: 2017 
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 
217–227. https://doi.org/10.1109/SANER.2017.7884623

Host E, Ostvold B (2007) The programmer’s lexicon, volume i: The verbs. pp. 193– 202. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​1​1​0​9​/​S​C​A​M​.​2​0​0​7​.​1​8​​​​​​​

Høst EW (2011) Meaningful method names
Høst EW, Østvold BM (2009) Debugging method names. In: Proceedings of the 23rd European Conference 

on ECOOP 2009 — Object-Oriented Programming, Genoa, pp. 294–317. Springer-Verlag, Berlin, Hei-
delberg. https://doi.org/10.1007/978-3-642-03013-0_14

Høst EW, Østvold BM (2009) The java programmer’s phrase book. In: Gašević D, Lämmel R, Van Wyk E 
(eds) Software Language Engineering. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 322–341

Høst EW, Østvold BM (2011) Canonical method names for java. In: Malloy B, Staab S, van den Brand M 
(eds) Software Language Engineering. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 226–245

Hucka M (2018) Spiral: splitters for identifiers in source code files. Journal of Open Source Software 3:653. 
https://doi.org/10.21105/joss.00653

Kashiwabara Y, Onizuka Y, Ishio T, Hayase Y, Yamamoto T, Inoue K (2014) Recommending verbs for 
rename method using association rule mining. In: 2014 Software Evolution Week - IEEE Conference 
on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 323–327. ​h​t​t​
p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​C​S​​M​R​-​W​C​​R​E​.​2​0​1​​4​.​6​7​​4​7​1​8​6

Lawrie D, Morrell C, Feild H, Binkley D (2006) What’s in a name? a study of identifiers. In: 14th IEEE 
International Conference on Program Comprehension (ICPC’06), pp. 3–12. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​
C​P​C​.​2​0​0​6​.​5​1​​​​​​​

Liblit B, Begel A, Sweetser E (2006) Cognitive perspectives on the role of naming in computer programs. In: 
In Proc. of the 18th Annual Psychology of Programming Workshop

Liu H, Liu Q, Liu Y, Wang Z (2015) Identifying renaming opportunities by expanding conducted rename 
refactorings. IEEE Trans. Software Eng. 41(9):887–900

Liu H, Liu Q, Staicu CA, Pradel M, Luo Y (2016) Nomen est omen: Exploring and exploiting similari-
ties between argument and parameter names. In: Software Engineering (ICSE), 2016 IEEE/ACM 38th 
International Conference on, pp. 1063–1073. IEEE

Liu K, Kim D, F Bissyandé T, Kim T, Kim K, Koyuncu A, Kim S, Le Traon Y (2019) Learning to spot and 
refactor inconsistent method names. In: Proceedings of the 40th International Conference on Software 
Engineering, ICSE 2019. ACM, New York, NY, USA

Malik RS, Patra J, Pradel M (2019) Nl2type: Inferring javascript function types from natural language infor-
mation. In: Proceedings of the 41st International Conference on Software Engineering, ICSE ’19, p. 
304–315. IEEE Press. https://doi.org/10.1109/ICSE.2019.00045

Martin RC (2008) Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall PTR, 
Upper Saddle River, NJ, USA

Miller GA (1995) Wordnet: a lexical database for english. Commun. ACM 38(11):39–41
Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engineered software projects. Empir. 

Softw. Eng. 22(6):3219–3253. https://doi.org/10.1007/s10664-017-9512-6
Newman C, Decker M, Alsuhaibani R (2021) Identifier name structure catalogue URL ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​S​

C​​A​N​L​/​i​​d​e​n​t​i​​f​i​e​r​_​n​​a​m​e​_​​s​t​r​u​c​t​u​r​e​_​c​a​t​a​l​o​g​u​e [Online]. Available: ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​S​C​​A​N​L​/​i​​d​e​n​t​i​​f​i​e​r​
_​n​​a​m​e​_​​s​t​r​u​c​t​u​r​e​_​c​a​t​a​l​o​g​u​e

Newman CD, AlSuhaibani RS, Collard ML, Maletic JI (2017) Lexical categories for source code identi-
fiers. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering 
(SANER), pp. 228–239. https://doi.org/10.1109/SANER.2017.7884624

Newman CD, AlSuhaibani RS, Decker MJ, Peruma A, Kaushik D, Mkaouer MW, Hill E (2020) On the 
generation, structure, and semantics of grammar patterns in source code identifiers. J. Syst. Softw. 
170(110):740. https://doi.org/10.1016/j.jss.2020.110740. URL ​h​t​t​p​s​:​​/​/​w​w​w​​.​s​c​i​e​n​​c​e​d​i​​r​e​c​t​.​​c​o​m​/​s​​c​i​e​n​c​e​​/​
a​r​t​​i​c​l​e​/​​p​i​i​/​S​​0​1​6​4​1​2​​1​2​2​0​​3​0​1​6​8​0

