
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Automated Fixation Error Correction to Support Eye Tracking Studies on Source
Code

ANONYMOUS AUTHOR(S)

A significant challenge in eye-tracking studies is detecting and fixing errors in data collection that happen for various reasons (drift,

calibration issues, etc.). Many errors cannot be fully mitigated and require manual correction, which is intensively time-consuming,

or automated correction. The work presented in this paper focuses on error correction, primarily on eye-tracking data on source

code written in programming languages such as C++, Java, and C#. Many automated correction solutions are general-purpose,

computationally inefficient, and use little information about the stimulus. To bridge this gap, we introduce srcGaze, a heuristic

algorithm explicitly developed for correcting fixation gaze events in eye-tracking data from studies using source code as a stimulus. A

golden dataset is manually constructed and verified to establish the heuristics. Results show a ≈40% improvement compared to no

fixation correction. The approach has a multi-linear complexity and can correct over 44K fixations in approximately 6 seconds.

CCS Concepts: • Hardware; • Software and its engineering; • Human-centered computing→ Empirical studies in HCI;
Heuristic evaluations; • Applied computing;

Additional Key Words and Phrases: AOI Methods, Automated analysis methods, Tools for eye tracking analysis

ACM Reference Format:
Anonymous Author(s). 2025. Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code. In Proceedings of

May 26–29, 2025 (ETRA ’25). ACM, New York, NY, USA, 16 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Eye tracking is an integral part of software engineering research [Obaidellah et al. 2018; Sharafi et al. 2015]. There are

numerous efforts to understand the cognitive process of developers and their approach to program comprehension

and maintenance tasks. This work shows much promise, but inherent challenges are associated with eye-tracking

technology for software development research. Even when fixating on a single point, the human eye is never entirely

still. Data produced by an eye tracker is constantly in flux, with data points scattered in the vicinity of an area of focus,

which introduces a non-trivial amount of noise. To help mitigate this issue, gaze processing algorithms [Andersson et al.

2017; Liu et al. 2018; Olsen 2012; Olsson 2007; Salvucci and Goldberg 2000; Trapp et al. 2019; Zemblys et al. 2018] help

filter and group gaze into an approximate region or fixation. While many techniques exist from scholarly work [Liu

et al. 2018; Olsson 2007; Salvucci and Goldberg 2000; Zemblys et al. 2018] and proprietary commercial products [Olsen

2012], they are mainly geared toward activities that involve observing small static images, watching video, or reading

short natural language prose. While these approaches are used with positive effect in those domain, research shows

that developers do not read or view source code the same way as natural language prose [Binkley et al. 2013; Busjahn

et al. 2015, 2014, 2011; Ko et al. 2006]. That is, reading source code is different than reading natural language text, hence

gaze processing approaches need to be specifically developed for source code stimuli. Textual tokens in a source-code

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Anon.

document have different semantic meanings that impact the order in which a developer reads the content, allowing

them to skip large sections or review a specific section multiple times, in the context of data and control flow paths.

Collecting eye-tracking data has inherent imperfections. Issues arise from the participant, the experiment facilitator,

the environment, the study design, and even the eye-tracking device. Any of these issues can cause erroneous data to be

recorded. While some of these problem can be mitigated, error correction for eye-tracking data is necessary to ensure

proper results are obtained during collection and subsequent analysis. This time-consuming task is often done manually

during or after recording eye-tracking data [Busjahn 2021]. While some automated approaches exist for correcting

eye-tracking data, most focus on prose as the intended stimulus rather than source code.

These challenges and limited support for source-code-based stimulus studies motivate the need for an algorithm

designed explicitly for fixation correction when using source-code stimuli presented here as srcGaze. To study how

developers address various software engineering tasks it is important to have fine grained Areas of Interests (AOIs).

Thus, AOIs are normally at the token level for source code when studying developer eye movements. In the context of

this work, source code tokens are anything a lexer (i.e., compiler) separates as a token in the programming language.

This includes all keywords, identifier names, and symbols (e.g., "(", ")", ";", etc.). However, this fine grained level AOI

dramatically increases the overall number of AOIs making it difficult and algorithmically complex to manage and

process the data.

In the work presented here, we present a new fixation error correction method specifically for source code stimuli.

The approach, srcGaze, leverages the syntactic information of tokens (AOIs) in the source code to ascertain heuristics

on when and what tokens are most likely to be viewed. This results in a more accurate clustering of gaze data into

fixations. The approach proposed here considers 1) spatial information for AOIs, 2) fixation locations in two-dimensional

Euclidean space on the screen, and 3) the syntactic meaning of each token in the source code. To develop this approach

we need to identify the most syntactically relevant tokens in source code (RQ1) and use these elements with positional

information to perform a syntactic fixation correction for the source-code stimulus. Additionally, we compare the

results to determine if the approach is improved (RQ2). Lastly, given the shear number of AOIs, the scalability of the

approach (RQ3) is critical. A slow running algorithm will mean hours of processing versus seconds. Thus, this research

addresses the following questions that build on top of each other as explained above.

• RQ1: What are the syntactic types of the tokens fixated on most frequently?

• RQ2: Are heuristics effective for enhancing fixation event correction?

• RQ3: Is using a heuristic approach at scale feasible?

The paper is organized as follows. Section 2 discusses related work on addressing errors in fixations. The data set

used along with how we processed the data is presented in Section 3. This data is then used to construct a golden set

and develop heuristics in Section 4. The srcGaze algorithm is presented in Section 5 with results given in Section 6.

Threats to validity are given in Section 7 followed by conclusions and future work in Section 8.

2 Related Work

Eye-tracking devices are susceptible to error while recording eye movement data [Feit et al. 2017; Holmqvist et al.

2012; Hyrskykari 2006; Niehorster et al. 2018; Nyström et al. 2013; Palmer and Sharif 2016; Zhang and Hornof 2011].

These errors can come from participant movements, eye physiology, eyewear, makeup, and changes to the testing

environment, such as ambient lighting. When areas of interest (AOIs) in a study are large, spatial errors are less

problematic than those with smaller AOIs, such as when reading prose or source code [Busjahn 2021]. With small AOIs,

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 3

the margin for error narrows as spatial errors in gaze data can cause fixations to be attributed to incorrect textual

tokens, negatively impacting analysis and results. Issues with errors in eye-tracking data are compounded as the data

stream an eye-tracking device collects has a temporal element, as the degree of error can vary throughout a study due

to drift[Busjahn 2021; Palmer and Sharif 2016].

While researchers attempt to mitigate the impact of potential error sources in eye-tracking studies, the collected data

will always have a degree of error. One of the most common methods for addressing data errors in eye-tracking studies

is manual correction [Busjahn 2021] using visualizations or assistive tools [Al Madi et al. 2025] to reposition gaze data

for the stimulus. Manual validation is intensively time-consuming, and the time required for manual correction is not

possible for studies at scale. Another critical issue is that manual validation can introduce subjectivity or bias from the

data reviewers. While bias can be limited by having multiple reviewers correct each trial and find agreements between

them, the time required for validation increases multiplicative.

