

iTrace-Toolkit: A Pipeline for Analyzing Eye-

Tracking Data of Software Engineering Studies

Abstract—iTrace is community eye-tracking infrastructure

that enables conducting eye-tracking studies within an Integrated

Development Environment (IDE). It consists of a set of tools for

gathering eye-tracking data on large real software projects within

an IDE during studies on source code. Once the raw eye-tracking

data is collected, processing is necessary before it can be used for

analysis. Rather than provide the raw data for researchers to

analyze and write their own customize scripts, we introduce

iTrace-Toolkit - a suite of tools that assists with combining

different data files generated from iTrace and its IDE plugins

(namely Visual Studio, Atom, and Eclipse). iTrace-Toolkit also

provides the crucial mapping of the valid raw eye-tracking data to

source code tokens and finally generates fixations (an important

metric in eye-tracking for comprehension) using three commonly

used algorithms based on distance and velocity of eye movements.

iTrace-Toolkit keeps track of all participant data and tasks during

a given study and produces a complete lightweight database of the

raw, mapped, and fixation data that is standardized and ready to

be used by statistical tools. A simple GUI interface is provided for

quick access to filter the data after an eye-tracking study. iTrace-

Toolkit also allows for the export of the data or subset of the data

to text formats for further statistical processing.

YouTube Video:

https://www.youtube.com/watch?v=9j2OsOANh8w

I. INTRODUCTION

The iTrace eye-tracking infrastructure [1], [2] has been used
by software engineering researchers to aid with their studies on
real code spaces. Previously, eye-tracking studies on software
development would require the participant to view a static image
of code. While this works, it can feel unnatural to a participant
when they are more familiar with code appearing in a common
IDE like Visual Studio or Eclipse along with the ability to scroll
and look back and forth at multiple files. iTrace alleviates this
problem by providing iTrace-Core and the iTrace IDE Plugins.
By using iTrace-Core along with an IDE Plugin of choice,
studies can be performed with participants looking at a familiar
workspace while also allowing dynamic scrolling and changing
the files read. This process also helps researchers conduct their
research faster, as code no longer needs to fit on screen
dimensions nor needs to be converted to images for viewing.

Both iTrace-Core and the iTrace Plugins output large XML
files containing a list of the information gathered during the eye-

tracking session—iTrace-Core gathering the raw gaze data, and
the Plugin gathering IDE contextual information. An issue that
researchers face with this data is in analyzing the output for what
they want. A simple five-minute session can result in 35,000+
gaze and contextual data points saved in roughly 30 MB of XML
files. Analysis of this data is not only difficult, but also non
standardized, meaning that each individual researcher will have
to implement their own software to go through the data to do any
research tasks such as mapping gazes to tokens, calculating
fixations and saccades, and filtering data points based on the
research subject.

To help researchers analyze their data, we introduce iTrace-
Toolkit, an application focused on combining, mapping,
analyzing, and filtering the output from iTrace-Core and iTrace
Plugins. iTrace-Toolkit offers the following features to software
engineering researchers:

• Source Code Token and Context Mapping: The
iTrace Plugin data contains file line and column
information that is gathered from the IDE but, beyond
that, does not provide any additional information.
iTrace-Toolkit captures the entire word or symbol
located at the line and column and provides the relevant
syntactical context of the token. This information is
crucial for studies on program comprehension for
example.

• Fixation Generation: Eye trackers and the iTrace
Plugins are designed to produce and collect eye raw
gazes. In order to make sense of the data, fixations need
to be computed. A fixation happens when the eye
stabilizes on a certain part of the stimuli (e.g., source
code) for a given duration i.e., implying the user is
reading/comprehending some aspect of the stimuli.
Fixations are a set of raw gazes in a certain area in space
and time. Using iTrace-Toolkit and various pre-defined
fixation algorithms [3], researchers can choose to
generate and store fixation information.

