

iTrace-Visualize: Visualizing Eye-Tracking Data for

Software Engineering Studies

Joshua Behler

Department of Computer

Science

Kent State University

Kent, Ohio, USA

jbehler1@kent.edu

Gino Chiudioni

Department of Computer

Science

Kent State University

Kent, Ohio, USA

gchiudio@kent.edu

Alex Ely

Department of Computer

Science

Kent State University

Kent, Ohio, USA

aely3@kent.edu

Julia Pangonis

Department of Computer

Science

Kent State University

Kent, Ohio, USA

jpangoni@kent.edu

Bonita Sharif

School of Computing

University of Nebraska-Lincoln

Lincoln, Nebraska, USA

bsharif@unl.edu

Jonathan I. Maletic

Department of Computer Science

Kent State University

Kent, Ohio, USA

jmaletic@kent.edu

Abstract— iTrace is community infrastructure that allows

software engineering researchers to conduct eye-tracking studies

on large realistic code bases. The iTrace Infrastructure consists of

a set of tools that assist with gathering, processing, and evaluating

eye-tracking data on large software projects within an Integrated

Development Environment (IDE). A typical eye-tracking study

results in millions of raw gazes that are overwhelming to view and

sort through. To help researchers view and comprehend this data,

iTrace-Visualize is presented. This tool integrates information

produced by the iTrace Infrastructure into a dynamic video

recording of the eye-tracking session. Eye fixations and the scan

path between fixations are overlayed on the video. Additionally,

the line being examined can be highlighted in the video. iTrace-

Visualize enables a researcher to replay eye fixations via a video

overlay immediately after a study. This serves as a quick

validation of what was done during the study and can also provide

quick insights into what the participants looked at. To illustrate

iTrace-Visualize’s capabilities, a small pilot study is performed.

Demo Video—https://youtu.be/c1hUFDmBM50

Keywords—eye tracking, fixations, pipeline

I. INTRODUCTION

The iTrace Infrastructure is used by software engineering
researchers to perform eye-tracking studies in development
environments [1] [2] [3] [4]. Normally, eye-tracking studies are
performed on static, unmoving stimuli. Software engineering
studies that use eye-tracking have been typically performed on
a static snippet of code. This is limiting, as the amount of code
a participant can view is only what can fit on a screen.
Additionally, participants are viewing the code outside of a
normal development environment they use. To address this
threat to validity, the iTrace infrastructure provides iTrace-Core
and the iTrace IDE Plugins. An IDE Plugin is loaded alongside
iTrace-Core to perform an eye-tracking study. iTrace-Core
gathers raw gaze data from the eye-tracker, while the IDE Plugin
gathers contextual information from the IDE, such as file and
the line/column of where the user is looking. The output from
iTrace-Core and the IDE Plugins are fed into iTrace-Toolkit.
iTrace-Toolkit can then be used to convert the gaze data into eye

fixations, and along with a srcML [5] [6] file of the source code,
gather contextual information relating to the language context of
the source code.

Researchers still face the issue of visualizing the collected
eye-tracking data. A five-minute eye-tracking session using a
120Hz eye-tracker generates around 36,000 raw eye gazes and
depending on the fixation generation algorithm used in iTrace-
Toolkit, hundreds of fixations. To view the data, researchers
typically open the files with a database browser, or they output
results into a text file and then manually examine them. While
information such as the token and context can be understood
from these formats, information like the x and y pixel
coordinates and the duration are difficult to follow.

Members of the iTrace users community have requested the
ability to have a simple way to visualize the information
generated by iTrace. To help researchers view the gazes,
fixations, and other gathered information, we created iTrace-
Visualize. iTrace-Visualize is a tool that combines data gathered
from previous steps (typically after the data runs through Toolkit
[4]) and marks up a video to display the data concisely and
simply. iTrace-Visualize offers the following types of markups:

• Gaze Markup: Using the gaze and IDE context data

gathered from iTrace-Core and an IDE Plugin, the gazes

are displayed on the video when they occur in real-time.

• Fixation Markup: Like the gaze markup, fixations

generated in iTrace-Toolkit can be displayed. Specific

fixation runs can be chosen if multiple are run and

available in Toolkit. Several fixation algorithms are

supported.

