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Abstract— iTrace is community infrastructure that allows 

software engineering researchers to conduct eye-tracking studies 

on large realistic code bases. The iTrace Infrastructure consists of 

a set of tools that assist with gathering, processing, and evaluating 

eye-tracking data on large software projects within an Integrated 

Development Environment (IDE). A typical eye-tracking study 

results in millions of raw gazes that are overwhelming to view and 

sort through. To help researchers view and comprehend this data, 

iTrace-Visualize is presented. This tool integrates information 

produced by the iTrace Infrastructure into a dynamic video 

recording of the eye-tracking session. Eye fixations and the scan 

path between fixations are overlayed on the video. Additionally, 

the line being examined can be highlighted in the video. iTrace-

Visualize enables a researcher to replay eye fixations via a video 

overlay immediately after a study. This serves as a quick 

validation of what was done during the study and can also provide 

quick insights into what the participants looked at. To illustrate 

iTrace-Visualize’s capabilities, a small pilot study is performed. 

Demo Video—https://youtu.be/c1hUFDmBM50 
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I. INTRODUCTION 

The iTrace Infrastructure is used by software engineering 
researchers to perform eye-tracking studies in development 
environments [1] [2] [3] [4]. Normally, eye-tracking studies are 
performed on static, unmoving stimuli. Software engineering 
studies that use eye-tracking have been typically performed on 
a static snippet of code. This is limiting, as the amount of code 
a participant can view is only what can fit on a screen. 
Additionally, participants are viewing the code outside of a 
normal development environment they use. To address this 
threat to validity, the iTrace infrastructure provides iTrace-Core 
and the iTrace IDE Plugins. An IDE Plugin is loaded alongside 
iTrace-Core to perform an eye-tracking study. iTrace-Core 
gathers raw gaze data from the eye-tracker, while the IDE Plugin 
gathers contextual information from the IDE, such as file and 
the line/column of where the user is looking. The output from 
iTrace-Core and the IDE Plugins are fed into iTrace-Toolkit. 
iTrace-Toolkit can then be used to convert the gaze data into eye 

fixations, and along with a srcML [5] [6] file of the source code, 
gather contextual information relating to the language context of 
the source code. 

Researchers still face the issue of visualizing the collected 
eye-tracking data. A five-minute eye-tracking session using a 
120Hz eye-tracker generates around 36,000 raw eye gazes and 
depending on the fixation generation algorithm used in iTrace-
Toolkit, hundreds of fixations. To view the data, researchers 
typically open the files with a database browser, or they output 
results into a text file and then manually examine them. While 
information such as the token and context can be understood 
from these formats, information like the x and y pixel 
coordinates and the duration are difficult to follow.  

Members of the iTrace users community have requested the 
ability to have a simple way to visualize the information 
generated by iTrace. To help researchers view the gazes, 
fixations, and other gathered information, we created iTrace-
Visualize. iTrace-Visualize is a tool that combines data gathered 
from previous steps (typically after the data runs through Toolkit 
[4]) and marks up a video to display the data concisely and 
simply. iTrace-Visualize offers the following types of markups: 

• Gaze Markup: Using the gaze and IDE context data 

gathered from iTrace-Core and an IDE Plugin, the gazes 

are displayed on the video when they occur in real-time. 

• Fixation Markup: Like the gaze markup, fixations 

generated in iTrace-Toolkit can be displayed. Specific 

fixation runs can be chosen if multiple are run and 

available in Toolkit. Several fixation algorithms are 

supported.  

• Saccade Markup: Saccades, the path the eye takes 

between fixations, are calculated and drawn to the video. 

• Code Highlighting: By putting frames of the video 

through an image processing pipeline, each line of code is 
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detected and given a bounding box. iTrace-Visualize then 

highlights the line when a fixation is within the bounds. 

• Video Interpolation Stretching: If a high-speed eye-

tracker is used during the eye-tracking session, and the 

refresh rate is much higher than the FPS of the recorded 

video, iTrace-Visualize can duplicate the frames of the 

video to stretch it out, allowing for more data to be 

displayed. 