The preferred approach to gaze event correction is automatic correction using various algorithmic means. Automated

algorithms are faster than manual correction and produce consistent deterministic results. They can also be run as

many times as needed while experimenting with threshold parameters for event detection, which is impossible to

accomplish manually in a reasonable time frame. Automatic correction approaches in the research literature primarily

focus on standard prose reading tasks[Frank et al. 2012; Hornof and Halverson 2002; Mishra, Abhijit et al. 2012]. These

approaches operate under some assumptions about reading behavior in that domain and are not necessarily well suited

for a reading style that leverages heavy use of skimming, regressions, and non-linear reading patterns that follow code

execution order rather than reading line-by-line sequentially [Busjahn et al. 2015].

Compared to natural text reading, existing work for automated fixation correction on source code is limited. Lohmeier

conducted a program comprehension study to model comprehension using anaphors in Java [Lohmeier 2015]. The

approach to gaze event correction uses statistics and prior research about vision to develop an automated algorithm. This

algorithm places a bounding box around potential fixation locations at the token level. An error function with parameters

for horizontal and vertical offsets along with a linear factor applied to the vertical component. These parameters aim to

find values such that the resulting error value is minimized for the fixation. This process is computationally intensive

as these parameters must be checked in a brute force manner to test all possible combinations of values with the range

defined by Lohmeier. To mitigate the computations, the horizontal parameter is chosen by Lohmeier so that only two of

the three parameters will need to change for the brute force computation. Once correction offsets are found to minimize

the error value, the fixation is positioned to the nearest target, and fixed fixations that are not near any targets are

removed. The correction results are outlined with descriptive statistics and indicate that the error, as calculated by the

function, was lowered.

The approach closest to our work is that of Palmer and Sharif [Palmer and Sharif 2016] who present an iterative

method for automatically correcting fixations for source code-based stimuli. This approach focuses on line-based AOIs

to correct vertical displacement in 68 trials. The first part of this method involves an algorithm to determine clusters

of fixations using a time window parameter. When a cluster is detected, the fixations are flagged to be processed for

correction. In the second stage of the algorithm, fixation clusters are scored based on the ratio of fixations in the

cluster contained within an AOI out of the total number of fixations in the cluster. If a cluster has no points within

an AOI, the cluster is moved until at least one fixation is in an AOI. Once a cluster touches at least one AOI, the Hill

Climber algorithm is run on the cluster. The validation of this approach uses manually corrected fixations and reports

an average accuracy of 89.78% among all the trials, with 90% of the corrections matching manual corrections. This

approach primarily focuses on the vertical drift to correct fixation to the appropriate line. When token or “sub-line”

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Anon.

level AOIs are considered, the effectiveness becomes 59.47%. In the next section, we present our dataset and study

methodology.

3 Data Set and Methodology

The Distributed Collection of Eye Movement Data in Programming dataset (hereby referred to as the EMIP dataset)

released in 2019 [Bednarik et al. 2020] is the primary data source for this study. At the time of writing, this dataset is the

most extensive public collection of eye-tracking data on source code stimulus, with 216 participants from 11 different

institutions in 9 countries. Study participants are presented with two source code samples for program comprehension

tasks written in Java, Scala, or Python, depending on their experience with a language. From the EMIP dataset package,

we use the raw gaze data for each trial, stimulus images, and the textual version of the Java source code. This data was

processed using the fixation algorithm from the EMIP toolkit [Al Madi et al. 2021] to generate fixations.

3.1 Privacy and Ethics

The eye tracking data used in this paper was collected and published by prior researchers in accordance with their ethics

and institutional review board processes. The dataset was released publicly to be used by the eye tracking community.

All data is provided de-identified to preserve confidentiality.

3.2 Preprocessing

Before we can start to address the research questions, we need to preprocess the EMIP dataset. This procedure is

explained next. To use the stimulus effectively with the gaze data recorded from the eye tracker, areas of interest (AOIs)

must be identified as potential locations for fixation events. The EMIP dataset package provides jpeg images of each

stimulus shown to a participant and files with line and token bounding box positions in the stimulus directory. Each

bounding box represents the x and y coordinates for two points on a stimulus image, and we can identify a rectangular

region using the two points. Using the provided AOI bounding boxes, line bounding boxes do not contain leading

white space, which is a part of each indented line, and token boundaries share a portion of any separating white space

between characters. Token identification in this manner results in different types of tokens being grouped. Current

research has not demonstrated an optimal AOI granularity level for source code tokens. To that end, the finest level of

syntactic granularity supporting the broadest possible analysis is used in this work. Tokens are separated by white space

and complex names when the dot operator (‘.‘) accesses class attributes or methods. This granularity level makes it

possible to reconstruct any higher-level syntactic constructs in the code. In previous work [Lohmeier 2015], a common

approach to determining the AOI a fixation would hit is based on the center of the token. However, this introduces a

bias when the tokens are all different sizes. Consider the example in Figure 1. There are two words: dissertation and

PhD representing token AOIs. For each AOI, a red line splits the middle of each token, showing the center point along

the vertical axis. Subsequently, a blue line represents the midpoint between the center of each token. Using these AOIs,

any fixation that falls to the left of the blue line would be associated with the word dissertation, while any fixation right

of the blue line would be associated with PhD. These regions show that while some fixations can fall on the "ion" in the

word dissertation, they will still be associated with the smaller AOI of PhD.

While this may seem innocuous, the eye tracker used for the EMIP data collection reports an accuracy of <0.4°

and a precision of ≈ 0.03° of visual angle. The human eye only has between 2° and 5° viewing angles with clear

visual acuity [Duchowski 2017] within the eye’s fovea region. Using the visual angle formula [Duchowski 2017], with

participants seated 50 cm from the eye tracker [Bednarik et al. 2020] and the textual characters having an area of

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 5

Fig. 1. Demonstration of how using distances to center points for AOIs of varying sizes can result in mismatching. The two red lines
in the image show the center of each word, and the blue line represents the exact midpoint between the centers of each word. All
fixations that fall to the right of the blue line will still be associated with shorter fixation AOI PhD while still including characters
from the longer word dissertation, introducing a bias to the smaller AOI.

≈3.8 cm (or 11 x 13 pixels), each character is ≈4°of visual angle. This means that the tracker can misreport actual gaze

locations by a distance of around one character. Figure 1 demonstrates this bias of a few characters is significant enough

to make a difference in fixation assignment to tokens. For this study, AOIs are assigned to every character in each

stimulus file to limit the impact on token assignment and provide a more equitable comparison of closeness between

tokens. Generation of the character-based bounding boxes is bootstrapped with Google’s Tesseract OCR engine [Smith

2007] to locate the characters in the image, and then the bounding boxes are manually expanded.