Newman CD, Decker MJ, AlSuhaibani RS, Peruma A, Kaushik D, Hill E (2019) An empirical study of abbre-
viations and expansions in software artifacts. In: Proceedings of the 35th IEEE International Conference 
on Software Maintenance. IEEE

1 3

Page 49 of 51    148 

https://doi.org/10.1145/1370750.1370771
https://doi.org/10.1109/TSE.2021.3106280
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/SCAM.2007.18
https://doi.org/10.1109/SCAM.2007.18
https://doi.org/10.1007/978-3-642-03013-0_14
https://doi.org/10.21105/joss.00653
https://doi.org/10.1109/CSMR-WCRE.2014.6747186
https://doi.org/10.1109/CSMR-WCRE.2014.6747186
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1007/s10664-017-9512-6
https://github.com/SCANL/identifier_name_structure_catalogue
https://github.com/SCANL/identifier_name_structure_catalogue
https://github.com/SCANL/identifier_name_structure_catalogue
https://github.com/SCANL/identifier_name_structure_catalogue
https://doi.org/10.1109/SANER.2017.7884624
https://doi.org/10.1016/j.jss.2020.110740
https://www.sciencedirect.com/science/article/pii/S0164121220301680
https://www.sciencedirect.com/science/article/pii/S0164121220301680


Empirical Software Engineering          (2025) 30:148 

Newman CD, Decker MJ, Alsuhaibani RS, Peruma A, Mkaouer MW, Mohapatra S, Vishnoi T, Zampieri M, 
Sheldon TJ, Hill E (2022) An ensemble approach for annotating source code identifiers with part-of-
speech tags. IEEE Trans. Software Eng. 48(9):3506–3522. https://doi.org/10.1109/TSE.2021.3098242

Olney W, Hill E, Thurber C, Lemma B (2016) Part of speech tagging java method names. In: 2016 IEEE 
International Conference on Software Maintenance and Evolution (ICSME), pp. 483–487. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​1​0​9​/​I​C​S​M​E​.​2​0​1​6​.​8​0​​​​​​​

Osumi Y, Umekawa N, Komata H, Hayashi S (2022) Empirical study of co-renamed identifiers. In: 2022 
29th Asia-Pacific Software Engineering Conference (APSEC), pp. 71–80. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​A​P​​
S​E​C​5​7​​3​5​9​.​2​0​​2​2​.​0​​0​0​1​9

Parsa S, Zakeri-Nasrabadi M, Ekhtiarzadeh M, Ramezani M (2023) Method name recommendation based on 
source code metrics. Journal of Computer Languages 74(101):177. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​o​l​a​.​2​0​2​2​.​
1​0​1​1​7​7​​​​​. URL ​h​t​t​p​s​:​​/​/​w​w​w​​.​s​c​i​e​n​​c​e​d​i​​r​e​c​t​.​​c​o​m​/​s​​c​i​e​n​c​e​​/​a​r​t​​i​c​l​e​/​​p​i​i​/​S​​2​5​9​0​1​1​​8​4​2​2​​0​0​0​7​4​0

Peruma A, Hu E, Chen J, AlOmar EA, Mkaouer MW, Newman CD (2021) Using grammar patterns to inter-
pret test method name evolution. In: 2021 IEEE/ACM 29th International Conference on Program Com-
prehension (ICPC), pp. 335–346. https://doi.org/10.1109/ICPC52881.2021.00039

Peruma A, Mkaouer MW, Decker MJ, Newman CD (2018) An empirical investigation of how and why devel-
opers rename identifiers. In: International Workshop on Refactoring 2018. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​3​2​4​2​
1​6​3​.​3​2​4​2​1​6​9​​​​​. URL http://doi.acm.org/10.1145/3242163.3242169

Peruma A, Mkaouer MW, Decker MJ, Newman CD (2019) Contextualizing rename decisions using refac-
torings and commit messages. In: Proceedings of the 19th IEEE International Working Conference on 
Source Code Analysis and Manipulation. IEEE

Peruma A, Mkaouer MW, Decker MJ, Newman CD (2020) Contextualizing rename decisions using refactor-
ings, commit messages, and data types. J. Syst. Softw. 169(110):704. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​s​s​.​2​0​2​0​.​
1​1​0​7​0​4​​​​​. URL ​h​t​t​p​:​/​​/​w​w​w​.​​s​c​i​e​n​c​​e​d​i​r​​e​c​t​.​c​​o​m​/​s​c​​i​e​n​c​e​/​​a​r​t​i​​c​l​e​/​p​i​i​/​S​0​1​6​4​1​2​1​2​2​0​3​0​1​5​0​3

