
166

Studying Developer Eye Movements to Measure Cognitive
Workload and Visual Effort for Expertise Assessment
SALWA D. ALJEHANE, University of Tabuk, Kingdom of Saudi Arabia
BONITA SHARIF, University of Nebraska - Lincoln, USA
JONATHAN I. MALETIC, Kent State University, USA

Eye movement data provides valuable insights that help test hypotheses about a software developer’s compre-
hension process. The pupillary response is successfully used to assess mental processing effort and attentional
focus. Relatively little is known about the impact of expertise level in cognitive effort during programming
tasks. This paper presents a quantitative analysis that compares the eye movements of 207 experts and novices
collected while solving program comprehension tasks. The goal is to examine changes of developers’ eye
movement metrics in accordance with their expertise. The results indicate significant increase in pupil size
with the novice group compared to the experts, explaining higher cognitive effort for novices. Novices also tend
to have a significant number of fixations and higher gaze time compared to experts when they comprehend
code. Moreover, a correlation study found that programming experience is still a powerful indicator when
explaining expertise in this eye-tracking dataset among other expertise variables.

CCS Concepts: • Human-centered computing→ Empirical studies in HCI; • Software and its engi-
neering→ General programming languages;

Additional Key Words and Phrases: Reading analysis, Eye movements and cognition, Pupil dynamics, Eye
tracking, Source code reading, Expertise, Cognitive effort

ACM Reference Format:
Salwa D. Aljehane, Bonita Sharif, and Jonathan I. Maletic. 2023. Studying Developer Eye Movements to
Measure Cognitive Workload and Visual Effort for Expertise Assessment. Proc. ACM Hum.-Comput. Interact. 7,
ETRA, Article 166 (May 2023), 18 pages. https://doi.org/10.1145/3591135

1 INTRODUCTION
Different programming expertise levels require a different mental workload to solve a compre-
hension task [45]. Program comprehension is a cognitive process that allows developers to use
their knowledge along with a mental model to acquire information from the code and draw their
conclusions [23]. There are also a number of studies that show reading and comprehending source
code is very different from reading and understanding natural language prose [13, 22]. Thus, study-
ing how experts and novices differ in reading code is important since the results from studies on
reading natural language texts do not apply well. Over the years, researchers have made many
attempts to measure programming expertise and try to evaluate programmers’ activities with
respect to their expertise [6, 23]. Additionally, studies attempt to understand developers’ behav-
iors during programming activities corresponding to their expertise level, such as in source code

Authors’ addresses: Salwa D. Aljehane, University of Tabuk, Department of Computer Science, Tabuk, Kingdom of Saudi
Arabia, saljehani@ut.edu.sa; Bonita Sharif, University of Nebraska - Lincoln, School of Computing, Lincoln, Nebraska, USA,
68588, bsharif@unl.edu; Jonathan I. Maletic, Kent State University, Department of Computer Science, Kent, Ohio, USA,
44240, jmaletic@kent.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2573-0142/2023/5-ART166 $15.00
https://doi.org/10.1145/3591135

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://doi.org/10.1145/3591135
https://doi.org/10.1145/3591135

166:2 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

comprehension [12, 24, 62], maintenance [67], and debugging [5, 66]. Previous studies measure
the expertise in fairly straightforward ways, including questionnaires [24], years of programming
experience, education level [1, 13, 41, 50], and how programmers self-evaluate their expertise [23].
Other studies use eye-tracking technologies to study the effect of expertise levels on comprehension
during code reading [15], reviewing [65], summarization [51], and differences between the expertise
and professional status of software developers in class diagram comprehension [61].

In this paper we are particularly interested in assessing the expertise level of software developers
in the workplace along with students studying and learning to program. This is a difficult problem
for a number of reasons. Factors such as new programming languages [59] (each suited for specific
applications/domains), the need of being up to date with current (and ever-changing) technologies,
and the availability and expansion of learning resources all play a part in developer expertise.
There is a need to redefine expertise beyond using professional status, education level, or years of
programming experience. Moreover, with improvements in the field of software engineering, there
needs to be a consistent evolution in developer expertise assessment. One example of this is adopting
more holistic methods for developer expertise evaluation in a realistic development environment
while conducting programming activities (e.g., eye movement tracking of code reading). We do not
claim that eye movements are the only measure. However, using eye movements in addition to
other measures should provide valuable insight to improve processes and tools.

The objective of this study is to provide a reliable approach to characterize developers’ expertise
level as expert/novice via studying their eye movement data. Our intention is that results from such
studies will provide a means to develop automated approaches to assessing expertise level based on
eye movements. This study also aims to make use of the eye movement metrics to uncover distinct
patterns that can differentiate between developers in a program comprehension task related to
their expertise. We see this as the first step in further refining measures leading up to expertise
prediction. Here we are specifically interested in pupillometry, the measurement of fluctuations in
pupil diameter in response to a given stimulus (i.e., reading source code). In terms of analyzing
pupillometry data before comparing subjects, we need to define pupil peak values. One can then
identify the changes in the pupil sizes relative to the baseline for each developer up to each threshold.
According to the Beatty reviews in 1982 [8], Hakerem and Sutton provide one of the first attempts
of pupillometric analyses at the visual threshold [30]. We adopt this approach, which is presented
and used previously in multiple studies to analyze pupil dilation [21, 25, 42].
Pupil size is influenced by cognitive load and tends to dilate up to 0.5 mm above its relative

baseline value [8, 9, 60]. Many early studies have shown the effects of cognitive workload effect on
pupil size [31, 32, 47]. Moreover, pupil dilation is used in many studies as a measure to study mental
workload [7, 43], to explore the relationship between cognitive ability and the pupil baseline [64]
and to combine pupil dilation with other physiological measurements to assess cognitive load [33].

This work uses the changes in the pupillary response of expert/novice developers as an indicator
of the underlying cognitive efforts the subject performs. In order to provide a valid dilation analysis
and to perform a fair comparison between developers, this study includes developers who solve tasks
in the same language (Java). The results show that less experienced developers have statistically
higher average fixations of dilated pupils than skilled developers. This suggests that novices apply
more attentional focus and mental effort to solve the comprehension task compared to expert
developers. The goal of the paper is to explore how years of programming experience influence
the visual behavior of developers during comprehension. To achieve this goal, this paper seeks to
address three research questions:

• RQ1: What is the best representative measurement for estimating expertise that shows a best
connection with eye-tracking metrics?

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:3

• RQ2: Using eye movement measurements: fixation counts, total fixation duration, lines of code
read, saccade length and saccade duration, to what degree do experts differ from novices?

• RQ3: To determine the differences between the cognitive load effort of experts and novices,
can a developer’s pupillary response contribute to assessing expertise?

This paper makes the following fundamental scientific contributions: 1) This is the first study to
assess the differences between software developer cognitive workload using a pupillary response
analysis in the context of expertise; 2)We study the relationship betweenmultiple types of developer
expertise metrics and their eye movement metrics; 3) The work provides evidence that the changes
in the eye movement metrics are influenced by the developer’s expertise level (novices/experts); and
4) We identify multiple eye movement-based metrics extracted from the largest publicly available
eye tracking dataset (EMIP) [11] of 207 developers. This is the largest publicly available eye tracking
data set of software comprehension tasks collected by a multi-institutional team, available to date.
The results of this study support previous work on this topic however, give far greater credence as
we examine unstudied measures and utilize a much larger data set. This provides much stronger
evidence that a model for (accurate) automated expertise assessment can be constructed.

2 BACKGROUND AND RELATEDWORK
We now present related work in pupil dilation and its connection to cognitive load followed by
related work comparing experts and novices in program comprehension (a subfield of software
engineering).