Source code syntactic category information is obtained using srcML [Collard et al. 2011, 2013] on the Java source

code stimulus (presently, the only language of the three that srcML supports). srcML is a robust and highly scalable

infrastructure that transforms source code into an XML representation. The XML tags wrap around all of the tokens

within the original source code and provide syntactic information. For example, an if statement would be surrounded by

an <if> tag, the condition of the if statement would be further nested within a <condition> tag, and so on. Additionally,

srcML preserves the entirety of the original code, including all comments and whitespace, and also provides starting

and ending line and column information per syntactic tag, allowing us to identify not only what token or character

was being viewed, but also what that token means within the context of source code. Along with the syntactic

information generated by srcML, the –position argument to srcML provides all tokens’ starting and ending line and

column information. Combining the syntactic information, line and column position data, source code text, and the

character AOI bounding boxes, a mapping document is created to merge this content together. See Figure 2 for an

example of the srcML representation.

Fig. 2. An example of Java code (top) and its srcML representation (below). The code consists of a single if statement which contains
an assignment. Each tag wraps the tokens from the original code. Position information (line X column), within the file, can also be
added to each tag via the tool.

3.3 Token Classification

To answer RQ1, we first need to determine token categories. Previous work by Busjahn et al. [Busjahn et al. 2014]

categorizes Java source code tokens as presented in the first column of Table 1. The identifier category is the broadest

and is defined as "sequences of letters and digits that denote [names of] variables, methods, etc." [Busjahn et al. 2014].

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Anon.

Implicitly expressed by this statement, type names are also included in this category as long as they are not reserved

keywords in Java (e.g., int, double, etc.). Keywords are words reserved for the Java language and cannot be used in

identifiers. In the Rectangle and Vehicle stimulus, the keywords used are this, class, public, private, static, void, int, float,

double, return, new, if, and else. Literals are any value represented as a string in quotes like "Audi" from the Vehicle

code example or constant numeric values like 10 used in Rectangle. There are other literal values, but strings and

numeric values are the only types used in the code examples. Separators are explicitly defined in [Busjahn et al. 2014]

as parenthesis (()), curly braces ({ }), brackets ([]), period (.) comma (,), and semi-colon (;). Operators are described

as "one or two characters," with an example using the addition (+) and increment operators (++). Given the operator

definition and the explicit list of separators, the characters classified as operators present in the Rectangle and Vehicle

code are =, >, +, -, and *. The last token category was added for this work and is simply whitespace, which serves as

indentation and horizontal separation between tokens in lines of code. Only the space characters are considered in the

whitespace category despite newline characters appearing in the document. Since source code lines contain either a

curly brace or semicolon as a visible ending character, “empty” lines only have a new line and no content to read by a

participant. For those reasons, newline characters are ignored as AOI target candidates.

The Busjahn categories are a solid start for this work and provide a baseline for categorizing the tokens. Using these

categories from their 2011 work, they found that the identifier category dominated total dwell time (time spent fixating

on a given token) at 53% [Busjahn et al. 2011]. Follow-up work in 2014 found that when normalized for token length,

dwell time was nearly an even split with all token categories between ≈20% and ≈26% except for separators at ≈8%.
This finding leads to an issue with this categorization of tokens when using token types from syntactic contexts for

fixation correction. Given the similarity of dwell time over the smaller categories, it is likely worth expanding the token

categories to cover more granularity.

Table 1. Source code token categories from Busjahn’s work alongside the token categories from srcML used by srcGaze. Similar token
categories have been bolded.

Busjahn Token Categories srcML Token Categories
identifier, keyword, literal, operator,
specifier, separator, expression, whitespace

class-name, class-specifier, constructor-name,

constructor-specifier,

complex-name-expression, function-call,

function-name, function-type-specifier,

keyword, literal, name-declaration,

name-expression, operator, separator,
type-name, type-specifier, whitespace

In a recent study [Aljehane et al. 2021], srcML was used for token identification, revealing nine categories for tokens

viewed by novice and expert developers. These categories include identifiers, method signatures, keywords, variable

names, variable types, names in if statements, operators in if statements, names in else statements, and arguments.

Notably, these categories tend to lose coverage when the hierarchical context is considered, such as observation of

tokens specifically within control structures like if statements and else clauses. This, combined with the findings of

Busjahn et al., underscores the need for more granularity in the token categories and expanded categories with less

hierarchical context. Such an expansion could potentially enhance the accuracy of fixation correction, a vital goal of

srcGaze. The second column of Table 1 presents the srcML token categories for the tokens based on the Rectangle and

Vehicle source code stimulus.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 7

Additionally, work from 2015 finds that method signatures are read frequently, especially by novice develop-

ers [Rodeghero et al. 2015]. The inclusion of specific token categories in srcGaze for elements of functions and

constructors, which are more precise than the Busjahn categories, is a crucial step in improving fixation corrections.

Even with the additional whitespace between the lines in the code stimulus, the textual tokens remain in close proximity.

The incorporation of categories with enhanced granularity means the difference between correcting a gaze to a function

name or a variable name within that function. This distinction is of utmost importance for the resolution of fixation

corrections in eye-tracking studies.

The srcGaze categories are also more closely related to the programming language’s syntax. For example, the period

character is the "dot operator" or member-access operator in the Java programming language and not a separator as in

prose text or the Busjahn categories. This is used to access members of a class, such as the x and y member variables for

Rectangle or producer and topSpeed from Vehicle and also call functions from the method such as width from Rectangle

or accelerate from Vehicle. In addition to the dot operator, when parenthesis controls the order of operations, they are

considered operators acting on the result of an expression.

4 Golden Set

We construct and use a golden set for the following reasons. Fixations can vary significantly based on the algorithm,

the parameters used, and the correction methods applied. This limits the ability to perform a one-to-one comparison of

efficacy while working with the data. The purpose of the golden set is to use manual human fixation corrections as

a benchmark for success. These corrections are used as a proxy for ground truth to compare against the automated

approach provided by 𝑠𝑟𝑐𝐺𝑎𝑧𝑒 . The rationale is to develop an approach that will correct data automatically and similar

to a human reviewer. A golden set of fixation corrections is a set of changes agreed upon by a set of reviewers.

4.1 Generating the Golden Set

Multiple manual validators for each task/trial are needed to construct a golden set of fixations to reduce personal bias in

the fixation correction process. We use a sample of 12,605 total fixations, over 47 tasks, from 28 EMIP trials as a subset

to validate manually. Nine data validators were recruited from five different academic institutions to participate. Three

of the data reviewers have performed eye-tracking research before this work. All validators have a firm understanding

of source code, with two being undergraduates, four being graduate students, and three being instructors or professors

in computer science fields of study. All validation participants are voluntary, and no compensation or rewards are

provided to bias their work.