• Fading Display: Due to the instantaneous nature of gazes, 

displayed gazes are displayed on a single frame before 

being replaced by the next gaze. To solve this, a fading 

display is implemented to slowly fade away old gazes so 

instead of one single gaze point flitting around the video, 

a cloud of gaze points shifts around the screen. 

• Options Customization: Multiple options within iTrace-

Visualize can be customized and changed, granting 

researchers the ability to display information they want in 

a way they want. 

Trace-Visualize is currently the last step of the iTrace 
Infrastructure, as it makes use of information from almost every 
previous step in the process. Figure 1 details where iTrace-
Visualize lies within the greater iTrace Infrastructure. 

 

Figure 1: iTrace-Visualize within the iTrace Infrastructure and its 
input/output 

II. RELATED STUDIES 

Previous work has been done on how to best visualize eye-
tracking data. Špakov and Miniotas did work on visualizing the 
data as a heat map over the source [7]. Similar studies by Punde, 
et al. [8] and Pfeffer and Memili [9] have been done using 
heatmaps. This method was explored for use within iTrace-
Visualize, but it was ultimately decided that a heat map does not 
fit the dynamic nature of a software engineering study, due to 
the large amount of color and detail on the stimulus, and the time 

progressing nature of the eye-tracking data. Additionally, 
because iTrace-Visualize has different data to mark up 
(saccades, gazes, fixations), using heatmaps becomes 
complicated and difficult to read. We prioritized 
fixations/saccades over heatmaps as they are more focused on 
what was looked at by the individual person. Other adhoc 
visualizations using graph embeddings [10] are proposed by 
Zhang et al. however these are seen as more specific to a task 
and not real-time like iTrace-Visualize. 

Previously within iTrace we explored visualizing gazes as 
they are being recorded. iTrace Eclipse, introduced by Sharif 
and Maletic, has a feature that highlights any token that falls 
under the gaze within the IDE [1] [2]. Work has also been done 
by Clark and Sharif on iTraceVis [11], an early feature in iTrace-
Eclipse which did live visualization directly in Eclipse. These 
features are what inspired us to build iTrace-Visualize. Using it 
allows a researcher to go from conducting the study to 
visualizing the data for quick insights. It was also the most 
requested feature from the community.  

III. ARCHITECTURE 

A. Implementation 

iTrace-Visualize is implemented using Python and the QT 
Python Bindings [12]. iTrace-Visualize consists of a simple GUI 
that consists mostly of buttons for importing data and 
customizing output options. The OpenCV Python bindings [13] 
are used for line detection. 

To display markup, iTrace-Visualize creates a list of 
timestamps that correspond to every frame of the video and 
gathers a list of every element of data that the researcher wants 
to be displayed. Every list is then looped through, and 
timestamps are compared. If the timestamp of a particular data 
point matches the current frame, the data is drawn. 

B. Video Gathering  

For iTrace-Visualize to markup a video, a video recording 
must be taken of the eye-tracking session. However, because of 
how iTrace-Visualize draws markup based on the timestamp of 
the data, making sure the video’s start and end matches perfectly 
with the start and end of the eye-tracking session is very 
important. Manually taking a recording of the session can 
introduce slight timing offsets, which results in the whole output 
being off. 

To solve this problem, a plugin was developed for the OBS 
program, called iTrace-ScreenRecord. OBS [14] (Open 
Broadcaster Software) is a program designed for the recording 
and streaming of desktop programs. A researcher can set OBS 
to record the IDE before a session and connect OBS to iTrace-
Core using iTrace-ScreenRecord. After connecting, OBS will 
automatically trigger a local recording to start when the “Start 
Tracking” button is pressed in iTrace-Core, and the recording 
will finish and save when the session is ending. This recorded 
video will be approximately the same length as the session, and 
thus does not cause an offset or cutoff in the markup. Using OBS 
to record this video provides the advantages of allowing a 
researcher to record desktop and microphone audio, record the 
entire desktop or specific programs, and all the other features 
that OBS provides. 



 

 

C. Gaze and Fixation Markup 

Gaze data is relatively simple to draw for markup. Gazes 

have no duration, and only have an (x, y) pixel coordinate value 

and a timestamp. Gazes are selected per recording session and 

can be chosen from a selection menu within iTrace-Visualize. 