2.1 Pupil Dilation and Cognitive Load
In several studies researchers have used eye movement metrics to gain deep insights and to
understand the ongoing cognitive process while solving programming problems. For these studies,
pupil size is the most commonly used metric to assess the mental workload [8, 32, 37]. In one of the
early research studies, which was released in 1982, Beatty conducted an empirical study reviewing
multiple datasets from different domains [8]. They conclude that pupil dilation is a valid indicator
of the cognitive workload that was applied when performing a mental process. In comparison,
Klingner proposed a new method to study the quick cognitive load changes by aligning the gaze
events with pupil dilation [42]. This method allowed for an analysis of participants’ pupillary
responses in a short time when understanding the visual tasks. This alignment has also successfully
captured the variation that happens in pupil diameter sizes while subjects are changing between
multiple types of tasks. Fritz et al. performed an empirical experiment to capture the cognitive
process while working with difficult/easy tasks [25] and use multiple types of psycho-physiological
measurements. They find that pupil dilation and blink rates are two valuable metrics that respond
relative to working with difficult tasks.

Further research has found the same connection and concluded that there are many advantages
of using pupil response as a cognitive workload measurement during interactive tasks [37], driving
[48], in real-time during web browsing [39], and also using pupil dilation with blinking rate to study
the performed mental efforts [34, 35, 63]. Additionally, we believe that studying the changes of
developers’ pupillary response while solving comprehension problems with considering developers’
expertise level would provide a better understanding of expert/novice differences in cognitive
processing. Thus, our study mainly relies on the analysis of individual pupil size changes as an
interpretation of the mental workload that occurs during comprehension tasks. Kontogiorgos and
Manikas propose a theoretical idea about how expertise level could influence the programmers’
mental effort [44]. They hypothesize that novice developers have a higher cognitive load compared
to experts while performing programming tasks. Their work intends to identify programmers’

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

166:4 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

cognitive activity by measuring the pupillary response. Our work presented here confirms and
empirically supports Kontogiorgos’ initial hypothesis by providing an in-depth analysis of the
pupil dilation changes in the novice group and comparing it to experts. However, the findings of
this paper draw upon following different methodology than Kontogiorgos attempts to examine the
connection between expertise level (expert/novices) and the performed cognitive effort; testing
pupil dilation at multiple maximum points instead of taking one average of dilation of all fixations.
Also, we control the expertise variable using the years of programming experience rather than using
a combination of independent variables (age, years of experience, and education) as in Kontogiorgos’
study.

2.2 Comparing Experts and Novices in Program Comprehension
In the debugging domain, Bednarik [10] compared the debugging strategies of expert and novice
developers who alternate between three display methods: the source code, the code visualization,
and the output. They found that experts tend to use the source code more, while novices focus on the
code visualization and use repetitive fixations. Aljehane at el. showed differences between experts
and novices in reading the source code elements [3]. Considering all the identified source code parts
in the study, experts showed the ability to comprehend and finish the task using fewer source code
elements than novices. The study’s results also showed that the differences are significant when
reading keywords, method signatures, identifiers, and variable declarations. Moreover, novices
have significantly higher gaze visits when looking at more details such as names and operators
in if-then-else statements. In terms of providing analysis at the token level, recent work by Madi
et al. [46] focused on studying the impacts of token frequency and length in developers’ reading
strategies. They demonstrated these impacts by analyzing eight eye-related measures for the studied
source code token. They found statistical evidence against the null hypothesis when comparing
low and high frequency tokens in gaze time and total duration measurements, especially in the
novices group. They also found that the length of the source code element has a significant effect
on the duration needed to read over tokens for novice programmers.

Abid et al. conducted an eye-tracking study to explain the developers’ cognitive model followed
while reading programs during a summarization task [1]. The result showed no significant dif-
ferences in the reading model between experts and novices, and programmers mostly used the
bottom-up approach while reading the code. Nevertheless, novices record more gaze time than
experts when performing the bottom-up reading approach. A more detailed analysis was done on
the same collected dataset [2] that replicates and overcomes the limitation in the prior eye-tracking
study conducted by Rodeghero et al. [51]. In this study, Abid et al. [2] compared the developers gaze
behaviors collected in a more realistic environment using the iTrace eye tracking infrastructure
[53][29]. They showed that on summarization tasks, developers tend to read more on the method
body than just the signature. Also, while the method size increased, experts showed a significantly
higher gaze when revisiting the method body than when revisiting its signature. Abid et al. found
that for both developer groups, the call terms are the most focused location for programmers
in reading the code during summarization activity, followed by control flow terms then method
signatures.

None of the above studies assess developers’ cognitive load, using pupillometry data, with regards
to expertise. This work uses the developers’ years of programming experience to evaluate their
expertise and also features the first attempt to use pupillary response to evaluate the differences
between experts’ and novices’ cognitive workloads during comprehension activities.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:5

3 STUDY DESIGN
This section introduces the dataset being analyzed, eye-tracking metrics that we use to assess
expertise during comprehension activities, the participants’ descriptions relative to their expertise
evaluation and finally, the process of cleaning and transforming the dataset.

3.1 Dataset
This analysis uses the EMIP dataset known formally as the Distributed Collection of Eye Movement
Data in Programming [11]. This dataset is part of the EMIP international workshop, which started
in 2013. Due to the lack of availability of a large eye movement dataset, multiple labs from different
countries contributed to an eye-tracking experiment to enrich the research field with a large gaze
dataset. The same settings were used at each location since the laptop and tracker were shipped to
each researcher in order for them to conduct the study in the same setup. They use the SMI RED 250
remote tracker to record the data which was shipped to the participants with all the instructions
about running the experiment. To date, the published EMIP dataset has the eye gaze data of 216
participants who conducted the program comprehension experiment with two visual stimuli which
are available in three different programming languages. The two programming tasks are called
Rectangle and Vehicle, each of which includes a class that matches the name of the task. Subjects
were asked to choose a programming language between Java, Python, or Scala with which to start
the experiment. After they finish reading the code, participants are asked to solve a comprehension
question (multiple choice selection, free-form answer on what is the output, and free-form answer
on summarizing the code) to assess their understanding of the code. The majority of the subjects
use Java (207 participants), with five data points in Python, and four in Scala. In this analysis, we
use the eye-tracking data for participants who use the Java stimulus only.

3.2 Measures
Researchers examine and employ a wide range of eye-tracking measurements in previous software
engineering eye-tracking studies [56–58]. In our study, we use ten eye-related metrics to analyze
the data and assess the participants’ visual attention efforts. These eye-related measurements fall
into three categories: fixation metrics, saccade metrics, and pupil size metrics. All measures are
available at https://osf.io/rsqdx/ [4].

3.2.1 Fixation Metrics. A fixation [20, 49] happens when the eye is focused and stabilized on one
location within the source code elements for a short time. The following fixations-related metrics
are included in this study:

• Number of Fixations: The total number of fixations that the subject used over the pro-
gramming tasks (Rectangle.java and Vehicle.java). This metric is calculated for both tasks
that the participant used after cleaning the data and removing all invalid eye records. Many
of the previous eye-tracking studies use fixation metrics to detect and measure either the
search efficiency [26, 38] or to find the most focused areas of interest [18, 65]. Overall, a
higher number of fixations indicates a lower efficiency (more visual effort to complete task)
to search for relevant information in an area of interest (AOI) or stimuli.

• Line Coverage: This metric represents the percentage of lines the participant looked at from
all the program lines. Eye gazes are mapped to the corresponding source code line number
by using the information provided with the EMIP dataset [11]. The stimulus information
included with the dataset shows the lines coordinates for each program. The area of interest
(AOI) model proposed by Deitelhoff et al., is used in the mapping process between the eye
records and the code lines; this allows the researchers to capturing more AOIs (i.e., lines of
code) that are used in comprehending the code [19]. This AOI model approach utilizes the gap

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://osf.io/rsqdx/

166:6 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

(a) (b)

Fig. 1. (a) The timeline of the pupil diameter(mm) for novices (N=62) at the beginning of reading during the
first trial (Rectangle.java), where the baseline averaged to 3.61 mm from the first 15 samples. (b) The timeline
of the pupil diameter(mm) for expert (E1) at the beginning of reading during the first trial (Vehicle.java),
where the baseline averaged to 2.57 mm from the first 15 samples.

between the code lines due to the possibility of having fixations that fall in that space. Using
this approach improves the number of fixations mapped to the correct line number. However,
our intent when calculating the line coverage metric is to capture more AOI transitions in
the mapping process, and this requirement is satisfied and proven by Deitelhoff et al. [19].