Each validator uses a custom-built fixation correction tool (see Figures 3 and 4) that presents the stimulus overlaid

with the fixation to be corrected, two prior fixations, two subsequent fixations, numbering to determine fixation order,

and saccadic movement lines to connect the fixations. The tool supports showing the nearest character AOI and the

original fixation location to help decide where to position a fixation. Participants only need to click on the stimulus

image where they believe the fixation should go, and the offset is recorded. Documentation with one example of fixation

correction and instructions for using the tool are provided, but no additional hints or guidance to avoid potential bias.

Figure 3 is a simple screenshot of the entire UI showing the fixation correction tool that annotators used. Figure 4

shows the stimulus with labels for what the visual elements are.

Two different validators manually correct each dataset, and fixation corrections from each pair of reviewers are

assessed to ensure agreement to construct the golden set. Agreement in this context does not mean that participants

must select the same AOI. Since the correction is done manually, and the AOIs are generated for each character in the

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Anon.

Fig. 3. Eye movement data represented within the visualization tool used for manual fixation correction. Light red dots are the raw
gaze positions used to calculate a fixation. The red, green, purple, yellow, and blue dots are all fixations, with the lines between the
dots showing saccadic motions representing the scan paths for the previous (red dots) and subsequent (blue dots) two fixations to the
current fixation (the single green dot). The order of prior and subsequent fixations is shown using a +/- 1 and 2. The green dot is the
current fixation that can be repositioned by clicking on the stimulus image. The green dot defaults to the initial location of the fixation
calculated by the SMI tracker’s dispersion algorithm. If the current fixation needs to be moved, the purple dot always represents the
original location of the current fixation. The yellow dot can assist reviewers in showing the character token nearest to the original
location of the current fixation. This feature is useful when, to the human eye, there may be two equally “close” token characters.

stimulus, it is reasonable to assume that misclicks within a token are possible. Additionally, the specific letter of a token

is only partially representative of the content. Instead, participants must choose a character within the same token to

agree. This is the only safe option with only two reviewers for each trial, as evaluating automated fixation corrections

on data that does not have a consensus between human reviewers will be inconclusive. The results from the manual

validation are processed automatically using a Python script for agreement, and subsequent golden set files are created

for fixation data from each task. This data is used to help establish the syntactic-based correction heuristics for srcGaze,

which is described next.

4.2 Golden Set Token Frequency - RQ1 Results

Utilizing the token categories described in Section 3.3 on the golden set of manually corrected fixations described above

in Section 4.1, we can answer RQ1: What are the syntactic types of the tokens fixated on most frequently? The
srcML-based categories occurring in the golden set are presented in Table 2. The complex-name-expression category

includes all use of the this keyword in expressions using the dot operator (.) to access a class member. Considering the

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 9

Fig. 4. A close-up of the fixation data overlaid on the image stimulus in the visualization tool to provide movement context during
manual fixation correction. Light red dots are the raw gaze positions used to calculate a fixation. The red, green, and blue dots are
all fixations, while the lines between the dots are saccadic motions representing the scan paths. The green dot is the fixation to
be corrected and defaults to the location calculated by the SMI tracker’s dispersion algorithm. The red dots and blue dots provide
context representing the previous and subsequent two fixations with respect to the current fixation (the green dot). The order of prior
and subsequent fixations is shown using a +/- 1 and 2. Users can click a location on the image stimulus to reposition the fixation, and
the green scan path lines are redrawn to show the impact of the change.

Vehicle and Rectangle stimulus, this would include many expressions in the code. Variables not included in this category

are names of the class members used in the complex-name-expression, variables in parameter lists, and declarations.

Variables in parameter lists and declarations are classified by the name-declaration category, indicating the intent to

create and use a new variable in the program. A point of interest is that the second most frequently fixated token

category are tokens in the name-declaration category despite representing only ≈2% of all the tokens in the stimulus

and ≈5% of the total characters. The type-name category indicates types defined by a programmer or by the Java

programming language (e.g., primitive types like int, float, double, etc.) used for all program variables.

The following two categories, function-call and function-name, represent expressions that call a function (e.g., width or

accelerate from Rectangle and Vehicle) and the name of the function in a method signature, respectively. These categories

represent a divergent point in the srcGaze categories. The function-call category has nearly 10% of the fixations, while

function-name drops to half that at about 5%. The assumption for this sudden drop is that for program comprehension

activities, function-call represents that last category in the stimulus used repeatedly throughout the code. In the case of

a function’s name (remembering that methods and functions here are synonymous), prior research [Rodeghero et al.

2015] identifies that developers pay attention to the signature of a function. This finding aligns with that as once a

developer identifies the name of a function and relates that to an associated purpose, the calls to the function being the

context where it is used take precedence. Leveraging the benefits of our multi-granular token syntax information from

srcML, we can search for all of our tokens that are enclosed in function-signature srcML element and confirm this with

1,138 fixations (≈10%) focused on that aspect of the code. While we view this finding in line with current research, it is

worth noting that the code stimuli are short and only require the knowledge of at most two well-named functions. In

contrast, a more extensive application may need more attention to this information due to the number of functions

used in the code and the complexity of their interactions.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Anon.

The trend of lower fixation counts and duration falls moving toward the end of the data in Table 2, but does illustrate

a few general trends. Starting with the function-name category, only four categories, function-name, name-expression,

constructor-name, and class-name are elements of the code that may represent content named by a developer. The

remaining nine categories are all content defined by the Java programming language. The lower fixation counts can be

the result of either this information being irrelevant to the task (likely with specifier categories) or familiarity with the

tokens due to their prevalence within the Java language, like with the keyword and operator categories. The syntactic

information collected from the golden set of fixations will serve as the heuristic component for the srcGaze approach.