Gazes are drawn as a simple five-pixel radius circle on the 

video. 

Fixations can be selected after choosing a recording session 

and are drawn in a similar way to gazes, as a circle. However, 

fixations have a duration, and so are drawn onto the screen for 

more than a single frame. Fixations are drawn onto the screen 

for as many milliseconds as their duration. Fixations also grow 

over their duration, so longer fixations end up being larger than 

shorter ones. 

D. Saccade Markup 

Currently, saccades are not calculated during any previous 

step within the iTrace Infrastructure. It is intended for iTrace-

Toolkit to eventually do this, but for now iTrace-Visualize 

calculates the saccades. iTrace-Visualize defines a saccade as a 

grouping of gazes that occur between two other fixations but 

are not a part of said fixations. Saccades are drawn as a series 

of white lines drawn between gaze points. While they do not 

have a predefined duration like fixations, they will be drawn on 

screen while any of its gazes are valid. 

E. Code Highlighting 

Along with marking up the concrete eye-tracking data, 

iTrace-Visualize provides an optional feature to highlight the 

line of code that the user was looking at during a fixation. This 

information gives researchers a visual way to see what coding 

constructs a participant looks at while analyzing code. 

Before iTrace-Visualize highlights the line, each frame of 

the video must be prepared so that the bounding boxes of each 

line are determined. To do so, the frame is put through a couple 

steps, some of which are seen in Figure 2: 

1. If the frame is from an IDE using a dark mode theme, the 

image must be inverted first, so the frame is similar to a 

light mode theme. 

2. The image is converted to grayscale, and then darkened. 

This causes any changes in font color, which is common in 

IDE’s due to syntax highlighting, to become evened out. 

3. The image is dilated, with an emphasis on horizontal 

dilation. The horizontal dilation causes characters and 

words on a line to merge into each other, while lines stay 

separated. 

4. For each blur in the dilated image, a flood fill algorithm 

is used to find the bounding box coordinates of the blur. 

The bounding box coordinates gathered at the end of the 

process are then used for both calculating if a fixation is looking 

at a particular line, as well as providing the dimensions for 

which pixels to affect to highlight the line. 

A major issue with implementing the highlighting is how 

long identifying each bounding box can take, especially 

considering the efficiency of the flood fill algorithm. If each 

frame is individually calculated, the process will take hours. To 

solve this, iTrace-Visualize calculates the bounding boxes 

once, and reuse them until the scene drastically changes. Every 

frame is compared to the previous one, and if the percentage of 

change is over five percent, the previous boxes are discarded, 

and a new set is calculated. 

F. Video Interpolation Stretching 

Most current eye-trackers available to researchers have 

refresh rates higher than 60Hz. This means that any screen 

recording made of a session using these eye-tracker must be 

recorded at a higher FPS to prevent gazes from being skipped 

during visualization. Most machines and a lot of monitors 

cannot record and display video consistently at framerates 

higher than 144Hz. The fading display helps combat this by 

displaying any skipped gazes as already fading, but the multiple 

gazes still appear at once. To help combat this issue, iTrace-

Visualize artificially stretches a video out by adding duplicate 

input frames to be processed. Each duplicated frame is added to 

the input queue and given an interpolated timestamp. These 

frames are treated as normal input, and any data that aligns with 

the frame’s timestamp are drawn on as normal.  

Videos can be extended by any integer factor, with a factor 

of N adding N duplicates of each frame. The output videos is N 

times longer than the input video, as the output will always be 

the same framerate as the input. This has the side effect of 

causing the video to appear to be running in slow motion, and 

no longer be in real time. 

G. Fading Display 

Gazes are an instantaneous data point, only appearing on the 

frame closest to their timestamp. Because of this, when viewing 

a video, a single gaze dot will jump around the screen every 

frame and is hard and disorienting to follow. To remedy this, a 

fading approach to displaying data is adopted. Instead of 

drawing only the most current data, all data points that occurred 

in the past within a customizable period are drawn. By default, 

iTrace-Visualize draws everything within a one second 

Figure 2: From left to right – an input image (inverted), the darkened grayscale image, the image dilation, and the lines’ bounding boxes. 