• Fixation Filtering: A filtering option is provided by
iTrace-Toolkit to assist researchers quickly make sense
of the data. This feature is very useful to do quick checks
on data collected especially if a researcher is expected

Joshua Behler

Department of Computer Science

Kent State University

Kent, Ohio, USA

jbehler1@kent.edu

Praxis Weston

Department of Computer Science

Kent State University

Kent, Ohio, USA

gweston2@kent.edu

Drew T. Guarnera

Department of Mathematical and

Computer Sciences

College of Wooster

Wooster, Ohio, USA

dguarnera@wooster.edu

Bonita Sharif

School of Computing

University of Nebraska-Lincoln

Lincoln, Nebraska, USA

bsharif@unl.edu

Jonathan I. Maletic

Department of Computer Science

Kent State University

Kent, Ohio, USA

jmaletic@kent.edu

https://www.youtube.com/watch?v=9j2OsOANh8w
mailto:jbehler1@kent.edu
mailto:gweston2@kent.edu
mailto:dguarnera@wooster.edu
mailto:bsharif@unl.edu
mailto:jmaletic@kent.edu

to see differences in the code between the different
treatments in the study. It is also useful to filter out
fixations based on the type of research question being
asked. We use this feature in our own studies to quickly
make sense of the data right after a study.

This paper is organized as follows. In the next section, we
give an overview of the complete iTrace Infrastructure, of which
iTrace-Toolkit is part of. Next, the implementation of iTrace-
Toolkit is presented in Section III. The basic functionality of
iTrace-Toolkit is given in Section IV along with usage scenarios
in Section V. The final section, Section VI, provides conclusions
and future directions.

II. THE ITRACE INFRASTRUCTURE

iTrace-Toolkit is designed to be used within the greater
iTrace Infrastructure [1], [2], as detailed in Figure 1, to ease a
researcher’s burden of analyzing their data. A researcher sets up
and conducts their study using iTrace-Core and one of the
various IDE Plugins and collects all the outputted Core and
Plugin data files from each of their participants doing a set of
tasks. Optional tools such as the iTrace-Core built-in Deja Vu
tool can be used to get accurate data if high-speed eye trackers
(>300Hz) are used [2]. After gathering all the files from the
researcher’s sessions, iTrace-Toolkit is used to create a database,
and all the Core and Plugin files are brought into the database. It
is best practice to include all the recording sessions of a study
that share a target code space – i.e., if 20 participants looked at
program A and 30 participants looked at program B, two
databases should be made—one for the A sessions and one for
the B sessions. iTrace-Toolkit allows for previously made
databases to be imported as well, giving the researcher full
flexibility in how they want to keep track of their data.

Figure 1: An overview of the iTrace Infrastructure, and how the

iTrace-Toolkit fits within it.

Some tools offer a similar level of analysis but are limited in
their scope or ability to analyze. For example, our previous work
on the gazel tool [4] can help analyze data generated with the
iTrace-Atom Plugin, but is unable to work with the other iTrace
Plugins.

III. ITRACE-TOOLKIT IMPLEMENTATION

iTrace-Toolkit is implemented using a variety of
technologies to store and transform the large amounts of data
produced during an eye-tracking study. Note that a study can
easily collect close to a few GBs of data with 30 participants

1 https://github.com/iTrace-Dev/iTrace-Toolkit/wiki/Entity-

Relationship-Diagram-for-Post-Processing-Database

working on 3 tasks each for instance. The amount of data
generated is also highly dependent on the eye tracker speed (how
many samples are generated per second-iTrace supports all
speeds), amount of code viewed, and time to complete the task.
The current implementation is in C++ with an SQLite database.
Please note that iTrace-Toolkit only supports Windows
currently. A publicly available tool with usage instructions and
example data is available at https://github.com/iTrace-
Dev/iTrace-Toolkit/releases/tag/alpha-0.2.1

A. Implementation of Technologies

iTrace-Toolkit has gone through numerous design changes
during its development. iTrace-Toolkit originally started out as
a Tkinter program written in Python. It quickly became apparent
that more efficiency was necessary to address the size of the
data. We settled on using the Qt platform with C++ to provide
both faster speeds along with more modern GUI tools. One
downside of using Qt is that the Qt library for interacting with
an SQLite database is rather slow. To fix this, we opted to use
the direct C library for SQLite. These changes, along with tactful
indexing of the database, gave us an almost 11x speed increase.
iTrace-Toolkit went from taking five and a half hours to map the
tokens of 13 tasks down to just 30 minutes.