• Sum of Fixation Duration: This represents the sum of all intervals between two fixations.
Thus, we calculate the fixation duration that subjects use at each eye record by taking the
difference between the timestamp at one fixation (F𝑖) and the subsequent fixation (F𝑖+1).
However, fixation duration is used to get insight into developer performance and their overall
visual attention that require them to work on the task [10, 61]. A longer fixation duration
means that the participants spend more time understanding and analyzing the task [17]
due to code complexity [14] or defect difficulty [16], and more cognitive effort is needed to
explore the given tasks [55]. Although fixation counts and gaze time represent developers’
visual efforts to perform programming tasks, they are not correlated [57].

3.2.2 Saccade Metrics. A saccade happens between two consecutive fixations. It is a form of
navigation behavior. No processing happens during saccades.

• Saccade Length:This study defines the saccade length as the sum of the Euclidean distance
between consecutive fixations divided by the number of saccades [56].

• Saccade Duration:In this study, saccade duration represents the sum of the duration of all
saccades divided by the total number of saccades.

3.2.3 Pupil Size Metrics. When the pupil gets dilated, it allows for more light in the eye. However,
it happens in different conditions such as in low light situations or as a result of changes in the
cognitive efforts of the person [21, 27, 28]. Thus, pupil dilation can provide a sensitive index to
reflect the cognitive challenges when working on a difficult task [25, 40, 43]. Therefore, instead
of using the exact pupil diameter this study’s analysis uses the pupil dilations to measure the
differences in memory load between the two groups (experts/novices) [42] as follows.

• Pupil dilation: This represents the increase in the pupil’s diameter size measured in mm.
Since pupil size can increase up to 0.5mm as a response to an increase in cognitive load, here,
we consider four maximum values in our study’s analysis (0.1, 0.2, 0.3, 0.4) to capture small
changes in pupil size increasing over the baseline.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:7

We exclude the changes of 0.5mm in the pupil size analysis because only a few developers
have recorded dilation up to this point, especially with experts (only 13 experts). We use a
baseline interval of 60ms (15 samples) from starting the task (reading the code) and take into
account the trial with which the subject starts. Furthermore, we detect the baseline as the
average of the developer’s pupil size in the first 60𝑚𝑠 after starting fixations on the target
(code). For each developer, the relative pupil dilations are obtained by subtracting the baseline
value from each pupil diameter value in the trial. Then, we calculate the percentage of the
fixations when a subject’s pupil gets dilated above their baseline in each tested point. Figure
1 shows the timeline of pupil diameter (100 samples) for both a novice (N62) and an expert
(E1) while reading the first trial.

3.3 Expertise Grouping
There are 207 participants we consider in this study. Their years of programming experience
ranged between zero and 56. Based on the fact that programming skill increases with the years of
experience in the field [67], and based on the findings of the first research question, we classify
experts and novices within the experimental group by using their years of programming experience.
The median value of the programming experience information provided by the participants (4
years) is used. Excluding those with none (zero) experience, which makes 16 participants out of
the total, there are 101 experts with 4+ years of experience, and 90 novices with 0.5 to 4 years of
programming experience. Most of the subjects who participated in the experiment fall within 1 to
10 programming years of experience.

3.4 Data Cleaning and Transformation
First, we extract the records related to each stimulus program (Rectangle.java and Vehicle.java,
with 18 - 22 LOC) from the raw data for every subject and save the result in csv files. We then
check the data for validity, including removing all records when the eye pupil dilation is zero. To
validate the comparison and make it easier to compare between participants’ eye measurements,
this analysis uses a common scale for all the data without changing the range between the values.
So, we utilize the min-max normalization to transform all the data records to the same scale by
subtracting the minimum from each value, then dividing the result by the difference between the
max and the min value (max-min scaling). Thus, the minimum value is transformed to zero, and the
maximum value is transformed to 1. This scaling was applied to the fixation metrics and saccade
metrics. However, for pupil metrics, there is no need to transform the data records to the same
scale. For each developer, the relative pupil dilations are obtained by subtracting the baseline value
from each pupil diameter value in the trial. Then, we calculate the percentage of the fixations when
the pupil gets dilated above their baseline at each tested point (0.1, 0.2, 0.3, 0.4). The process of
outlier removal for pupil dilation data is presented in Section 4.3.

4 RESULTS AND DISCUSSION
We combine the Vehicle and Rectangle program results from the dataset for all 207 participants
(novices and experts) who read Java source code, creating a total of 414 data points. To compare
the studied eye-tracking measurements of the experts and novices and to find any significant
differences between them, we now seek to answer our research questions.

4.1 RQ1: Correlation Between Expertise and Eye Tracking Metrics
The answer to this question we show the correlation between expertise and eye-related metrics.
To overcome any errors by dividing the participants into two different groups of expertise we

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

166:8 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

Fig. 2. Correlation matrix of the correlation coefficient result between eye-movement measurements and
expertise

ignore the variance between their years of programming. This in turn will allow for finding the best
metrics to use when explaining the differences in levels of expertise by using eye-related metrics.

We define a set of independent metrics that have been utilized in previous studies to assess and
measure developer expertise. All metadata related to subjects is provided with the EMIP dataset in
a separate file [11]. We use the following variables from the metadata to represent expertise:

• Time Programming: This metric is measured as years of practicing coding. In this analyzed
dataset (EMIP), the distribution of the subjects’ years of programming range between 0 and
56.

• Time Programming in Experiment language: This is measured as years of programming
in the experiment language Java. Relating to the analyzed dataset, 207 participants chose to
use Java programs to conduct the study. The subjects’ years of experience range between 0
to 30 years of using the Java programming language.

• Self-Evaluation in programming: This variable shows the developers’ self-evaluations
of their programming expertise. Subjects chose between none, low, medium, or high. The
metric receives one of the following values: 0 if the subject chooses none for programming
expertise, 1 for low, 2 for medium, and 3 for a developer with high expertise.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:9

• Self-Evaluation in experiment language: This metric aims to show how developers
evaluate their expertise in the Java programming language. It gets a value of 0, 1, 2, or 3
based on participants’ entries (none, low, medium, or high).

• Rectangle task performance and Vehicle task performance: This binary metrics take
a value of 1 if the developer solved the task correctly and a value of 0 if the developer does
not choose the correct answer.

To investigate RQ1, we determine the Spearman rank correlation between the extracted eye
movement parameters and the expertise metrics. Because of the highly skewed distribution of
the data, we adopt the non-parametric Spearman rank correlation, which does not assume either
normality distribution or linearity association between values, and is robust to outliers [52]. For
each pair of metrics, we compute the Spearman rank correlation coefficient to evaluate the strength
of the relationship between eye measurements and expertise variables. Figure 2 contains a color-
coded correlation matrix that shows the correlation results between expertise and gaze behavior
measurements. We observe that time programming is the expertise variable that correlates with
eye-related metrics with the highest correlation coefficient. Typically, a correlation coefficient with
the amount of time programming shows small to medium results | r𝑠 | > 0.1 and | r𝑠 | ⪯ 0.3 in all
eye-related metrics except for saccade duration and line coverage (Vehicle task).