• Saccade Markup: Saccades, the path the eye takes

between fixations, are calculated and drawn to the video.

• Code Highlighting: By putting frames of the video

through an image processing pipeline, each line of code is

mailto:jbehler1@kent.edu
mailto:gchiudio@kent.edu
mailto:aely3@kent.edu
mailto:jpangoni@kent.edu
mailto:bsharif@unl.edu
mailto:jmaletic@kent.edu
https://youtu.be/c1hUFDmBM50

detected and given a bounding box. iTrace-Visualize then

highlights the line when a fixation is within the bounds.

• Video Interpolation Stretching: If a high-speed eye-

tracker is used during the eye-tracking session, and the

refresh rate is much higher than the FPS of the recorded

video, iTrace-Visualize can duplicate the frames of the

video to stretch it out, allowing for more data to be

displayed.

• Fading Display: Due to the instantaneous nature of gazes,

displayed gazes are displayed on a single frame before

being replaced by the next gaze. To solve this, a fading

display is implemented to slowly fade away old gazes so

instead of one single gaze point flitting around the video,

a cloud of gaze points shifts around the screen.

• Options Customization: Multiple options within iTrace-

Visualize can be customized and changed, granting

researchers the ability to display information they want in

a way they want.

Trace-Visualize is currently the last step of the iTrace
Infrastructure, as it makes use of information from almost every
previous step in the process. Figure 1 details where iTrace-
Visualize lies within the greater iTrace Infrastructure.

Figure 1: iTrace-Visualize within the iTrace Infrastructure and its
input/output

II. RELATED STUDIES

Previous work has been done on how to best visualize eye-
tracking data. Špakov and Miniotas did work on visualizing the
data as a heat map over the source [7]. Similar studies by Punde,
et al. [8] and Pfeffer and Memili [9] have been done using
heatmaps. This method was explored for use within iTrace-
Visualize, but it was ultimately decided that a heat map does not
fit the dynamic nature of a software engineering study, due to
the large amount of color and detail on the stimulus, and the time

progressing nature of the eye-tracking data. Additionally,
because iTrace-Visualize has different data to mark up
(saccades, gazes, fixations), using heatmaps becomes
complicated and difficult to read. We prioritized
fixations/saccades over heatmaps as they are more focused on
what was looked at by the individual person. Other adhoc
visualizations using graph embeddings [10] are proposed by
Zhang et al. however these are seen as more specific to a task
and not real-time like iTrace-Visualize.

Previously within iTrace we explored visualizing gazes as
they are being recorded. iTrace Eclipse, introduced by Sharif
and Maletic, has a feature that highlights any token that falls
under the gaze within the IDE [1] [2]. Work has also been done
by Clark and Sharif on iTraceVis [11], an early feature in iTrace-
Eclipse which did live visualization directly in Eclipse. These
features are what inspired us to build iTrace-Visualize. Using it
allows a researcher to go from conducting the study to
visualizing the data for quick insights. It was also the most
requested feature from the community.

III. ARCHITECTURE

A. Implementation

iTrace-Visualize is implemented using Python and the QT
Python Bindings [12]. iTrace-Visualize consists of a simple GUI
that consists mostly of buttons for importing data and
customizing output options. The OpenCV Python bindings [13]
are used for line detection.

To display markup, iTrace-Visualize creates a list of
timestamps that correspond to every frame of the video and
gathers a list of every element of data that the researcher wants
to be displayed. Every list is then looped through, and
timestamps are compared. If the timestamp of a particular data
point matches the current frame, the data is drawn.

B. Video Gathering

For iTrace-Visualize to markup a video, a video recording
must be taken of the eye-tracking session. However, because of
how iTrace-Visualize draws markup based on the timestamp of
the data, making sure the video’s start and end matches perfectly
with the start and end of the eye-tracking session is very
important. Manually taking a recording of the session can
introduce slight timing offsets, which results in the whole output
being off.