B. iTrace Database

Before any gaze or context data can be analyzed or even
imported, an iTrace Database needs to be created. iTrace-
Toolkit makes use of SQLite to store the imported data. All
analysis performed is also done on this database. iTrace-Toolkit
allows a new, empty database to be created, or for a previously
made database to be opened and used again.

Specific information on the tables and their columns can be
found on iTrace-Toolkit’s GitHub wiki page1. The three most
important tables are gaze, ide_context, and fixation.

The gaze table stores the raw gaze data produced from iTrace-

Core. The ide_context data saves the information from the

Plugin file as well as token mapping information. The
fixation table is where fixations are stored after calculation.

IV. ITRACE-TOOLKIT PIPELINE

The design of iTrace-Toolkit is divided into separate tasks
which compute and transform raw eye tracking data into more
abstract and useful concepts.

A. Importing Core and Plugin Data

After an iTrace database is created, iTrace-Core and Plugin
data can be imported. Core and Plugin data must be imported in
pairs, one for each session. A folder containing multiple pairs
can be selected, allowing for bulk importing. After the sessions
are imported, a list of each session’s id and name is listed, and a
checkbox is shown next to each session. The checkboxes allow
a user to pick which sessions to use for mapping or for fixation
generation—any unchecked session will be ignored.

B. Token Mapping

One of iTrace-Toolkit’s primary features is the ability to map
the line and column information to a token in the source code.

https://github.com/iTrace-Dev/iTrace-Toolkit/wiki/Entity-Relationship-Diagram-for-Post-Processing-Database
https://github.com/iTrace-Dev/iTrace-Toolkit/wiki/Entity-Relationship-Diagram-for-Post-Processing-Database
https://github.com/iTrace-Dev/iTrace-Toolkit/releases/tag/alpha-0.2.1
https://github.com/iTrace-Dev/iTrace-Toolkit/releases/tag/alpha-0.2.1

This is an extremely crucial part of analyzing eye tracking data
on source code. Researchers are interested in what words or
symbols a participant looks at during a session. iTrace-Toolkit
allows a researcher to calculate these tokens by providing the
source code that is examined during the session. iTrace-Toolkit
leverages srcML2 [5], [6] to accomplish this task. srcML is an
infrastructure to support the analysis, exploration, and
manipulation of source code. It produces an XML representation
of source code that provides abstract syntactic information. It
also provides both context and positional information of the
source code, which is vital for our token mapping. srcML
currently supports C, C++, C#, and Java.

iTrace-Toolkit locates the corresponding srcML
representation for the file which is being examined. It will then
find the srcML tag located at the correct line/column. Because
line/column data represents only one character, iTrace-Toolkit
will also find the whole token by first figuring out which type of
token is being examined at–either whitespace, a word, or a
symbol such as an operator. It will then march left and right until
it finds a character that does not fit within that type. This token
will be recorded inside the ide_context row that provides

the line/column data. It is important to note that if the token
happens to be whitespace, the whitespace itself will not be
recorded, and it will instead be saved as WHITESPACE in the

database.

Figure 2: A small example of C++ code with a raw gaze point
(highlighted)

Along with the full token, iTrace-Toolkit records contextual
data about what the user is viewing and stores it. Consider the
C++ code in Figure 2. The yellow-highlighted character is at
line, column position (3, 6), and represents a point of data in the
ide_context table. We can see that the user is looking at the

function name, main, which is recorded in the token column.