We obtain a negative correlation between the fixation-related metrics, including fixations count
and total duration and the time of programming representing expertise level. Also, this correlation
is statistically significant with p < 0.0001. It is the same with pupil dilation parameters, as they
are negatively correlated with years of programming and statistically significant with p < 0.0001.
However, the time of programming correlates positively with saccade metrics, and it is statistically
significant with saccade length, and not with saccade duration. We have also noticed that the
correlation with pupil dilation increases with the pupil diameter. The metric of pupil size increased
up to 0.4 mm; this has the highest correlation results compared to other pupil-related metrics with
time programming (r𝑠 ≈ 0.3). However, the years of programming experience, in general, appears
to be the most accurate metric to use with eye-tracking parameters to estimate expertise in this
study. The same result is derived in the original dataset paper [11]. However, adding this paper’s
correlation analysis further strengthens the case for choosing the years of programming experience
to represent expertise statistically.
Discussion: Comparing correlation results across all expertise variables with eye movements

parameters shows that using the years of programming experience is the best variable choice
to explain overall expertise in this analysis. However, this connection’s results reveal insights
about the importance of focusing on teaching the programming logic regardless of the language’s
syntax for beginner programmers. Almost all of the parameters that captured the participants’
gaze reading behaviors correlated with programming time higher than that of the other expertise
metrics. Thus, we can conclude that expertise represented by the years of programming experience
can play an important role on the source code reading behaviors in this experiment. However, this
result does not exclude the fact that other expertise metrics could also have an impact on code
comprehension, which reflects on developers reading strategies. Nevertheless, in this experiment
measuring expertise by the time of programming was the best fit to interpret eye parameters
successfully. For this reason, replication experiments with different settings are important to
generalize the results, such as assigning participants in multiple groups with different programming
languages for each.

RQ1 Finding: Overall, the correlations of developers’ years of programming experience indicate
a small to a moderate relationship with each eye-tracking metric (except saccade duration and
line coverage in the Vehicle task) which performs the best association across approximately all

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

166:10 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

Table 1. Eye tracking measures for experts vs. novices showing average of data values along with st. dev. (SD)

Eye Movement Measure Level of expertise Average of actual data SD

Number of Fixations Experts 12500.58 7516.89
Novices 14656.87 7046.74

Sum of Fixation Duration Experts 56474.88𝑚𝑠 30941.87
Novices 65341.34𝑚𝑠 30347.74

Saccade Length Experts 4.53° 4.58
Novices 4.17° 5.22

Saccade Duration Experts 5.9𝑚𝑠 6.65
Novices 5.1𝑚𝑠 7.03

expertise metrics. In addition, we provide empirical evidence that the more time spent practicing
programming regardless of the language that a developer is particularly interested in, the more
noticeable increase in the probability of reading programming code efficiently, alongwith decreasing
the cognitive workload and improving the program comprehension process. Because the existence
of a correlation does not necessarily mean causation, further investigation is needed to examine
the influence of expertise in a particular language or domain that would affect the developer
performance in other programming languages.

4.2 RQ2: Metrics Between Experts and Novices
Novices tend to have noticeably higher reading parameters with fixation-related metrics, whereas
experts record a higher average on their saccade-related metrics than that of the novice developers.
However, the line coverage measurement varies with the task performed. Table 1 shows the average
of the actual data in fixation and saccade metrics. To determine the significance, we test these
differences between experts and novices using the non-parametric Mann-Whitney test[36] based
on the normalized values. We apply the non-parametric Mann-Whitney test because the data is
not normally distributed. From Table 2, the results show that the difference between experts and
novices is statistically significant in fixation counts, total fixation duration, saccade length, and line
coverage in the Rectangle program. In the Vehicle trial, experts cover more lines in the program
than novices, but the difference is not significant. Thus, less skilled subjects exhibit more fixations
on the code with a longer gaze time duration and a shorter saccade length; which means they
perform short skips over the program lines more often than skilled subjects.

Number of Fixations: We find statistical evidence that novices use a higher amount of fixations
when comprehending the task. On a scaled average, experts use 0.29 fixations to comprehend the
source code, while novices need 0.07 more fixations to read the code. In the actual reading shown in
Table 1, experts averaged 12500.58 gaze visits in reading both trials, while novices have an average
of 14656.87 visits. Based on the computed probability and Z presented in Table 2, we show that the
difference between the two groups in the fixations is significant. The results of the non-parametric
Mann-Whitney test for the number of gaze code visit is (Z = -3.748, p = 0.00018) with a medium
effect size of d = 0.312. This result indicates that expertise influences the total number of fixations
required to understand the programs. This reading behavior was previously presented in the main
paper of the EMIP dataset[11], but here we shed light on the degree of these differences between
experts and novices when testing the significance of this result.

Total Fixation Duration: We find evidence that novices have a statistically significant higher
percentage of gaze time views of the source code than that of experts. Using actual duration in

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:11

Table 2. Mann-Whitney test results of experts and novices in fixation-related and saccade-related metrics

Eye Movement Feature U 𝑝 Z Cohen’s d

Number of Fixations 14142 0.00018 -3.748 0.312
Sum of Fixation Duration 14190 0.00021 -3.703 0.309

Saccade Length 20808 0.01474 -2.439 0.077
Saccade Duration 19286 0.3046 -1.027 0.089

Line Coverage (Rectangle) 3791.5 0.04353 -2.019 0.35
Line Coverage (Vehicle) 4914.5 0.3266 -0.981 0.159

Table 1, experts averaged 56474.88 𝑚𝑠 of their gaze time viewing the programs while novices
spent 65341.34𝑚𝑠 of the duration reading and understanding the programs. We determined the
significance based on the computed Z and p values (as shown in Table 2). The results show that
the average novices’ fixation time is significantly higher than experts: U = 14190, p = 0.00021, Z =
-3.703 with a medium effect size of d ≈ 0.31.

This indicates that expert developers are more efficient in using their prior knowledge, thus
comprehending the task faster than novices. This observation aligns with the descriptive statistics
visualized in the EMIP dataset paper on the influence of expertise [11]. However, note that none
of the analysis done in this paper has been done in the dataset paper. The findings of this study
emerge from statistical analysis to provide further explanation about expertise effects on fixation
duration.
Saccade Length: It is observed that experts tend to make a longer saccade while reading the

programs than novices. The results of the average saccade length for all the source code show that
experts had an average length of 4.53 deg. while the novices’ average saccade length is 4.17 deg.
When testing this difference with the Mann-Whitney test, we find that the average experts’ saccade
is significantly higher than that of novices’, with p = 0.01474, Z = -2.439, U = 20808, and a small
Cohen’s effect size d = 0.07. This result was also observed previously by findings in Busjahn et al.
[13]: that experts are better when deciding where to look in the code and can therefore make larger
skips to find important parts to understand the program.
Saccade Duration: Related to the saccade duration, we find in this analysis that the saccade

duration for the experts lasted between 4𝑚𝑠 and 50.75𝑚𝑠 for each saccade, whereas the novices
spent from 4𝑚𝑠 to 83.816𝑚𝑠 in each saccade. On average, experts recorded longer saccade durations
than the novices by using on average 6𝑚𝑠 on saccades per task, while novices took an average of
5.1𝑚𝑠 . However, this difference is not significant between experts and novices for saccade duration
(p = 0.3046, Z = -1.027) with a small effect size d ≈ 0.1 (Table 2).

Discussion: Although the result does not show any significant difference between experts and
novices in saccade duration, experts used a higher average of saccade duration than novices, thus
showing that experts tend to be more efficient/non-linear when reading the source code. We can
conclude that although experts used a significantly lower fixation count than the novices, they
spent enough time at each fixation to acquire the information they need to comprehend the task.
Thus, experts in this experiment are better at reading the task with less fixation and time but with
more focus.

Line Coverage: Reading the Rectangle task shows that novices recorded a higher average of line
coverage than that of the experts. From mapping the fixation counts to the line number coordinates
using the no vertical margins method [19], we find that novices read 20% of the Rectangle class lines,
while experts covered about 17% of the code lines. This difference between experts and novices

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

166:12 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

in their code reading coverage is significant with a medium effect size (p = 0.04353, Z = -2.019, d
= 0.35). However, with the second task the results show that the average of reading code lines in
the expert group is higher than that of the novice group, with 19% for experts and 17% for novices.
Nevertheless, this result is not significant for this task (p = 0.3266, Z = -0.981, d = 0.159).