To solve this problem, a plugin was developed for the OBS
program, called iTrace-ScreenRecord. OBS [14] (Open
Broadcaster Software) is a program designed for the recording
and streaming of desktop programs. A researcher can set OBS
to record the IDE before a session and connect OBS to iTrace-
Core using iTrace-ScreenRecord. After connecting, OBS will
automatically trigger a local recording to start when the “Start
Tracking” button is pressed in iTrace-Core, and the recording
will finish and save when the session is ending. This recorded
video will be approximately the same length as the session, and
thus does not cause an offset or cutoff in the markup. Using OBS
to record this video provides the advantages of allowing a
researcher to record desktop and microphone audio, record the
entire desktop or specific programs, and all the other features
that OBS provides.

C. Gaze and Fixation Markup

Gaze data is relatively simple to draw for markup. Gazes

have no duration, and only have an (x, y) pixel coordinate value

and a timestamp. Gazes are selected per recording session and

can be chosen from a selection menu within iTrace-Visualize.

Gazes are drawn as a simple five-pixel radius circle on the

video.

Fixations can be selected after choosing a recording session

and are drawn in a similar way to gazes, as a circle. However,

fixations have a duration, and so are drawn onto the screen for

more than a single frame. Fixations are drawn onto the screen

for as many milliseconds as their duration. Fixations also grow

over their duration, so longer fixations end up being larger than

shorter ones.

D. Saccade Markup

Currently, saccades are not calculated during any previous

step within the iTrace Infrastructure. It is intended for iTrace-

Toolkit to eventually do this, but for now iTrace-Visualize

calculates the saccades. iTrace-Visualize defines a saccade as a

grouping of gazes that occur between two other fixations but

are not a part of said fixations. Saccades are drawn as a series

of white lines drawn between gaze points. While they do not

have a predefined duration like fixations, they will be drawn on

screen while any of its gazes are valid.

E. Code Highlighting

Along with marking up the concrete eye-tracking data,

iTrace-Visualize provides an optional feature to highlight the

line of code that the user was looking at during a fixation. This

information gives researchers a visual way to see what coding

constructs a participant looks at while analyzing code.

Before iTrace-Visualize highlights the line, each frame of

the video must be prepared so that the bounding boxes of each

line are determined. To do so, the frame is put through a couple

steps, some of which are seen in Figure 2:

1. If the frame is from an IDE using a dark mode theme, the

image must be inverted first, so the frame is similar to a

light mode theme.

2. The image is converted to grayscale, and then darkened.

This causes any changes in font color, which is common in

IDE’s due to syntax highlighting, to become evened out.

3. The image is dilated, with an emphasis on horizontal

dilation. The horizontal dilation causes characters and

words on a line to merge into each other, while lines stay

separated.

4. For each blur in the dilated image, a flood fill algorithm

is used to find the bounding box coordinates of the blur.

The bounding box coordinates gathered at the end of the

process are then used for both calculating if a fixation is looking

at a particular line, as well as providing the dimensions for

which pixels to affect to highlight the line.

A major issue with implementing the highlighting is how

long identifying each bounding box can take, especially

considering the efficiency of the flood fill algorithm. If each

frame is individually calculated, the process will take hours. To

solve this, iTrace-Visualize calculates the bounding boxes

once, and reuse them until the scene drastically changes. Every

frame is compared to the previous one, and if the percentage of

change is over five percent, the previous boxes are discarded,

and a new set is calculated.

F. Video Interpolation Stretching

Most current eye-trackers available to researchers have

refresh rates higher than 60Hz. This means that any screen

recording made of a session using these eye-tracker must be

recorded at a higher FPS to prevent gazes from being skipped

during visualization. Most machines and a lot of monitors

cannot record and display video consistently at framerates

higher than 144Hz. The fading display helps combat this by

displaying any skipped gazes as already fading, but the multiple

gazes still appear at once. To help combat this issue, iTrace-

Visualize artificially stretches a video out by adding duplicate

input frames to be processed. Each duplicated frame is added to

the input queue and given an interpolated timestamp. These

frames are treated as normal input, and any data that aligns with

the frame’s timestamp are drawn on as normal.