Contextually we know that main is the name of a function

inside the file (referred to as a unit by srcML), and by using

srcML we can record this context in the table as well. For this
example, the user is looking at the name of a function at the top
level of a file. We store this data in two columns in the database,
source_token_xpath and

source_token_syntactic_context. The syntactic

context column stores an arrowed list of srcML tags that
describes where the text is located contextually. The syntactic
context of this example would be unit->function-

>name. The XPath column stores an XPath query that leads to

the exact tag in the srcML. The XPath for this example is
(assuming the file name is file.cpp):

//src:unit[@filename='file.cpp']/

src:function[@pos:start='3:1' and

@pos:end='5:1']/src:name[@pos:start='3:5' and

@pos:end='3:8']

2 See www.srcML.org

Because of the additional positional information that is
stored, the XPath is always unique to the specific token that is
being examined, while a syntactic context can refer to multiple
entries within the database.

C. Fixation Generation

iTrace-Toolkit’s other primary feature is the ability to group
together gazes to form fixations. Eye movements are
characterized by saccades, rapid darts between objects, and
fixations, focuses on objects. Because an eye tracker only gets
so many snapshots of an eye (e.g., 60, 120, … data points per
second), it is important to know if a gaze is part of a saccade or
a fixation. iTrace-Toolkit implements three different algorithms
to calculate fixations, Basic, I-VT, and I-DT [3], [7]. After
generating fixations, the fixation, fixation_gaze, and

fixation_run tables in the database are populated with data

related to the fixation generation run. Sessions can have multiple
fixation generation runs performed on them, allowing
comparison between algorithms and their various settings.

If token mapping is performed before running the fixation
run, fixations can be mapped with the ide_context list and

grab the token information that matches with the gazes. If no
valid information is found the fixation will instead contain blank
data indicating eye movements on something other than source
code. While fixations can be generated without token mapping,
any resulting fixations will lack token information.

iTrace-Toolkit is designed to allow for modular fixation
algorithm implementation. If future works or individual
researchers devise new fixation detection algorithms, iTrace-
Toolkit eases the process of implementing and integrating new
algorithms. We provide the three most popular fixation detection
algorithms but welcome the community to add more as needed
as there might be cases where a study might require a different
method of generating fixations.

D. Fixation Filtering

After fixations are generated, iTrace-Toolkit offers tools to
help researchers gather the fixations they are studying. Fixations
can be filtered by various factors, such as pupil diameter, file
name, token type, file line and column, and fixation duration to
name a few. These filters can be imported and exported for more
fine-tuned filtering and for use outside of Trace-Toolkit
respectively. Figure 3 showcases the various options available
for fixation filtering. The filtered fixations can be saved in a
.db3, .tsv, .json, or .xml file format, and can undergo whatever
further statistical analysis the researcher needs in a statistical
package of their choosing.

V. USAGE SCENARIOS

Using iTrace-Toolkit involves first running an eye-tracking
study using iTrace Core and one of the IDE plugins. Once the
researcher has finalized the design of the study and tasks, they
typically start data collection. During data collection, human
participants (developers) are presented with the task(s) and
source code project. iTrace allows for large code bases to be
explored in an IDE within the context of a software engineering
task. Participants can freely switch between multiple files and

scroll within a file. After a participant completes the study, the
resulting data is used as input into the iTrace-Toolkit. The data
includes the raw eye gaze data and the corresponding line,
column, and file information.

Figure 3: Fixation Filtering Options in iTrace-Toolkit.

Processing and filtering eye tracking data takes a substantial
amount of time. iTrace-Toolkit alleviates this burden on the
researcher and allows them to focus on their research rather than
the tool itself. iTrace-Core and the iTrace Plugins can be used
for conducting studies involving many different software tasks
such as code summarization, bug localization, and code review.
iTrace-Toolkit can then be used to process, map, analyze and
filter the rich data set generated from these tasks, which is the
most time-consuming part of studies.

After the data is imported into the database, line and column
coordinates are mapped to tokens. Token mapping can be the
longest step of using iTrace-Toolkit, and long studies with larger
code bases took about 30 minutes in our latest test. After the
tokens are mapped, fixations are generated, a researcher can
either manually analyze the fixations in the database or use the
built-in filtering tools to select specific fixations within specified
criteria. After the researcher generates fixations and sets the
filtering parameters how they want, they can choose between
various output formats depending on their needs. Filters can be
exported and imported, allowing for reuse later if multiple
databases are needed. The output file will contain the fixations
that fit the criteria provided in the filtering window. Typically,
at this point, the researcher will export all the data they need out
of iTrace-Toolkit for further statistical analysis based on their
specific research questions. After this, the researcher is free to
analyze the exported information in any way they need for their
research.