Fig. 3. Participant correctness level for Java code in Rectangle and Vehicle stimuli

Discussion:With studying reading behavior of developers, researchers have determined that
experts and novices read code differently when it comes to code word coverage [13], or even in more
fine-grained level reading source code elements [3][46]. Thus, this study’s result in analyzing reading
behavior at line level for the Rectangle task matches those found in previous findings. However,
the developers’ performance of the Vehicle task may explain the different reading strategies by
developers. In the Vehicle task, only 47 developers solved the task and comprehended it correctly,
while 160 did not answer the comprehension questions correctly. Figure 3 shows the participants’
correctness results for those who chose Java for each task with expertise consideration. According
to the authors of the EMIP dataset experiment, subjects understood the main idea of the program
but missed the tricky part of the effect on the Vehicle speed by passing a negative number to the
acceleration method [11].

RQ2 Finding: To summarize, we find strong statistical evidence concerning the usefulness of eye
tracking measurements in the context of assessing expertise, confirming the findings of previous
studies. Novice developers have significantly higher fixations with longer durations to comprehend
the code than expert developers. Moreover, we observe that experts tend to make longer saccade
lengths when moving between the code elements and longer saccade durations than novices.

4.3 RQ3: Cognitive Load and Pupillary Response
Addressing this research question aims to detect evidence about expertise impact on the cognitive
process of subjects. Therefore, for each developer, we study their pupillary responses to the reading
and understanding process of the two visual stimuli, after which we provide an interpretation of
the differences between the experts/novices groups.

We apply outlier filtering on the dilation data, as it is likely to have errors caused by blinking [60].
We calculate the boxplot over the fixations with dilation up to 0.1mm. The outliers include data of
23 participants for both Rectangle and Vehicle tasks. Six of 23 had no dilation i.e., the differences

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:13

Table 3. Mann-Whitney test results of experts and novices in pupil-related metrics

Pupil Dilation U 𝑝 Z Cohen’s d

Pupil Size Increase 0.1 12533 0.00934 - 2.599 0.519
Pupil Size Increase 0.2 11500 0.000104 - 3.882 0.52
Pupil Size Increase 0.3 11813 0.000204 - 3.714 0.447
Pupil Size Increase 0.4 11988 0.000049 - 4.059 0.37

between their pupil dilation and baseline was zero. This is likely due to their wearing of glasses
that can affect tracking. After the removal of these data points, all analysis is done with the data
after the boxplot outlier removal was complete. After removing all outliers (35 data points) we are
left with 379 data points included in the analysis out of all 414 data points.

We compared the distributions of the increase in pupil size above the baseline; for all the tested
peak values. Novices show a significantly higher average of fixations with dilated pupils than
experts. For a pupil size increase by 0.1𝑚𝑚, the results show that novices have a higher average
of fixations with dilated pupils than the experts. Experts have 7.73% of their fixations where their
pupil sizes tend to be dilated up to 0.1𝑚𝑚, while novices recorded an increase in the pupillary
response with 12.17% of the total fixations. The same trend is discovered when comparing the
average of fixations with dilated pupils up to 0.2𝑚𝑚. We notice that novices have pupil dilations
more often (7.9% of their fixations) than those of experts (2.3% of their fixations).

In the case of the differences at 0.3𝑚𝑚, the analysis shows that less than 1% of experts’ fixations
have an increase in pupil diameter size up to 0.3𝑚𝑚, whereas novices have an average of 3.2% of
these same fixations. The results are similar with the differences at 0.4𝑚𝑚; we find that on average,
novices’ fixations with a pupil dilation up to 0.4𝑚𝑚 is 1.2% of their total gaze distribution, compared
to experts who recorded less than 1% of fixations (0.34%) with their pupil dilated up to the same
value.

Testing these differences between experts and novices in the pupillary response using the Mann-
Whitney test shows that the difference is statistically significant in all tested maximum values of
pupil dilation above the chosen baseline. The analysis shows that the significance increased with
the pupil size from 0.1𝑚𝑚 to 0.4𝑚𝑚, but the tested effect size decreased (Table 3). As shown in
Table 3, based on the calculated p and Z values, we reject the null-hypothesis that stated there is no
difference between experts and novices in their pupillary response, which represents the cognitive
workload. When data of both trials are combined, the results of the Mann Whitney test for the
increase in pupil diameter up to 0.1𝑚𝑚 and 0.2𝑚𝑚 is (U = 12533, p = 0.00934, Z = -2.599 with a
large Cohen’s d effect size of d = 0.519) and (U = 11500, p < 0.001, Z = -3.882 with a large Cohen’s
d effect size of d = 0.52), respectively. Similarly, we found evidence that the difference between
experts and novices in their pupil dilation up to 0.3 and 0.4𝑚𝑚 is statistically significant with a
medium effect size (U = 11813, p < 0.001, Z = -3.714, Cohen’s d = 0.447, for pupil size increasing up
to 0.3𝑚𝑚) and (U = 11988, p < 0.0001, Z = -4.059, Cohen’s d = 0.37, for pupil size increasing up to
0.4𝑚𝑚).

Discussion:We found evidence that pupil size corresponds with expertise level. Novices show a
significantly higher average of fixations with an increase in their pupil sizes relative to the baseline.
We can therefore conclude that less expert developers perform a higher workload effort and focused
attention while processing the comprehension tasks which support the hypothesis that is reported
by Kontogiorgos and Manikas [44]. This may suggest that novices see the task as difficult which
explains the increase in their pupil size. The task difficulty is also assessed by Fritz et al. [25] and

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

166:14 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

Hess et al. [31]. Since age might affect the pupil diameter, we ran a quick test and found that pupil
dilation tends to go up in response to age (positive correlation), however, for this data set, this very
weak correlation (r𝑠 | < 0.1) shows that age has not much effect on pupil dilation.

RQ3 Finding: This study aims to characterize changes in ocular responses, such as pupil
dilations. Within all tested pupil diameter values, the analysis identifies significant differences
between experts and novices in the pupillary response; these range between medium and large
effect sizes. This result would suggest that since the pupillary response is a promising measure of
mental effort, it can be used successfully (along with other eye-tracking metrics) to find developer
differences in terms of expertise levels.

4.4 Study Implications
These results can be applied to introduce an automatic approach i.e., build a prediction model for
expertise with the incorporation of eye movement parameters. We also believe that this result
can open the door for new strategies for testing and ranking programmers’ skills. It is debatable
how to accurately determine the expertise level of developers. Moreover, studies have shown that
expertise is more about cognitive skills and making the right decision that reflects on the expert’s
performance [54]. Thus, the incorporation of eye-tracking technology can add a more reliable
way to assess expertise depending on how the developer traverses through the task. In such a
situation, identifying expertise can be a valuable aid to provide appropriate help for students who
demonstrate less understanding indicated by, for example, an increase in pupil size, more fixations
on some area of the code and longer gaze time, or reading the task line by line. These implications
are directly applicable to education and practice.

5 THREATS TO VALIDITY
Construct Validity: We note that there is some limitation related to deciding the pupil diameter
baseline value for participants. Since the study is conducted by extracting the metrics from a
previously published dataset, it is likely that there are other factors that could have possibly affected
the pupil diameter, such as maintaining the light brightness in the experiment setting. Relatedly, to
reduce the effect on calculation accuracy and to overcome this limitation, we sample and average
participants’ pupil diameter in the first 15 samples of the starting trial to estimate the pupil baseline
value rather than using a specific value. We have noticed that the dilation starts after this baseline
interval 60𝑚𝑠 , as shown in Figure 1. The risk of having a bias in pupil dilation may arise due to
the issue of having different settings. Thus, we calculate the baseline after they start to read the
code and then study changes in the pupil size thorough the task. This step would assure that the
cognitive load is the only changing variable between the baseline and finishing the task. Fixation
counts are inherently dependent on the time on task especially if the time is different for each
participant as in our study. We mitigate this risk by also using fixation durations (based indirectly
on time on task overall), which we show differs between experts and novices as seen in Table 1.
An alternate way to account for different task durations would be to use the fixations per second
metric for counts.