Videos can be extended by any integer factor, with a factor

of N adding N duplicates of each frame. The output videos is N

times longer than the input video, as the output will always be

the same framerate as the input. This has the side effect of

causing the video to appear to be running in slow motion, and

no longer be in real time.

G. Fading Display

Gazes are an instantaneous data point, only appearing on the

frame closest to their timestamp. Because of this, when viewing

a video, a single gaze dot will jump around the screen every

frame and is hard and disorienting to follow. To remedy this, a

fading approach to displaying data is adopted. Instead of

drawing only the most current data, all data points that occurred

in the past within a customizable period are drawn. By default,

iTrace-Visualize draws everything within a one second

Figure 2: From left to right – an input image (inverted), the darkened grayscale image, the image dilation, and the lines’ bounding boxes.

window. These markups slowly fade out, to prevent crowding

of the data. Figure 4 details the change in display methods.

Figure 4: A frame of marked video without fading (left) and with

fading (right) shown on different snippets.

H. Options Customization

To grant researchers the ability to fine tune their visualized

data, iTrace-Visualize allows a researcher to tweak various

values and options for their output.

• Fixation Drawing: If a researcher does not want fixations

to be displayed, they can avoid selecting a fixation run in

the top-right list of runs after selecting a session.

• Saccade Drawing: A checkbox is provided to enable and

disable the selection of saccades.

• Line Highlighting: Like saccades, a checkbox is provided

to enable and disable the highlighting of lines. This feature

also is not performed if fixations are not selected.

• Value Tweaking: Gaze size, fixation base size, video

stretch factor, and the fade delay can be manually adjusted

through a number text box.

IV. RESULTS

To test iTrace-Visualize, a small scale study is conducted

with four members of the iTrace development team. To begin,

a normal eye-tracking session is set up using iTrace-Core (with

DejaVu [3] enabled via a checkbox) and whatever IDE the

participant preferred. For this test, we used the iTrace-Atom

plugin. We used the DejaVu option to keep track of the mouse

scrolls and accurately record data over 60 Hz [3]. Recording

with DejaVu is not required to use iTrace-Visualize. The

participants are given a small part of iTrace-Toolkit’s source

code, and asked to read the function name in every .h file and

read through a random function of their choice in the

controller.cpp file. Participants are instructed to set up

OBS and iTrace-ScreenRecord during the recording as well.

After recording, participants are instructed to run the source

code through srcML, and then use iTrace-Toolkit to map tokens

and generate a set of fixations with every algorithm.

After gathering all the data and videos from the participants,

the first author ran each session through iTrace-Visualize. The

output videos are collected and watched through, and compared

to standard heatmap style images from the heat map studies

mentioned in Section II [7] [8] [9]. Table 1 details the sessions

and how long they took to process. For consistency, only

fixations calculated with the IDT algorithm [15] in iTrace-

Toolkit are displayed and counted.

Table 1: Sessions gathered and put through iTrace-Visualize. All

time values are in hh:mm:ss

Participants 1, 2, and 4 used the Tobii Pro Spectrum eye-

tracker at 300Hz, while participant 3 used the Tobii Pro X3-120

eye-tracker at 120 Hz. Because participant 3 used a lower speed

tracker, they have significantly less gazes for the amount of

time recorded (around 5 mins). This also affects the number of

fixations, as participant 3’s gazes are less dense, causing more

to be registered. Despite this, participant 3 has similar number

of gazes as participants 1 and 2, and thus has a similar

processing time when not doing line highlighting. Participant 4,

has almost double the number of gazes and double the

processing time.

Line highlighting affects processing time differently.

Because the bounding boxes must be re-calculated when the

screen signifigantly shifts, things like scrolling the screen or

opening a context menu causes delays in processing. Participant

3 has the largest number of mouse scrolls, which results in the

largest difference in processing time when processing without

highlights compared to with highlights. This does not account

for every increase in processing time, as other things like

context menus and pop-ups also increase the time.

V. DISCUSSIONS

When comparing the two styles of visualizations, there is

not a lot of objective pros and cons that can be listed, as

preferences may be based on subjective choice. However,

iTrace-Visualize’s implementation does provide some

advtanages over the more traditional heatmap visualizations.