VI. LIMITATIONS AND FUTURE WORK

Currently, iTrace-Toolkit only supports the iTrace IDE
Plugins (Visual Studio, Atom, and Eclipse). Additionally,
iTrace-Toolkit is limited in token mapping by srcML’s support
of programming languages. Currently, C/C++, Java, and C# are
supported by srcML. However, support for other languages is
planned by the srcML project. Studies that involve languages
other than those supported can still use iTrace-Toolkit to
generate fixations, but any token or syntactic information will
need to be analyzed separately.

Plugin data generated by iTrace-Chrome, the iTrace Plugin
for the Google Chrome Web Browser, cannot be analyzed by
iTrace-Toolkit due to iTrace-Chrome’s data being ad-hoc based
on the webpage being viewed. The iTrace-Chrome data needs to
be analyzed with the support of ad-hoc specialized scripts. As
part of future work, iTrace-Toolkit will be expanded to allow for
iTrace-Chrome data to be imported for fixation analysis, as well
as provide a custom system to analyze the tokens on web pages.

iTrace-Toolkit also currently does not calculate any saccade
[3] or microsaccade [8] information, which is useful for
determining cognitive load. Additionally, iTrace-Toolkit can be
improved further by implementing more fixation detection
algorithms made specifically for source code, as it has been
shown that developers read source code very differently from
natural language. A command line interface for iTrace-Toolkit
is also planned as part of our future work, along with versions
for both Mac and Linux based Distros.

REFERENCES

[1] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“iTrace: eye tracking infrastructure for development environments,” in 10th

ACM Symposium on Eye tracking Research and Applications, Warsaw, Poland,

Jun. 2018, p. 3. doi: 10.1145/3204493.3208343.
[2] V. Zyrianov et al., “Deja Vu: semantics-aware recording and replay

of high-speed eye tracking and interaction data to support cognitive studies of
software engineering tasks—methodology and analyses,” Empir Software Eng,

vol. 27, no. 7, p. 168, Dec. 2022, doi: 10.1007/s10664-022-10209-3.

[3] D. D. Salvucci and J. H. Goldberg, “Identifying Fixations and
Saccades in Eye-tracking Protocols,” in 2000 Symposium on Eye Tracking

Research & Applications, Palm Beach Gardens, Florida, USA, Nov. 2000, pp.

71–78. doi: 10.1145/355017.355028.
[4] S. Fakhoury et al., “gazel: Supporting Source Code Edits in Eye-

Tracking Studies,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Companion Proceedings (ICSE-Companion), Madrid,
ES, May 2021, pp. 69–72. doi: 10.1109/ICSE-Companion52605.2021.00038.

[5] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An

Infrastructure for the Exploration, Analysis, and Manipulation of Source Code:
A Tool Demonstration,” in 2013 IEEE International Conference on Software

Maintenance, Eindhoven, Netherlands, Sep. 2013, pp. 516–519. doi:

10.1109/ICSM.2013.85.

[6] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight

Transformation and Fact Extraction with the srcML Toolkit,” in 2011 IEEE

11th International Working Conference on Source Code Analysis and
Manipulation, Williamsburg, Virginia, USA, Sep. 2011, pp. 173–184. doi:

10.1109/SCAM.2011.19.

[7] P. Olsson, “Real-time and Offline Filters for Eye Tracking,”
Masters Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2007.

Accessed: Jun. 21, 2019. [Online]. Available:

https://pdfs.semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9
016.pdf

[8] R. Engbert and R. Kliegl, “Microsaccades Keep the Eyes’ Balance

During Fixation,” Psychol Sci, vol. 15, no. 6, pp. 431–431, Jun. 2004, doi:
10.1111/j.0956-7976.2004.00697.x.