Internal Validity: As developers read the code for comprehension purposes and as our goal is to
assess expertise in a realistic environment, we removed developers with no years of programming
experience from the analysis. Including these may have strongly affected the time and the number
of gaze visits due to the completely lack of programming experience. In addition, it can be argued
that reading the code for comprehension purposes may have affected the way that the participants
read the programs. As such, they dedicated more fixations, gaze time, and mental effort to fully
understand the code. However, we could eliminate these factor effects because the subjects did not
know before starting the experiment what type of comprehension question they would be given.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

Studying Developer Eye Movements ... for Expertise Assessment 166:15

External Validity: We believe that these results are generalizable to similar programming tasks
and small code snippets.

Conclusion Validity: All appropriate statistical assumptionswere tested before standard inferential
statistics were run on the data.

6 CONCLUSIONS AND FUTUREWORK
The paper aims to develop a basic scientific understanding of how we can use eye movement
metrics, collected during comprehension tasks, to find a distinctive pattern that assesses developers’
expertise levels (expert/novice). Our findings, compared to the results of earlier studies that use
eye-tracking measures to characterize expertise, add strong evidence that cognitive load analysis
can be an effective measurement of expertise. Novice programmers exhibit more fixations and
longer durations compared to experts. In applying the analysis of pupil responses between experts
and novices, our results show the degree of dilation from the baseline in both groups. Based on these
observations, we conclude that eye-movement data contains valuable insights about programmers’
skills and levels of expertise.
Our overarching objective in conducting this study is to ultimately develop a model for the

automatic classification of coding expertise based on eye-tracking measures. Such a model, if
accurate, has very practical applications in both educational and workplace settings. The model can
potentially be used for the assessment of student learning outcomes in programming courses or as
a method for unbiased placement of students in computer science programming course sequences.
The latter is a difficult problem to do accurately in practice. In the workplace, the model has the
potential to assess an individual’s skills and recommend appropriate training to improve expertise.

7 ACKNOWLEDGEMENT
This work has been funded by the US National Science Foundation under Grant Numbers CNS
17-30181, CNS 18-55753, and CCF 18-55756. Any opinions, findings, and conclusions expressed
herein are the authors and do not necessarily reflect those of the sponsors.

REFERENCES
[1] Nahla J. Abid, Jonathan I. Maletic, and Bonita Sharif. 2019. Using Developer Eye Movements to Externalize the Mental

Model Used in Code Summarization Tasks. In Proceedings of the 11th ACM Symposium on Eye Tracking Research &
Applications (ETRA ’19). ACM, New York, NY, USA, 13:1–13:9. https://doi.org/10.1145/3314111.3319834 event-place:
Denver, Colorado.

[2] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic. 2019. Developer Reading Behavior While Summarizing
Java Methods: Size and Context Matters. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
384–395. https://doi.org/10.1109/ICSE.2019.00052 ISSN: 1558-1225.

[3] Salwa Aljehane, Bonita Sharif, and Jonathan Maletic. 2021. Determining Differences in Reading Behavior Between
Experts and Novices by Investigating Eye Movement on Source Code Constructs During a Bug Fixing Task. In ACM
Symposium on Eye Tracking Research and Applications. Number 30. Association for Computing Machinery, New York,
NY, USA, 1–6. https://doi.org/10.1145/3448018.3457424

[4] Salwa Aljehani and Bonita Sharif. 2023. Studying Developer Eye Movements to Measure Cognitive Workload and
Visual Effort for Expertise Assessment - Dataset. https://doi.org/10.17605/OSF.IO/RSQDX

[5] Basma S. Alqadi and Jonathan I. Maletic. 2017. An Empirical Study of Debugging Patterns Among Novices Programmers.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM, Seattle Washington
USA, 15–20. https://doi.org/10.1145/3017680.3017761

[6] E. Arisholm, H. Gallis, T. Dyba, and D. I. K. Sjoberg. 2007. Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise. IEEE Transactions on Software Engineering 33, 2 (Feb. 2007), 65–86. https:
//doi.org/10.1109/TSE.2007.17 Conference Name: IEEE Transactions on Software Engineering.

[7] Brian P. Bailey and Shamsi T. Iqbal. 2008. Understanding changes in mental workload during execution of goal-directed
tasks and its application for interruption management. ACM Transactions on Computer-Human Interaction 14, 4 (Jan.
2008), 1–28. https://doi.org/10.1145/1314683.1314689

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://doi.org/10.1145/3314111.3319834
https://doi.org/10.1109/ICSE.2019.00052
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.17605/OSF.IO/RSQDX
https://doi.org/10.1145/3017680.3017761
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1145/1314683.1314689

166:16 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

[8] Jackson Beatty. 1982. Task-evoked pupillary responses, processing load, and the structure of processing resources.
Psychological Bulletin 91, 2 (1982), 276–292. https://doi.org/10.1037/0033-2909.91.2.276 Place: US Publisher: American
Psychological Association.

[9] Jackson Beatty and Brennis Lucero-Wagoner. 2000. The pupillary system. In Handbook of psychophysiology, 2nd ed.
Cambridge University Press, New York, NY, US, 142–162.

[10] Roman Bednarik. 2012. Expertise-dependent visual attention strategies develop over time during debugging with
multiple code representations. International Journal of Human-Computer Studies 70, 2 (Feb. 2012), 143–155. https:
//doi.org/10.1016/j.ijhcs.2011.09.003

[11] Roman Bednarik, Teresa Busjahn, Agostino Gibaldi, Alireza Ahadi, Maria Bielikova, Martha Crosby, Kai Essig, Fabian
Fagerholm, Ahmad Jbara, Raymond Lister, Pavel Orlov, James Paterson, Bonita Sharif, Teemu Sirkiä, Jan Stelovsky,
Jozef Tvarozek, Hana Vrzakova, and Ian van der Linde. 2020. EMIP: The eye movements in programming dataset.
Science of Computer Programming 198 (Oct. 2020), 102520. https://doi.org/10.1016/j.scico.2020.102520

[12] Roman Bednarik and Markku Tukiainen. 2006. An eye-tracking methodology for characterizing program comprehen-
sion processes. In Proceedings of the 2006 symposium on Eye tracking research & applications (ETRA ’06). Association for
Computing Machinery, New York, NY, USA, 125–132. https://doi.org/10.1145/1117309.1117356

[13] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and S. Tamm. 2015. Eye Movements
in Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd International Conference on Program Comprehension.
255–265. https://doi.org/10.1109/ICPC.2015.36

[14] Teresa Busjahn, Roman Bednarik, and Carsten Schulte. 2014. What influences dwell time during source code reading?
analysis of element type and frequency as factors. In Proceedings of the Symposium on Eye Tracking Research and
Applications (ETRA ’14). Association for Computing Machinery, New York, NY, USA, 335–338. https://doi.org/10.1145/
2578153.2578211

[15] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of code reading to gain more insight in program
comprehension. In Proceedings of the 11th Koli Calling International Conference on Computing Education Research - Koli
Calling ’11. ACM Press, Koli, Finland, 1. https://doi.org/10.1145/2094131.2094133

[16] Nergiz Ercil Cagiltay, Gul Tokdemir, Ozkan Kilic, and Damla Topalli. 2013. Performing and analyzing non-formal
inspections of entity relationship diagram (ERD). Journal of Systems and Software 86, 8 (Aug. 2013), 2184–2195.
https://doi.org/10.1016/j.jss.2013.03.106

[17] Gerardo Cepeda Porras and Yann-Gaël Guéhéneuc. 2010. An empirical study on the efficiency of different design
pattern representations in UML class diagrams. Empirical Software Engineering 15, 5 (Oct. 2010), 493–522. https:
//doi.org/10.1007/s10664-009-9125-9

[18] M. E. Crosby and J. Stelovsky. 1990. How do we read algorithms? A case study. Computer 23, 1 (Jan. 1990), 25–35.
https://doi.org/10.1109/2.48797

[19] Fabian Deitelhoff, Andreas Harrer, and Andrea Kienle. 2019. The Influence of Different AOI Models in Source Code
Comprehension Analysis. In 2019 IEEE/ACM 6th International Workshop on Eye Movements in Programming (EMIP).
10–17. https://doi.org/10.1109/EMIP.2019.00010

[20] Andrew T. Duchowski. 2007. Eye tracking methodology: Theory and practice. Springer-Verlag New York Inc.
[21] Maria K. Eckstein, Belén Guerra-Carrillo, Alison T. Miller Singley, and Silvia A. Bunge. 2017. Beyond eye gaze: What

else can eyetracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience 25
(June 2017), 69–91. https://doi.org/10.1016/j.dcn.2016.11.001

[22] Madeline Endres, Zachary Karas, Xiaosu Hu, Ioulia Kovelman, and Westley Weimer. 2021. Relating Reading, Visualiza-
tion, and Coding for New Programmers: A Neuroimaging Study. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 600–612. https://doi.org/10.1109/ICSE43902.2021.00062

[23] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. 2012. Measuring programming experience. In 2012 20th
IEEE International Conference on Program Comprehension (ICPC). 73–82. https://doi.org/10.1109/ICPC.2012.6240511
ISSN: 1092-8138.