The biggest improvement is the ability to view the data over

time, and tell the order and duration of what a user looking at.

While heatmaps can showcase the progression of time, changes

in heatmaps take longer to update, as they are area based as

opposed to iTrace-Visualize’s point-based system. Heatmaps

also do not scale well with the differing speeds of eye-trackers

and different fixation algorithms. Because different numbers of

gazes can go into each fixation due to these factors, the

heatmaps do not consistenly grow for each session, and some

appear weaker. Additionally, iTrace-Visualize supports the

drawing of multiple kinds of data (saccades, raw gaze, and

fixations) that are not seen on heatmaps.

iTrace-Visualize will take a good chunk of time to process

a video as shown in Table 1. Even before the introduction of

the fading display and line highlighting, iTrace-Visualize must

draw markup on every single frame of a video, which at two

Participant 1 2 3 4

of Gazes 40519 30453 35766 78594

of Fixations

(IDT)
254 211 1273 488

of Mouse Scrolls 70 114 368 108

Session Time 0:02:15 0:01:41 0:04:57 0:04:21

Proc. Time w/o

Highlighting
0:31:24 0:22:46 0:30:44 0:59:40

Proc. Time w/

Highlighting
0:42:12 0:37:55 1:21:09 1:35:15

minutes and 60 fps is 7200 frames. Additionally, because of the

fading display, multiple data points must be drawn on each

frame. At 300Hz, roughly 300 gazes are drawn on each frame

at varying levels of transparency. The average time spent on

each frame is calculated in Table 2. For the 3 sessions recorded

at 300Hz, the average processing time without highlighting is

0.2283 seconds per frame. This is consistent regardless of video

length.

Table 2: Average processing time per frame in iTrace-Visualize. All

time values are in seconds.

When using highlighting, the scale is different. The percent

increase in frame processing time does not stay consistent due

to the number of bounding box calculations that must be

performed. Out of the three participants at 300Hz, participant 2

has the biggest percent increase, with 4 and 1 behind in order.

This matches with the number of mouse scrolls in Table 1. This

can also be seen with Participant 3, because despite having a

much lower eye-tracker speed, there is an enormous increase in

frame processing time due to the larger amount of bounding box

refreshes that had to be performed.

VI. CONCLUSIONS AND FUTURE WORK

iTrace-Visualize takes eye movement data from the iTrace

pipeline and marks up the data onto a video recording of an eye-

tracking session for other researchers to view and present their

data. This is helpful for researchers so they can visually analyze

their collected data for flaws and inconsistencies or compare

data in a human-perceivable way.

In the future, we plan to expand iTrace-Visualize by

expanding the type of markup iTrace-Visualize can support.

Mouse and keyboard information gathered from DejaVu [3] in

iTrace-Core can be displayed through small visual annotations

for keyboard presses and expanding/shrinking circles for mouse

clicks. When the iTrace Infrastructure supports the calculation

of saccades, iTrace-Visualize will be updated to use those

instead of manually calculating them from fixations.

Highlighting will also be improved, with both line and token

highlighting being offered. Currently, highlighting will only

occur if a fixation occurs directly in the bounding box of a line.

However, highlighting should occur if the fixation is close to

the box as well, as the box will wrap the text to its pixel values,

which does not necessarily match the dimensions of the line.

Additionally, the processing speed for iTrace-Visualize will

be improved. When dealing with numerous lengthy studies, the

ability to generate a visualization of each session quickly is

important. Allowing iTrace-Visualize to process the video in

multiple threads will increase the speed. iTrace-Visualize can

also be improved to do its additions on the GPU of the machine,

if present, which will drastically speed up the process.

We plan to release a beta version of iTrace-Visualize to the

public by the end of the summer.

REFERENCES

[1] Bonita Sharif and Jonathan I. Maletic, “iTrace: Overcoming the

Limitations of Short Code Examples in Eye Tracking Experiments,” presented
at the 32nd IEEE International Conference on Software Maintenance and

Evolution (ICSME), Oct. 2016, pp. 647–647. doi: 10.1109/ICSME.2016.61.