Table 2. srcGaze token category occurrences in the manually corrected fixation golden set. This table shows similar results to the
Busjahn categories for whitespace and "separator" like tokens have the lowest representation in the golden set. Looking at the
token representation percentages, the table shows that the distribution is more balanced than with the Busjahn categories to have
the intended effect of a finer granularity for the heuristic in srcGaze. The optimized weights are groupings that consider whether
developers name the tokens, the frequency at which tokens in the token categories appear, the relative impact on the semantic
behavior of the program, and token familiarity. These 30%, 15%, and 0% weights are based on the highest token occurrences in
the groupings (complex-name-expression at ≈30% and name-declaration at ≈15%). The 0% weights are for tokens that are the most
infrequent, familiar, or have the least impact on program semantics.

srcGaze
Token Category

Fixation
Count Token % Fixation

Duration Duration % Optimized
Weights

complex-name-expression 3,804 30.18% 424,544 30.20% 30.00%

name-declaration 1,761 13.97% 198,492 14.12% 15.00%

type-name 1,730 13.72% 193,336 13.75% 15.00%

function-call 1,279 10.15% 137,140 9.76% 30.00%

function-name 660 5.24% 73,744 5.25% 30.00%

literal 647 5.13% 71,884 5.11% 30.00%

name-expression 454 3.60% 49,456 3.52% 30.00%

keyword 447 3.55% 51,696 3.68% 15.00%

operator 444 3.52% 49,564 3.53% 15.00%

function-type-specifier 369 2.93% 40,876 2.91% 0.00%

constructor-name 309 2.45% 34,476 2.45% 15.00%

class-name 216 1.71% 25,368 1.80% 15.00%

separator 142 1.13% 15,344 1.09% 0.00%

constructor-specifier 140 1.11% 15,644 1.11% 0.00%

type-specifier 104 0.83% 12,580 0.89% 0.00%

class-specifier 95 0.75% 11,144 0.79% 0.00%

whitespace 4 0.03% 424 0.03% 0.00%

5 srcGaze: Fixation Correction Algorithm

Recall that automated fixation correction approaches commonly utilize brute force [Lohmeier 2015; Nüssli 2011; Palmer

and Sharif 2016] to repeatedly shift fixation positions either solely by x and y offsets or additional parameters for axis

offsets [Lohmeier 2015]. These approaches aim to ultimately move the data such that they approach or enter a target

AOI. While srcGaze also must locate target AOIs, compared to other methods, it does not use trial and error over x/y

coordinates of an arbitrary range. Instead, srcGaze utilizes preconstructed mapping data to narrow the search space to

the distance from the fixation’s original position to the center of each AOI. The distance between the two points is a

Euclidean distance calculation where distance (𝑑) is equal to
√︁
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. The initial implementation of

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 11

srcGaze performs this calculation from each fixation to the center of all character AOIs within the source code stimulus.

The shortest distance is determined to be a candidate for the corrected AOI position. However, not all distances are

treated equally.

As Table 2 shows, certain token types are more likely than others to interest programmers reading the source code

for comprehension. To that end, each distance calculation is adjusted based on a token category weight. Weights are

represented as a percentage of the overall distance. This percentage is removed from the original distance calculation.

A simple example is to assume that a token category is weighted at 0.50 or 50%. Suppose the distance from the fixation

to the center of an AOI with that token category is 100 pixels. In that case, the distance becomes 100 − (100 ∗ .50) or
50 pixels instead, prioritizing this token over other tokens that may be closer but with a smaller weight. Algorithm

1 shows the pseudocode for srcGaze. Please refer to the supplementary package for the complete implementation of

the algorithm. srcGaze iterates over all fixations (line 8) and each character AOIs present in the stimulus (line 9). The

distance between each fixation and AOI is calculated using Euclidean distance (line 10). The weight of a given token

offsets the distance from fixation to an AOI (lines 11 and 12). All AOIs will be checked as potential candidates to find

the closest weighted match, the current "best" shortest distance, and the AOI mapping at that distance (lines 14-16). The

result of this function is the AOI mapping with the closest weighted distance to the fixation (nearest_aoi). Runtimes or

algorithmic performance of approaches to fixation correction utilizing an exhaustive search space, or brute force, are

problematic for scalability as the size of the data increases. srcGaze has a runtime of O(𝑛 ∗𝑚) where n is the number of

fixations and m is the number of AOIs, while brute force approaches run in O(𝑛2) or O(𝑛𝑚). When considering small

stimuli examples, the number of fixations and corrections needed will likely be smaller depending on the difficulty

of the example. We plan to apply this approach to correct data from large-scale studies on code in open-source or

industrial domains. Studies of this scale require extended periods of data collection, increasing the number of fixations

and spanning the data collection across multiple files. At scale, the efficiency that the srcGaze approach provides is

beneficial for timely data processing results. To demonstrate the performance of the approach, we provide an empirical

runtime using the 44,184 fixations in the dataset where the algorithms can correct all the fixations in 6 seconds (see

Section 6).

6 Results for RQ2 and RQ3

Evaluating srcGaze’s performance in terms of both its correctness when repositioning fixations and computational

efficiency at this task helps answer RQ2 and RQ3:

• RQ2: Are heuristics effective for enhancing fixation event correction?

• RQ3: Is using a heuristic approach at scale feasible?

To answer RQ2, fixation corrections performed by srcGaze are compared against the golden set created by human

reviewers. For this first test, srcGaze is configured to use the percentages in Table 2 based on the token target preferences

in the golden set. For additional context, the golden set is compared to the results from the SMI fixation algorithm

without correction and correction that only considers the closest token as the best AOI target. Table 3, with no correction

performed on the fixation, performance is roughly 30% agreement with the golden set. Naive correction, which considers

the closest token only without context, roughly doubles agreement with the golden set to nearly 66% agreement with

the golden set. Applying srcGaze with syntactic context to the correction increases agreement to ≈72%. To put srcGaze’s
results into perspective, the best approach for fixation correction at the token level was 59.47% agreement with a golden

set by Palmer et al. However, even though a golden set was also used in that work, Palmer et al.’s approach intended to

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Anon.

Algorithm 1 srcGaze Algorithm

1: procedure Fixation_Correction
2: uncorrected_fixations← List of fixations from any event detection algorithm

3: candidate_aois← List of AOIs with token syntactic context

4: syntactic_weights← Collection of all weights used for fixation repositioning

5: shortest_aoi_distance← 𝑁𝑜𝑛𝑒

6: nearest_aoi← 𝑁𝑜𝑛𝑒

7:

8: for each fixation in uncorrected_fixations do
9: for each aoi in candidate_aois do
10: distance← find_distance(fixation, aoi)

11: weight← get_token_weight(syntactic_weights, aoi)

12: distance← distance − (distance ∗ weight)
13:

14: if nearest_aoi == None OR shortest_aoi_distance > distance then
15: shortest_aoi_distance← distance
16: nearest_aoi← aoi
17: return nearest_aoi

target fixation correction at line-based granularity, not sub-line or token-based level. The 59.47% agreement reported by

Palmer et al. was to disclose at what granularity level their approach was most successful. Other than the agreement

percentage, no additional details regarding token level correction are provided to provide a one-to-one comparison

with srcGaze. [Palmer and Sharif 2016]. Additionally, the average and median distance required to correct a fixation

using srcGaze is only 13 pixels and ≈10 pixels, respectively, from its original position. Recalling that a character in on

the EMIP stimulus is roughly 11x13 pixels, meaning that srcGaze movements are not drastic and stay within a one to

two-character distance depending on the direction of movement.