Peruma A, Newman CD (2023) Understanding digits in identifier names: An exploratory study. In: Proceed-
ings of the 1st International Workshop on Natural Language-Based Software Engineering, NLBSE ’22, 
p. 9–16. Association for Computing Machinery, New York, NY, USA. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​3​5​2​8​5​8​
8​.​3​5​2​8​6​5​7​​​​​​​

Ratiu D, Deissenboeck F (2006) Programs are knowledge bases. pp. 79– 83. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​P​C​.​
2​0​0​6​.​4​1​​​​​​​

Ratiu D, Deissenboeck F (2007) From reality to programs and (not quite) back again. In: Proceedings of the 
15th IEEE International Conference on Program Comprehension, ICPC ’07, p. 91–102. IEEE Computer 
Society, USA. https://doi.org/10.1109/ICPC.2007.22

Schankin A, Berger A, Holt DV, Hofmeister JC, Riedel T, Beigl M (2018) Descriptive compound identifier 
names improve source code comprehension. In: Proceedings of the 26th Conference on Program Compre-
hension, ICPC ’18, pp. 31–40. ACM, New York, NY, USA. https://doi.org/10.1145/3196321.3196332. 
URL http://doi.acm.org/10.1145/3196321.3196332

Shepherd D, Fry ZP, Hill E, Pollock L, Vijay-Shanker K (2007) Using natural language program analysis to 
locate and understand action-oriented concerns. In: Proceedings of the 6th International Conference on 
Aspect-oriented Software Development, AOSD ’07, pp. 212–224. ACM, New York, NY, USA. ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​1​2​1​8​5​6​3​.​1​2​1​8​5​8​7​​​​​. URL http://doi.acm.org/10.1145/1218563.1218587

Singer J, Kirkham C (2008) Exploiting the correspondence between micro patterns and class names. In: 2008 
Eighth IEEE International Working Conference on Source Code Analysis and Manipulation, pp. 67–76. 
https://doi.org/10.1109/SCAM.2008.23

Stol KJ, Ralph P, Fitzgerald B (2016). Grounded theory in software engineering research: A critical review 
and guidelines. https://doi.org/10.1145/2884781.2884833

Takang AA, Grubb PA, Macredie RD (1996) The effects of comments and identifier names on program com-
prehensibility: an experimental investigation. J. Prog. Lang. 4:143–167

Toutanova K, Manning CD (2000) Enriching the knowledge sources used in a maximum entropy part-of-
speech tagger. In: Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural 
Language Processing and Very Large Corpora: Held in Conjunction with the 38th Annual Meeting of 
the Association for Computational Linguistics - Volume 13, EMNLP ’00, pp. 63–70. Association for 
Computational Linguistics, Stroudsburg, PA, USA. https://doi.org/10.3115/1117794.1117802

van der Werf V, Swidan A, Hermans F, Specht M, Aivaloglou E (2024) Teachers’ beliefs and practices on 
the naming of variables in introductory python programming courses. In: Proceedings of the 46th Inter-
national Conference on Software Engineering: Software Engineering Education and Training, ICSE-
SEET ’24, p. 368–379. Association for Computing Machinery, New York, NY, USA. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​1​4​5​/​3​6​3​9​4​7​4​.​3​6​4​0​0​6​9​​​​​​​

Zhang J, Liu S, Gong L, Zhang H, Huang Z, Jiang H (2023) Beqain: An effective and efficient identifier 
normalization approach with bert and the question answering system. IEEE Trans. Software Eng. 
49(4):2597–2620. https://doi.org/10.1109/TSE.2022.3227559

1 3

  148   Page 50 of 51

https://doi.org/10.1109/TSE.2021.3098242
https://doi.org/10.1109/ICSME.2016.80
https://doi.org/10.1109/ICSME.2016.80
https://doi.org/10.1109/APSEC57359.2022.00019
https://doi.org/10.1109/APSEC57359.2022.00019
https://doi.org/10.1016/j.cola.2022.101177
https://doi.org/10.1016/j.cola.2022.101177
https://www.sciencedirect.com/science/article/pii/S2590118422000740
https://doi.org/10.1109/ICPC52881.2021.00039
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169
http://doi.acm.org/10.1145/3242163.3242169
https://doi.org/10.1016/j.jss.2020.110704
https://doi.org/10.1016/j.jss.2020.110704
http://www.sciencedirect.com/science/article/pii/S0164121220301503
https://doi.org/10.1145/3528588.3528657
https://doi.org/10.1145/3528588.3528657
https://doi.org/10.1109/ICPC.2006.41
https://doi.org/10.1109/ICPC.2006.41
https://doi.org/10.1109/ICPC.2007.22
https://doi.org/10.1145/3196321.3196332
http://doi.acm.org/10.1145/3196321.3196332
https://doi.org/10.1145/1218563.1218587
https://doi.org/10.1145/1218563.1218587
http://doi.acm.org/10.1145/1218563.1218587
https://doi.org/10.1109/SCAM.2008.23
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.3115/1117794.1117802
https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1109/TSE.2022.3227559