[24] J. Feigenspan, M. Schulze, M. Papendieck, C. Kastner, R. Dachselt, V. Koppen, and M. Frisch. 2011. Using background
colors to support program comprehension in software product lines. In 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE 2011). IET, Durham, UK, 66–75. https://doi.org/10.1049/ic.2011.0008

[25] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, and Manuela Züger. 2014. Using Psycho-
physiological Measures to Assess Task Difficulty in Software Development. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 402–413. https://doi.org/10.1145/2568225.
2568266 event-place: Hyderabad, India.

[26] Joseph H Goldberg and Xerxes P Kotval. 1999. Computer interface evaluation using eye movements: methods and
constructs. International Journal of Industrial Ergonomics 24, 6 (Oct. 1999), 631–645. https://doi.org/10.1016/S0169-
8141(98)00068-7

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://doi.org/10.1037/0033-2909.91.2.276
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1016/j.scico.2020.102520
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/2578153.2578211
https://doi.org/10.1145/2578153.2578211
https://doi.org/10.1145/2094131.2094133
https://doi.org/10.1016/j.jss.2013.03.106
https://doi.org/10.1007/s10664-009-9125-9
https://doi.org/10.1007/s10664-009-9125-9
https://doi.org/10.1109/2.48797
https://doi.org/10.1109/EMIP.2019.00010
https://doi.org/10.1016/j.dcn.2016.11.001
https://doi.org/10.1109/ICSE43902.2021.00062
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1049/ic.2011.0008
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1016/S0169-8141(98)00068-7
https://doi.org/10.1016/S0169-8141(98)00068-7

Studying Developer Eye Movements ... for Expertise Assessment 166:17

[27] Stephen D. Goldinger and Megan H. Papesh. 2012. Pupil Dilation Reflects the Creation and Retrieval of Memories.
Current Directions in Psychological Science 21, 2 (April 2012), 90–95. https://doi.org/10.1177/0963721412436811 Publisher:
SAGE Publications Inc.

[28] Eric Granholm and Stuart R. Steinhauer (Eds.). 2004. Pupillometric measures of cognitive and emotional processes.
International Journal of Psychophysiology 52, 1 (2004), 1–6. https://doi.org/10.1016/j.ijpsycho.2003.12.001 Place:
Netherlands Publisher: Elsevier Science.

[29] Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic, and Bonita Sharif. 2018. iTrace: eye tracking
infrastructure for development environments. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications. ACM, Warsaw Poland, 1–3. https://doi.org/10.1145/3204493.3208343

[30] Gad Hakerem and Samuel Sutton. 1966. Pupillary Response at Visual Threshold. Nature 212, 5061 (Oct. 1966), 485–486.
https://doi.org/10.1038/212485a0

[31] Eckhard H. Hess and James M. Polt. 1964. Pupil Size in Relation to Mental Activity during Simple Problem-Solving.
Science 143, 3611 (March 1964), 1190–1192. https://doi.org/10.1126/science.143.3611.1190 Publisher: American
Association for the Advancement of Science Section: Reports.

[32] Bert Hoeks and Willem J. M. Levelt. 1993. Pupillary dilation as a measure of attention: a quantitative system analysis.
Behavior Research Methods, Instruments, & Computers 25, 1 (March 1993), 16–26. https://doi.org/10.3758/BF03204445

[33] Maarten A. Hogervorst, Anne-Marie Brouwer, and Jan B. F. van Erp. 2014. Combining and comparing EEG, peripheral
physiology and eye-related measures for the assessment of mental workload. Frontiers in Neuroscience 8 (2014).
https://doi.org/10.3389/fnins.2014.00322 Publisher: Frontiers.

[34] Morris K. Holland and Gerald Tarlow. 1972. Blinking and Mental Load. Psychological Reports 31, 1 (Aug. 1972), 119–127.
https://doi.org/10.2466/pr0.1972.31.1.119 Publisher: SAGE Publications Inc.

[35] Morris K. Holland and Gerald Tarlow. 1975. Blinking and Thinking. Perceptual and Motor Skills 41, 2 (Oct. 1975),
403–406. https://doi.org/10.2466/pms.1975.41.2.403 Publisher: SAGE Publications Inc.

[36] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2013. Nonparametric Statistical Methods. John Wiley & Sons.
Google-Books-ID: Y5s3AgAAQBAJ.

[37] Shamsi T. Iqbal, Xianjun Sam Zheng, and Brian P. Bailey. 2004. Task-evoked pupillary response to mental workload in
human-computer interaction. In Extended abstracts of the 2004 conference on Human factors and computing systems -
CHI ’04. ACM Press, Vienna, Austria, 1477. https://doi.org/10.1145/985921.986094

[38] Robert J. K. Jacob and Keith S. Karn. 2003. Commentary on Section 4 - Eye Tracking in Human-Computer Interaction
and Usability Research: Ready to Deliver the Promises. In The Mind’s Eye, J. Hyönä, R. Radach, and H. Deubel (Eds.).
North-Holland, Amsterdam, 573–605. https://doi.org/10.1016/B978-044451020-4/50031-1

[39] Angel Jimenez-Molina, Cristian Retamal, and Hernan Lira. 2018. Using Psychophysiological Sensors to Assess Mental
Workload During Web Browsing. Sensors 18, 2 (Feb. 2018), 458. https://doi.org/10.3390/s18020458 Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute.

[40] Daniel Kahneman and Jackson Beatty. 1966. Pupil Diameter and Load on Memory. Science 154, 3756 (1966), 1583–1585.
https://www.jstor.org/stable/1720478 Publisher: American Association for the Advancement of Science.

[41] Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015.
Tracing Software Developers’ Eyes and Interactions for Change Tasks. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202–213. https://doi.org/10.1145/
2786805.2786864 event-place: Bergamo, Italy.

[42] Jeff Klingner. 2010. Fixation-aligned pupillary response averaging. In Proceedings of the 2010 Symposium on Eye-Tracking
Research & Applications - ETRA ’10. ACM Press, Austin, Texas, 275. https://doi.org/10.1145/1743666.1743732

[43] Jeff Klingner, Barbara Tversky, and Pat Hanrahan. 2011. Effects of visual and verbal presentation on cognitive load
in vigilance, memory, and arithmetic tasks. Psychophysiology 48, 3 (2011), 323–332. https://doi.org/10.1111/j.1469-
8986.2010.01069.x _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.2010.01069.x.