 

 

window. These markups slowly fade out, to prevent crowding 

of the data. Figure 4 details the change in display methods. 

 

Figure 4: A frame of marked video without fading (left) and with 

fading (right) shown on different snippets. 

H. Options Customization 

To grant researchers the ability to fine tune their visualized 

data, iTrace-Visualize allows a researcher to tweak various 

values and options for their output. 

• Fixation Drawing: If a researcher does not want fixations 

to be displayed, they can avoid selecting a fixation run in 

the top-right list of runs after selecting a session. 

• Saccade Drawing: A checkbox is provided to enable and 

disable the selection of saccades. 

• Line Highlighting: Like saccades, a checkbox is provided 

to enable and disable the highlighting of lines. This feature 

also is not performed if fixations are not selected. 

• Value Tweaking: Gaze size, fixation base size, video 

stretch factor, and the fade delay can be manually adjusted 

through a number text box. 

IV. RESULTS 

To test iTrace-Visualize, a small scale study is conducted 

with four members of the iTrace development team. To begin, 

a normal eye-tracking session is set up using iTrace-Core (with 

DejaVu [3] enabled via a checkbox) and whatever IDE the 

participant preferred. For this test, we used the iTrace-Atom 

plugin. We used the DejaVu option to keep track of the mouse 

scrolls and accurately record data over 60 Hz [3]. Recording 

with DejaVu is not required to use iTrace-Visualize. The 

participants are given a small part of iTrace-Toolkit’s source 

code, and asked to read the function name in every .h file and 

read through a random function of their choice in the 

controller.cpp file. Participants are instructed to set up 

OBS and iTrace-ScreenRecord during the recording as well. 

After recording, participants are instructed to run the source 

code through srcML, and then use iTrace-Toolkit to map tokens 

and generate a set of fixations with every algorithm. 

After gathering all the data and videos from the participants, 

the first author ran each session through iTrace-Visualize. The 

output videos are collected and watched through, and compared 

to standard heatmap style images from the heat map studies 

mentioned in Section II [7] [8] [9]. Table 1 details the sessions 

and how long they took to process. For consistency, only 

fixations calculated with the IDT algorithm [15] in iTrace-

Toolkit are displayed and counted.  

Table 1: Sessions gathered and put through iTrace-Visualize. All 

time values are in hh:mm:ss 

Participants 1, 2, and 4 used the Tobii Pro Spectrum eye-

tracker at 300Hz, while participant 3 used the Tobii Pro X3-120 

eye-tracker at 120 Hz. Because participant 3 used a lower speed 

tracker, they have significantly less gazes for the amount of 

time recorded (around 5 mins). This also affects the number of 

fixations, as participant 3’s gazes are less dense, causing more 

to be registered. Despite this, participant 3 has similar number 

of gazes as participants 1 and 2, and thus has a similar 

processing time when not doing line highlighting. Participant 4, 

has almost double the number of gazes and double the 

processing time. 

Line highlighting affects processing time differently. 

Because the bounding boxes must be re-calculated when the 

screen signifigantly shifts, things like scrolling the screen or 

opening a context menu causes delays in processing. Participant 

3 has the largest number of mouse scrolls, which results in the 

largest difference in processing time when processing without 

highlights compared to with highlights. This does not account 

for every increase in processing time, as other things like 

context menus and pop-ups also increase the time. 

V. DISCUSSIONS 

When comparing the two styles of visualizations, there is 

not a lot of objective pros and cons that can be listed, as 

preferences may be based on subjective choice. However, 

iTrace-Visualize’s implementation does provide some 

advtanages over the more traditional heatmap visualizations. 

The biggest improvement is the ability to view the data over 

time, and tell the order and duration of what a user looking at. 