Empirical Software Engineering          (2025) 30:148 

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Christian D. Newman1  · Anthony Peruma2 · Eman Abdullah AlOmar3 · 
Mahie Crabbe2 · Syreen Banabilah4 · Reem S. Alsuhaibani5 · Michael J. Decker6 · 
Farhad Akhbardeh7 · Marcos Zampieri8 · Mohamed Wiem Mkaouer9 ·  
Jonathan I. Maletic10

	
 Christian D. Newman
cdnvse@rit.edu

Anthony Peruma
peruma@hawaii.edu

Eman Abdullah AlOmar
ealomar@stevens.edu

Mahie Crabbe
mahi3@hawaii.edu

Syreen Banabilah
sbanabil@kent.edu

Reem S. Alsuhaibani
rsuhaibani@psu.edu.sa

Michael J. Decker
mdecke@bgsu.edu

Farhad Akhbardeh
farhad.akhbardeh@briarcliff.edu

Marcos Zampieri
mzampier@gmu.edu

Mohamed Wiem Mkaouer
mmkaouer@umich.edu

Jonathan I. Maletic
jmaletic@kent.edu

1	 Rochester Institute of Technology, Rochester, NY, USA
2	 University of Hawai‘i at Mānoa, Honolulu, HI, USA
3	 Stevens Institute of Technology, Hoboken, NJ, USA
4	 Kent State University, Kent, OH, USA
5	 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
6	 Bowling Green State University, Bowling Green, OH, USA
7	 University of South Dakota, Vermillion, SD, USA
8	 George Mason University, Fairfax, VA, USA
9	 University of Michigan, Dearborn, MI, USA
10	 Kent State University, Kent, OH, USA

1 3

Page 51 of 51    148 

http://orcid.org/0000-0002-8838-4074

	﻿On the structure and semantics of identifier names containing closed syntactic category words
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Why Study Closed-Category Naming Patterns?
	﻿﻿3﻿ ﻿Definitions & Grammar Pattern Generation
	﻿3.1﻿ ﻿Phrasal Structures and Interpretation

	﻿﻿4﻿ ﻿Methodology
	﻿﻿4.1﻿ ﻿Detecting and Sampling Identifiers with Closed-Category Terms
	﻿﻿4.2﻿ ﻿Manual Process for Annotating Part-of-Speech

	﻿﻿5﻿ ﻿Evaluation of RQ1: What behavioral roles do closed-category terms play in source code identifiers?
	﻿5.1﻿ ﻿Methodology: Manual Process for Behavioral Annotations
	﻿5.2﻿ ﻿Numerals in Identifiers
	﻿5.3﻿ ﻿Prepositions in Identifiers
	﻿5.4﻿ ﻿Determiners in Identifiers
	﻿5.5﻿ ﻿Conjunctions in Identifiers
	﻿5.6﻿ ﻿Cross-Category Synthesis
	﻿5.7﻿ ﻿Summary of RQ1

	﻿﻿6﻿ ﻿Evaluation of RQ2: How do closed-category terms correlate with structural, programming language, and domain-specific contexts in software?
	﻿6.1﻿ ﻿Closed-Category Term Usage Across Programming Contexts, Programming Languages, and System Domains
	﻿6.1.1﻿ ﻿ Language-Specific Differences in Closed-Category Term Usage
	﻿6.1.2﻿ ﻿ Context-Specific Differences in Closed-Category Term Usage
	﻿6.1.3﻿ ﻿ Closed-Category Term Usage Across System Domains


	﻿6.2﻿ ﻿Summary of RQ2
	﻿﻿7﻿ ﻿Related Work
	﻿7.1﻿ ﻿Grounded Theory in Software Engineering
	﻿7.2﻿ ﻿Part of Speech Taggers
	﻿7.3﻿ ﻿Human-subjects Studies
	﻿7.4﻿ ﻿Rename Analysis
	﻿7.5﻿ ﻿Identifier Type and Name Generation
	﻿7.6﻿ ﻿Software Ontology Creation Using Identifier Names
	﻿7.7﻿ ﻿Identifier Structure and Semantics Analysis

	﻿﻿8﻿ ﻿Discussion and Future Work
	﻿﻿9﻿ ﻿Threats to Validity
	﻿﻿10﻿ ﻿Conclusions
	﻿References