Table 3. Performance difference between the golden set and no fixation correction, nearest token correction, and srcGaze heuristic
correction. Performance is worst without any correction in that only 32% of the fixation targets agree with the golden set. Correcting
fixations to the nearest token increases agreement to nearly 65%, while using srcGaze with token heuristics for correction agreement
rises to nearly 71%.

Correction Methods Mean
Correct

Median
Correct

Total
Correct

No Correction 31.24% 28.67% 31.84%

Naive Nearest AOI 64.36% 65.33% 65.77%

srcGaze 70.79% 71.12% 71.86%

After these results, further optimizations to the category weights were considered. Examination of the categories

in Table 2 reveals that tokens named by programmers tend to get more fixations than keywords, operators, or other

consistent syntactic tokens regularly used in the language. Additionally, some of the syntactic tokens provided by

the language are shown to be of moderate interest, specifically operators and keywords. With this in mind, the last

column of Table 2 shows new "optimized" category weights for srcGaze. The weights are based on the token category

distributions from the corrected fixations in the golden set, and intuition-based groupings.

The first grouping is tokens named by developers, used often in the code, and impact program semantics. This

grouping is given a weight based on the token category complex-name-expression with ≈30% of the corrected tokens

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 13

being from that category. Other tokens in this category are literal, name-expression, function-call, and function-name

which meet that criteria. The next grouping is based on the second highest percentage which was name-declaration at

≈14%. This value was rounded up to 15% to have “even” weight values. A developer still names tokens in this group,

which have semantic meaning in the code but appear less frequently or are familiar tokens from the language (e.g.,

keywords and operators). This group includes class-name, constructor-name, keyword, operator, and type-name. The

remaining tokens were given 0% as they have the lowest correction rates, have little to no impact on program semantics,

or occur infrequently. These are class-specifier, constructor-specifier, function-type-specifier, separator, type-specifier,

and whitespace. With these new weights, srcGaze’s agreement increased to 72.94%. While this is a small increase, it

illustrates that the original token weights and categories primarily represent the tokens expected to be manually viewed

by researchers correcting fixation data on source code. Additionally, it shows room for improvement within the category

weights and heuristic measures, providing a source of future work. With these findings, we can answer RQ2 that

heuristics effectively enhance fixation event correction.

RQ3 is concerned with the computational efficiency of srcGaze, so it supports fixation correction of a more extensive

study at scale. From a runtime performance perspective, this initial prototype performs a linear search over all AOI

positions to find the shortest weighted distance candidate. Finding the closest fixation target requires checking each AOI

and determining the distance to a fixation. This operation is performed once for each fixation, meaning this approach

has a worst-case runtime complexity of 𝑂 (𝑛 ∗𝑚) where𝑚 is the number of fixations and 𝑛 is the number of AOIs.

This is a significant improvement compared to the quadratic (𝑂 (𝑛2)) or exponential (𝑂 (𝑛𝑚)) runtime of the brute force

methods proposed in prior research. To further illustrate the efficiency of this approach, real-world measurements show

performing fixation corrections on 44,184 fixations generated via the SMI dispersion fixation filter from all 125 trial

tasks in the EMIP dataset takes only 6 seconds. This efficient performance is without any optimizations by limiting the

AOI checks to lines closest to the fixation or any early stoppage of the algorithm when the AOI distances consistently

increase over multiple lines (i.e., no other closer candidates exist). The performance demonstrated in both theoretical

and practical runtimes for srcGaze confidently shows that the srcGaze approach is, in fact, efficient enough to be used

on large datasets.

7 Threats to Validity

One limitation of this work is that the EMIP code stimuli are small single-file code examples. Since the EMIP stimulus is

designed for a broad range of participant experience from novice to expert, some common language features such as

control structures (while and for loops) are not used at all, and the occurrence of other programming constructs used

may not be representative of the frequency at which they occur in more realistic software applications. This can impact

the heuristics values used for srcGaze, be tuned too closely for the EMIP stimulus, and be insufficient to correct fixation

data when larger-scale open or closed-source projects are used as stimulus. Given this limitation, all programming

languages follow grammar rules. As such, regardless of the size of a source code application, tokens will still be used

in similar ways. Additionally, some token categories could be consolidated, such as the complex-name-expression and

name-expression categories, as they may better mimic the function-call and provide a more consistent categorization.

Revisions to the categories and comparisons of the correction performance with other studies using different stimuli

are planned for future work.

It is also important to note that fixations on tokens in the source code may depend on the type of task [Mansoor et al.

2024] under observation. Comprehending what a program can do and searching an application to locate sources of

bugs or defects will undoubtedly overlap in the kinds of tokens viewed. Still, the degree of the fixations for these token

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Anon.

types may differ. The limitations mentioned above concerning category representation in the stimulus are partially

addressed with configurable parameters, the same method utilized by the state-of-the-art event detection and correction

algorithms. This allows for tuning of the heuristic values based on the token categories if later work finds more optimal

or task-specific heuristic values for correction. While srcGaze’s improved runtime performance compared to brute force

methods from state-of-the-art approaches holds, the performance concerning token-level fixation corrections may be

impacted by the close association with the EMIP dataset used for the heuristics. While the quantity of data used for

srcGaze’s heuristic preferences is likely adequate for similar use cases, and the distance for adjustments is well within

reasonable margins, follow-up work with a study using a large-scale application is planned to tune the approach further.

At this scale, a golden set may not be feasible, so crowd-sourcing methods will be investigated based on sampling the

fixations and presenting participants with a few options of possible tokens rather than correcting the data themselves.

8 Conclusions and Future Work

The current state-of-the-art eye-tracking research on source code does gaze event correction as a post-processing phase

to fixation identification with event detection algorithms. Most approaches to event correction are limited to brute

force and manual correction methods. Researchers often use these methods with textual prose and not source code.

This gap in support for gaze event correction on source code as an eye-tracking stimulus inspired the development of

srcGaze, a syntactic-aware gaze event correction heuristic algorithm, which is the primary contribution of this work.

Using a manually corrected set of over 12,000 fixations, srcGaze demonstrates exceptional improvements with a rate

of nearly 73% agreement with a golden set of manual corrections. srcGaze also scales better than previous automated

approaches that utilize brute force methods with quadratic (𝑂 (𝑛2)) or exponential (𝑂 (𝑛𝑚)) runtime complexities as it

supports a linear runtime (𝑂 (𝑛 ∗𝑚)) based on the number of potential AOI targets (𝑛) and the number of fixations

to correct (𝑚). This superior computational performance allows srcGaze to correct 44,184 fixations in only 6 seconds.

srcGaze’s improved fixation correction accuracy will save countless person-hours for data correction and facilitate more

extensive studies and rapid eye-tracking research analysis in the program comprehension community.