[44] Dimosthenis Kontogiorgos and Konstantinos Manikas. 2015. Towards identifying programming expertise with the use
of physiological measures. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194351

[45] Eduard Kuric and Mária Bieliková. 2014. Estimation of student’s programming expertise. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM ’14). Association for
Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/2652524.2652561

[46] Naser Al Madi, Cole S. Peterson, Bonita Sharif, and Jonathan I. Maletic. 2021. From Novice to Expert: Analysis of
Token Level Effects in a Longitudinal Eye Tracking Study. IEEE Computer Society, 172–183. https://doi.org/10.1109/
ICPC52881.2021.00025

[47] S. P. Marshall. 2002. The Index of Cognitive Activity: measuring cognitive workload. In Proceedings of the IEEE 7th
Conference on Human Factors and Power Plants. 7–7. https://doi.org/10.1109/HFPP.2002.1042860

[48] Oskar Palinko, Andrew L. Kun, Alexander Shyrokov, and Peter Heeman. 2010. Estimating cognitive load using remote
eye tracking in a driving simulator. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications -

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://doi.org/10.1177/0963721412436811
https://doi.org/10.1016/j.ijpsycho.2003.12.001
https://doi.org/10.1145/3204493.3208343
https://doi.org/10.1038/212485a0
https://doi.org/10.1126/science.143.3611.1190
https://doi.org/10.3758/BF03204445
https://doi.org/10.3389/fnins.2014.00322
https://doi.org/10.2466/pr0.1972.31.1.119
https://doi.org/10.2466/pms.1975.41.2.403
https://doi.org/10.1145/985921.986094
https://doi.org/10.1016/B978-044451020-4/50031-1
https://doi.org/10.3390/s18020458
https://www.jstor.org/stable/1720478
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1145/1743666.1743732
https://doi.org/10.1111/j.1469-8986.2010.01069.x
https://doi.org/10.1111/j.1469-8986.2010.01069.x
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194351
https://doi.org/10.1145/2652524.2652561
https://doi.org/10.1109/ICPC52881.2021.00025
https://doi.org/10.1109/ICPC52881.2021.00025
https://doi.org/10.1109/HFPP.2002.1042860

166:18 Salwa D. Aljehane, Bonita Sharif, & Jonathan I. Maletic

ETRA ’10. ACM Press, Austin, Texas, 141. https://doi.org/10.1145/1743666.1743701
[49] K. Rayner. 1998. Eye movements in reading and information processing: 20 years of research. Psychological bulletin

124, 3 (1998), 372.
[50] Filippo Ricca, Massimiliano Di Penta, Marco Torchiano, Paolo Tonella, and Mariano Ceccato. 2007. The Role of

Experience and Ability in Comprehension Tasks Supported by UML Stereotypes. https://doi.org/10.1109/ICSE.2007.86
Pages: 384.

[51] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney D’Mello. 2014. Improving automated
source code summarization via an eye-tracking study of programmers. In Proceedings of the 36th International Conference
on Software Engineering - ICSE 2014. ACM Press, Hyderabad, India, 390–401. https://doi.org/10.1145/2568225.2568247

[52] Patrick Schober, Christa Boer, and Lothar A. Schwarte. 2018. Correlation Coefficients: Appropriate Use and Interpreta-
tion. Anesthesia & Analgesia 126, 5 (May 2018), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

[53] Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller, Michael Falcone, and Bonita Sharif. 2015.
iTrace: Enabling Eye Tracking on Software Artifacts Within the IDE to Support Software Engineering Tasks. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, USA, 954–957. https://doi.org/10.1145/2786805.2803188 event-place: Bergamo, Italy.

[54] James Shanteau. 1992. Competence in experts: The role of task characteristics. Organizational Behavior and Human
Decision Processes 53, 2 (Nov. 1992), 252–266. https://doi.org/10.1016/0749-5978(92)90064-E

[55] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y. Guéhéneuc. 2013. An empirical study on the efficiency of
graphical vs. textual representations in requirements comprehension. In 2013 21st International Conference on Program
Comprehension (ICPC). 33–42. https://doi.org/10.1109/ICPC.2013.6613831

[56] Z. Sharafi, T. Shaffer, B. Sharif, and Y. Guéhéneuc. 2015. Eye-Tracking Metrics in Software Engineering. In 2015
Asia-Pacific Software Engineering Conference (APSEC). 96–103. https://doi.org/10.1109/APSEC.2015.53

[57] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bednarik, and Martha Crosby. 2020. A
practical guide on conducting eye tracking studies in software engineering. Empirical Software Engineering 25, 5 (Sept.
2020), 3128–3174. https://doi.org/10.1007/s10664-020-09829-4

[58] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature review on the usage of
eye-tracking in software engineering. Information and Software Technology 67 (Nov. 2015), 79–107. https://doi.org/10.
1016/j.infsof.2015.06.008

[59] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go Again: Why Is It Difficult for
Developers to Learn Another Programming Language?. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 691–701. ISSN: 1558-1225.

[60] Sylvain Sirois and Julie Brisson. 2014. Pupillometry. WIREs Cognitive Science 5, 6 (2014), 679–692. https://doi.org/10.
1002/wcs.1323 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcs.1323.

[61] Zéphyrin Soh, Zohreh Sharafi, Bertrand Van den Plas, Gerardo Cepeda Porras, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. Professional status and expertise for UML class diagram comprehension: An empirical study. In 2012 20th
IEEE International Conference on Program Comprehension (ICPC). 163–172. https://doi.org/10.1109/ICPC.2012.6240484
ISSN: 1092-8138.

[62] E. Soloway and K. Ehrlich. 1984. Empirical Studies of Programming Knowledge. IEEE Transactions on Software
Engineering SE-10, 5 (Sept. 1984), 595–609. https://doi.org/10.1109/TSE.1984.5010283 Conference Name: IEEE
Transactions on Software Engineering.

[63] C. W. Telford and N. Thompson. 1933. Some factors influencing voluntary and reflex eyelid responses. Journal of
Experimental Psychology 16, 4 (1933), 524–539. https://doi.org/10.1037/h0071694 Place: US Publisher: Psychological
Review Company.

[64] Jason S. Tsukahara, Tyler L. Harrison, and Randall W. Engle. 2016. The relationship between baseline pupil size and
intelligence. Cognitive Psychology 91 (Dec. 2016), 109–123. https://doi.org/10.1016/j.cogpsych.2016.10.001

[65] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. 2006. Analyzing individual perfor-
mance of source code review using reviewers’ eye movement. In Proceedings of the 2006 symposium on Eye tracking
research & applications - ETRA ’06. ACM Press, San Diego, California, 133. https://doi.org/10.1145/1117309.1117357

[66] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine
Studies 23, 5 (Nov. 1985), 459–494. https://doi.org/10.1016/S0020-7373(85)80054-7

[67] Chak Shun Yu, Christoph Treude, and Maurício Aniche. 2019. Comprehending Test Code: An Empirical Study. In
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). 501–512. https://doi.org/10.1109/
ICSME.2019.00084 ISSN: 2576-3148.

Received November 2022; revised February 2023; accepted March 2023

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 166. Publication date: May 2023.

https://doi.org/10.1145/1743666.1743701
https://doi.org/10.1109/ICSE.2007.86
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1016/0749-5978(92)90064-E
https://doi.org/10.1109/ICPC.2013.6613831
https://doi.org/10.1109/APSEC.2015.53
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1002/wcs.1323
https://doi.org/10.1002/wcs.1323
https://doi.org/10.1109/ICPC.2012.6240484
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1037/h0071694
https://doi.org/10.1016/j.cogpsych.2016.10.001
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1016/S0020-7373(85)80054-7
https://doi.org/10.1109/ICSME.2019.00084
https://doi.org/10.1109/ICSME.2019.00084

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Pupil Dilation and Cognitive Load
	2.2 Comparing Experts and Novices in Program Comprehension

	3 Study Design
	3.1 Dataset
	3.2 Measures
	3.3 Expertise Grouping
	3.4 Data Cleaning and Transformation

	4 Results and Discussion
	4.1 RQ1: Correlation Between Expertise and Eye Tracking Metrics
	4.2 RQ2: Metrics Between Experts and Novices
	4.3 RQ3: Cognitive Load and Pupillary Response
	4.4 Study Implications

	5 Threats to Validity
	6 Conclusions and Future Work
	7 Acknowledgement
	References