While heatmaps can showcase the progression of time, changes 

in heatmaps take longer to update, as they are area based as 

opposed to iTrace-Visualize’s point-based system. Heatmaps 

also do not scale well with the differing speeds of eye-trackers 

and different fixation algorithms. Because different numbers of 

gazes can go into each fixation due to these factors, the 

heatmaps do not consistenly grow for each session, and some 

appear weaker. Additionally, iTrace-Visualize supports the 

drawing of multiple kinds of data (saccades, raw gaze, and 

fixations) that are not seen on heatmaps. 

iTrace-Visualize will take a good chunk of time to process 

a video as shown in Table 1. Even before the introduction of 

the fading display and line highlighting, iTrace-Visualize must 

draw markup on every single frame of a video, which at two 

Participant 1 2 3 4 

# of Gazes 40519 30453 35766 78594 

# of Fixations 

(IDT) 
254 211 1273 488 

# of Mouse Scrolls  70 114 368 108 

Session Time 0:02:15 0:01:41 0:04:57 0:04:21 

Proc. Time w/o 

Highlighting 
0:31:24 0:22:46 0:30:44 0:59:40 

Proc. Time w/ 

Highlighting 
0:42:12 0:37:55 1:21:09 1:35:15 



 

 

minutes and 60 fps is 7200 frames. Additionally, because of the 

fading display, multiple data points must be drawn on each 

frame. At 300Hz, roughly 300 gazes are drawn on each frame 

at varying levels of transparency. The average time spent on 

each frame is calculated in Table 2. For the 3 sessions recorded 

at 300Hz, the average processing time without highlighting is 

0.2283 seconds per frame. This is consistent regardless of video 

length. 

Table 2: Average processing time per frame in iTrace-Visualize. All 

time values are in seconds. 

When using highlighting, the scale is different. The percent 

increase in frame processing time does not stay consistent due 

to the number of bounding box calculations that must be 

performed. Out of the three participants at 300Hz, participant 2 

has the biggest percent increase, with 4 and 1 behind in order. 

This matches with the number of mouse scrolls in Table 1. This 

can also be seen with Participant 3, because despite having a 

much lower eye-tracker speed, there is an enormous increase in 

frame processing time due to the larger amount of bounding box 

refreshes that had to be performed. 

VI. CONCLUSIONS AND FUTURE WORK 

iTrace-Visualize takes eye movement data from the iTrace 

pipeline and marks up the data onto a video recording of an eye-

tracking session for other researchers to view and present their 

data. This is helpful for researchers so they can visually analyze 

their collected data for flaws and inconsistencies or compare 

data in a human-perceivable way.  

In the future, we plan to expand iTrace-Visualize by 

expanding the type of markup iTrace-Visualize can support. 

Mouse and keyboard information gathered from DejaVu [3] in 

iTrace-Core can be displayed through small visual annotations 

for keyboard presses and expanding/shrinking circles for mouse 

clicks. When the iTrace Infrastructure supports the calculation 

of saccades, iTrace-Visualize will be updated to use those 

instead of manually calculating them from fixations. 

Highlighting will also be improved, with both line and token 

highlighting being offered. Currently, highlighting will only 

occur if a fixation occurs directly in the bounding box of a line. 

However, highlighting should occur if the fixation is close to 

the box as well, as the box will wrap the text to its pixel values, 

which does not necessarily match the dimensions of the line. 

Additionally, the processing speed for iTrace-Visualize will 

be improved. When dealing with numerous lengthy studies, the 

ability to generate a visualization of each session quickly is 

important. Allowing iTrace-Visualize to process the video in 

multiple threads will increase the speed. iTrace-Visualize can 

also be improved to do its additions on the GPU of the machine, 

if present, which will drastically speed up the process. 

We plan to release a beta version of iTrace-Visualize to the 

public by the end of the summer. 
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Participant 1 2 3 4 

Tracker Speed 300Hz 300Hz 120Hz 300Hz 

# of frames 8101 6081 17861 15709 

Proc. Time w/o 

Highlight 
1884 1366 1844 3580 

Avg. Frame 

Time w/o 

Highlight 

0.2325 0.2246 0.1032 0.2278 

Proc. Time w/ 

Highlight 
2532 2275 4869 5715 

Avg. Frame 

Time w/ 

Highlight 

0.3125 0.3741 0.2726 0.3638 

% Increase in 

Frame Time 
134.3% 166.5% 264.0% 159.6% 