Extensions to the srcGaze heuristics are planned to incorporate movement trends in saccadic activity between

fixations. Additionally, blended heuristic stages operating at multiple syntactic granularity levels could increase

srcGaze’s awareness of movement patterns within source code structures such as loops, conditionals, etc. Concerning

the heuristic categories, evaluation of a Bayesian model approach to token category weights will be evaluated along with

new studies integrating larger, project-scale eye-tracking studies that fully represent typical programming language

features (e.g., control structures like loops). Heuristics pulled from these new studies will improve the robustness of

the heuristic categories and demonstrate srcGaze’s effectiveness when used on stimuli other than the EMIP dataset.

Additionally, performing eye-tracking research exploring dynamic software development activities such as debugging

and fixing source code issues or software evolution when developers create new features or re-architect the software

using refactorings. While many studies focus on program comprehension for reading static source code, the support

for interacting with the source code during eye-tracking with source code is minimal. Yet, these types of activities,

especially for maintenance, can account for up to 80% of software development costs [Microsystems 1997]. These

activities will likely have different viewing patterns that could impact the heuristics of srcGaze. Exploring these activities

can help improve srcGaze’s performance and fill current research gaps.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code 15

References
Naser Al Madi, Drew Guarnera, Bonita Sharif, and Jonathan Maletic. 2021. EMIP Toolkit: A Python Library for Customized Post-processing of the

Eye Movements in Programming Dataset. In ACM Symposium on Eye Tracking Research and Applications (ETRA ’21 Short Papers). Association for

Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3448018.3457425

Naser Al Madi, Brett Torra, Yixin Li, and Najam Tariq. 2025. Combining automation and expertise: A semi-automated approach to correcting eye-tracking

data in reading tasks. Behavior Research Methods 57, 2 (24 Jan 2025), 72. https://doi.org/10.3758/s13428-025-02597-3

Salwa Aljehane, Bonita Sharif, and JonathanMaletic. 2021. Determining Differences in Reading Behavior Between Experts and Novices by Investigating Eye

Movement on Source Code Constructs During a Bug Fixing Task. InACM Symposium on Eye Tracking Research and Applications (Virtual Event, Germany)

(ETRA ’21 Short Papers). Association for Computing Machinery, New York, NY, USA, Article 30, 6 pages. https://doi.org/10.1145/3448018.3457424

Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and Marcus Nyström. 2017. One algorithm to rule them all? An evaluation and

discussion of ten eye movement event-detection algorithms. Behavior Research Methods 49, 2 (April 2017), 616–637. https://doi.org/10.3758/s13428-

016-0738-9

Roman Bednarik, Teresa Busjahn, Agostino Gibaldi, Alireza Ahadi, Maria Bielikova, Martha Crosby, Kai Essig, Fabian Fagerholm, Ahmad Jbara, Raymond

Lister, Pavel Orlov, James Paterson, Bonita Sharif, Teemu Sirkiä, Jan Stelovsky, Jozef Tvarozek, Hana Vrzakova, and Ian van der Linde. 2020. EMIP: The

eye movements in programming dataset. Science of Computer Programming 198 (Oct. 2020), 102520. https://doi.org/10.1016/j.scico.2020.102520

Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher Morrell, and Bonita Sharif. 2013. The Impact of Identifier Style on Effort and

Comprehension. Empirical Software Engineering 18, 2 (April 2013), 219–276. https://doi.org/10.1007/s10664-012-9201-4

Teresa Busjahn. 2021. Empirical analysis of eye movements during code reading: evaluation and development of methods. Ph. D. Dissertation. Paderborn.
https://nbn-resolving.org/urn:nbn:de:hbz:466:2-38777 Tag der Verteidigung: 04.03.2021.

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and S. Tamm. 2015. Eye Movements in Code Reading: Relaxing the Linear

Order. In 2015 IEEE 23rd International Conference on Program Comprehension. IEEE, Florence, Italy, 255–265. https://doi.org/10.1109/ICPC.2015.36

Teresa Busjahn, Roman Bednarik, and Carsten Schulte. 2014. What Influences Dwell Time During Source Code Reading?: Analysis of Element

Type and Frequency As Factors. In Symposium on Eye Tracking Research and Applications (ETRA ’14). ACM, Safety Harbor, Florida, USA, 335–338.

https://doi.org/10.1145/2578153.2578211 event-place: Safety Harbor, Florida.

Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of Code Reading to Gain More Insight in Program Comprehension. In 11th Koli
Calling International Conference on Computing Education Research (Koli Calling ’11). ACM, Koli, Finland, 1–9. https://doi.org/10.1145/2094131.2094133

event-place: Koli, Finland.

M. L. Collard, M. J. Decker, and J. I. Maletic. 2011. Lightweight Transformation and Fact Extraction with the srcML Toolkit. In 2011 IEEE 11th International
Working Conference on Source Code Analysis and Manipulation. 173–184. https://doi.org/10.1109/SCAM.2011.19

M. L. Collard, M. J. Decker, and J. I. Maletic. 2013. srcML: An Infrastructure for the Exploration, Analysis, and Manipulation of Source Code: A Tool

Demonstration. In 2013 IEEE International Conference on Software Maintenance. 516–519. https://doi.org/10.1109/ICSM.2013.85

Andrew T. Duchowski. 2017. Eye Tracking Methodology: Theory and Practice (3rd ed.). Springer Publishing Company, Incorporated.

Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni, Shaun Kane, and Meredith Ringel Morris. 2017. Toward Everyday Gaze

Input: Accuracy and Precision of Eye Tracking and Implications for Design. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1118–1130. https://doi.org/10.1145/3025453.

3025599

Michael C. Frank, Edward Vul, and Rebecca Saxe. 2012. Measuring the Development of Social Attention Using Free-Viewing. Infancy 17, 4 (2012), 355–375.

https://doi.org/10.1111/j.1532-7078.2011.00086.x

Kenneth Holmqvist, Marcus Nyström, and Fiona Mulvey. 2012. Eye tracker data quality: what it is and how to measure it. In Proceedings of the Symposium
on Eye Tracking Research and Applications (Santa Barbara, California) (ETRA ’12). Association for Computing Machinery, New York, NY, USA, 45–52.

https://doi.org/10.1145/2168556.2168563

Anthony J. Hornof and Tim Halverson. 2002. Cleaning up systematic error in eye-tracking data by using required fixation locations. Behavior Research
Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc 34, 4 (Nov. 2002), 592–604. https://doi.org/10.3758/bf03195487

Aulikki Hyrskykari. 2006. Utilizing eye movements: Overcoming inaccuracy while tracking the focus of attention during reading. Computers in Human
Behavior 22, 4 (2006), 657–671. https://doi.org/10.1016/j.chb.2005.12.013 Attention aware systems.

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and Collect Relevant

Information during Software Maintenance Tasks. IEEE Transactions on Software Engineering 32, 12 (Dec. 2006), 971–987. https://doi.org/10.1109/TSE.