[2] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“itrace: Eye tracking infrastructure for development environments,” in

Proceedings of the 2018 ACM Symposium on Eye Tracking Research &

Applications, ACM, 2018, p. 105.
[3] V. Zyrianov et al., “Deja Vu: semantics-aware recording and replay

of high-speed eye tracking and interaction data to support cognitive studies of

software engineering tasks—methodology and analyses,” Empir. Softw. Eng.,
vol. 27, no. 7, p. 168, Dec. 2022, doi: 10.1007/s10664-022-10209-3.

[4] J. Behler, P. Weston, D. T. Guarnera, B. Sharif, and J. I. Maletic,
“iTrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data of Software

Engineering Studies,” presented at the in the Proceedings of the 45th

IEEE/ACM International Conference on Software Engineering (ICSE)
Demonstrations Track, Melbourne, Australia, May 2023.

[5] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight

Transformation and Fact Extraction with the srcML Toolkit,” in 2011 IEEE
11th International Working Conference on Source Code Analysis and

Manipulation, Sep. 2011, pp. 173–184. doi: 10.1109/SCAM.2011.19.

[6] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An
Infrastructure for the Exploration, Analysis, and Manipulation of Source Code:

A Tool Demonstration,” in 29th IEEE International Conference on Software

Maintenance (ICSM), 2013, pp. 516–519. doi: 10.1109/ICSM.2013.85.
[7] O. Špakov and D. Miniotas, “Visualization of Eye Gaze Data using

Heat Maps,” Elektron. Ir Elektrotechnika, vol. 74 No. 2, pp. 55–58.

[8] P. A. Punde, M. E. Jadhav, and R. R. Manza, “A study of eye
tracking technology and its applications,” in 2017 1st International Conference

on Intelligent Systems and Information Management (ICISIM), Oct. 2017, pp.

86–90. doi: 10.1109/ICISIM.2017.8122153.
[9] T. Pfeiffer and C. Memili, “Model-based real-time visualization of

realistic three-dimensional heat maps for mobile eye tracking and eye tracking

in virtual reality,” in Proceedings of the Ninth Biennial ACM Symposium on
Eye Tracking Research & Applications, in ETRA ’16. New York, NY, USA:

Association for Computing Machinery, Mar. 2016, pp. 95–102. doi:

10.1145/2857491.2857541.
[10] L. Zhang, J. Sun, C. Peterson, B. Sharif, and H. Yu, “Exploring Eye

Tracking Data on Source Code via Dual Space Analysis,” in 2019 Working

Conference on Software Visualization (VISSOFT), Cleveland, OH, USA: IEEE,
Sep. 2019, pp. 67–77. doi: 10.1109/VISSOFT.2019.00016.

[11] B. Clark and B. Sharif, “iTraceVis: Visualizing Eye Movement Data

Within Eclipse,” in 2017 IEEE Working Conference on Software Visualization
(VISSOFT), Shanghai, China: IEEE, Sep. 2017, pp. 22–32. doi:

10.1109/VISSOFT.2017.30.

[12] “Qt for Python.” https://doc.qt.io/qtforpython-6/ (accessed Jun. 21,
2023).

[13] “opencv-python · PyPI.” https://pypi.org/project/opencv-python/

(accessed Jun. 21, 2023).
[14] “Open Broadcaster Software | OBS.” https://obsproject.com/

(accessed Jun. 21, 2023).

[15] R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M.
Nyström, “One algorithm to rule them all? An evaluation and discussion of ten

eye movement event-detection algorithms,” Behav. Res. Methods, vol. 49, no.

2, pp. 616–637, Apr. 2017, doi: 10.3758/s13428-016-0738-9.

Participant 1 2 3 4

Tracker Speed 300Hz 300Hz 120Hz 300Hz

of frames 8101 6081 17861 15709

Proc. Time w/o

Highlight
1884 1366 1844 3580

Avg. Frame

Time w/o

Highlight

0.2325 0.2246 0.1032 0.2278

Proc. Time w/

Highlight
2532 2275 4869 5715

Avg. Frame

Time w/

Highlight

0.3125 0.3741 0.2726 0.3638

% Increase in

Frame Time
134.3% 166.5% 264.0% 159.6%