2006.116

Bo Liu, Qi-Chao Zhao, Yuan-Yuan Ren, Qing-Ju Wang, and Xue-Lian Zheng. 2018. An elaborate algorithm for automatic processing of eye movement

data and identifying fixations in eye-tracking experiments. Advances in Mechanical Engineering 10, 5 (May 2018), 1687814018773678. https:

//doi.org/10.1177/1687814018773678

Sebastian Lohmeier. 2015. Experimental Evaluation and Modelling of the Comprehension of Indirect Anaphors in a Programming Language. Master’s thesis.

Technische Universiteit, Berlin, Germany. http://www.monochromata.de/master_thesis/ma1.0.pdf

Niloofar Mansoor, Cole S. Peterson, Michael D. Dodd, and Bonita Sharif. 2024. Assessing the Effect of Programming Language and Task Type on Eye

Movements of Computer Science Students. ACM Trans. Comput. Educ. 24, 1, Article 2 (Jan. 2024), 38 pages. https://doi.org/10.1145/3632530

Manuscript submitted to ACM

https://doi.org/10.1145/3448018.3457425
https://doi.org/10.3758/s13428-025-02597-3
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1016/j.scico.2020.102520
https://doi.org/10.1007/s10664-012-9201-4
https://nbn-resolving.org/urn:nbn:de:hbz:466:2-38777
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/2578153.2578211
https://doi.org/10.1145/2094131.2094133
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1111/j.1532-7078.2011.00086.x
https://doi.org/10.1145/2168556.2168563
https://doi.org/10.3758/bf03195487
https://doi.org/10.1016/j.chb.2005.12.013
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1177/1687814018773678
https://doi.org/10.1177/1687814018773678
http://www.monochromata.de/master_thesis/ma1.0.pdf
https://doi.org/10.1145/3632530

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Anon.

Sun Microsystems. 1997. Java Code Conventions. https://www.oracle.com/technetwork/java/codeconventions-150003.pdf. [Accessed 22-10-2024].

Mishra, Abhijit, Michael Carl, and Pushpak Bhattacharya. 2012. A heuristic-based approach for systematic error correction of gaze data for reading. In

First Workshop on Eye-tracking and Natural Language Processing. Mumbai, India, 71–80. http://www.aclweb.org/anthology/W12-4906

Diederick C. Niehorster, Tim H. W. Cornelissen, Kenneth Holmqvist, Ignace T. C. Hooge, and Roy S. Hessels. 2018. What to expect from your remote

eye-tracker when participants are unrestrained. Behavior Research Methods 50, 1 (01 Feb 2018), 213–227. https://doi.org/10.3758/s13428-017-0863-0

Marcus Nyström, Richard Andersson, Kenneth Holmqvist, and Joost van de Weijer. 2013. The influence of calibration method and eye physiology on

eyetracking data quality. Behavior Research Methods 45, 1 (March 2013), 272–288. https://doi.org/10.3758/s13428-012-0247-4

Marc-Antoine Nüssli. 2011. Dual Eye-Tracking Methods for the Study of Remote Collaborative Problem Solving. Ph. D. Thesis. Ecole Polytechnique Federale
De Lausanne, Lausanne, Switzerland. https://infoscience.epfl.ch/record/169609/files/EPFL_TH5232.pdf;

Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey on the Usage of Eye-Tracking in Computer Programming. Comput.
Surveys 51, 1 (April 2018), 5:1–5:58. https://doi.org/10.1145/3145904

Anneli Olsen. 2012. The Tobii I-VT Fixation Filter. Technical Report. 21 pages. http://www.vinis.co.kr/ivt_filter.pdf

Pontus Olsson. 2007. Real-time and Offline Filters for Eye Tracking. Master’s thesis. KTH Electrical Engineering, Stockholm, Sweden. https://pdfs.

semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9016.pdf

Christopher Palmer and Bonita Sharif. 2016. Towards automating fixation correction for source code. In Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications (Charleston, South Carolina) (ETRA ’16). Association for Computing Machinery, New York, NY, USA, 65–68.

https://doi.org/10.1145/2857491.2857544

P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. 2015. An Eye-Tracking Study of Java Programmers and Application to Source Code Summarization.

IEEE Transactions on Software Engineering 41, 11 (Nov. 2015), 1038–1054. https://doi.org/10.1109/TSE.2015.2442238

Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying Fixations and Saccades in Eye-tracking Protocols. In 2000 Symposium on Eye Tracking
Research & Applications (ETRA ’00). ACM, Palm Beach Gardens, Florida, USA, 71–78. https://doi.org/10.1145/355017.355028 event-place: Palm Beach

Gardens, Florida, USA.

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature review on the usage of eye-tracking in software engineering.

Information and Software Technology 67 (Nov. 2015), 79–107. https://doi.org/10.1016/j.infsof.2015.06.008

R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2.
629–633. https://doi.org/10.1109/ICDAR.2007.4376991

Andrew C. Trapp, Wen Liu, and Soussan Djamasbi. 2019. Identifying Fixations in Gaze Data via Inner Density and Optimization. INFORMS Journal on
Computing (April 2019). https://doi.org/10.1287/ijoc.2018.0859

Raimondas Zemblys, Diederick C. Niehorster, Oleg Komogortsev, and Kenneth Holmqvist. 2018. Using machine learning to detect events in eye-tracking

data. Behavior Research Methods 50, 1 (Feb. 2018), 160–181. https://doi.org/10.3758/s13428-017-0860-3

Yunfeng Zhang and Anthony J. Hornof. 2011. Mode-of-disparities error correction of eye-tracking data. Behavior Research Methods 43, 3 (01 Sep 2011),

834–842. https://doi.org/10.3758/s13428-011-0073-0

Manuscript submitted to ACM

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://www.aclweb.org/anthology/W12-4906
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-012-0247-4
https://infoscience.epfl.ch/record/169609/files/EPFL_TH5232.pdf;
https://doi.org/10.1145/3145904
http://www.vinis.co.kr/ivt_filter.pdf
https://pdfs.semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9016.pdf
https://pdfs.semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9016.pdf
https://doi.org/10.1145/2857491.2857544
https://doi.org/10.1109/TSE.2015.2442238
https://doi.org/10.1145/355017.355028
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1287/ijoc.2018.0859
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.3758/s13428-011-0073-0

	Abstract
	1 Introduction
	2 Related Work
	3 Data Set and Methodology
	3.1 Privacy and Ethics
	3.2 Preprocessing
	3.3 Token Classification

	4 Golden Set
	4.1 Generating the Golden Set
	4.2 Golden Set Token Frequency - RQ1 Results

	5 srcGaze: Fixation Correction Algorithm
	6 Results for RQ2 and RQ3
	7 Threats to Validity
	8 Conclusions and Future Work
	References

