Examining the Effects of Layout and Working
Memory on UML Class Diagram Defect
Identification

Bonita Sharif
School of Computing
University of Nebraska - Lincoln
Lincoln, Nebraska USA
Email: bsharif @unl.edu

Isaac Baysinger
School of Computing
University of Nebraska - Lincoln
Lincoln, Nebraska USA
Email: isaacbaysinger @huskers.unl.edu

Abstract—A controlled experiment investigating the effect lay-
out has on how students find defects in UML class diagrams with
respect to requirements is presented. Two layout schemes from
prior literature namely, multi-cluster and orthogonal layouts, are
compared with respect to two open source systems, Doxygen
and Qt. The experiment is conducted with 89 students from
two universities in a classroom lab setting. Each participant is
placed in one of two groups where each group are given 2 defect
detection tasks (with five sub-parts) with each task using one
of the two layouts in each subject system. The only difference
between groups is that the layouts were flipped between the two
tasks. Feedback is collected after each task. A mental rotation
and object memory task is conducted at the end of the two
tasks to correlate their spatial and working memory skills to the
task performance. Results indicate that the multi-cluster layout
performed better in terms of accuracy of finding defects, but not
significantly. There is also not much difference in time to find
them. Furthermore, it is found that the object memory skills are
sometimes correlated with the performance of the defect detection
tasks. These results can be used to help improve the teaching
of UML class diagram defect detection skills by incorporating
clustered layouts and object memory tasks. In addition, they can
help identify people who are best suited for finding critical defects
in design.

Index Terms—UML class diagrams, controlled experiment,
layouts, working memory, defect detection, requirements

I. INTRODUCTION

The Unified Modeling Language (UML) provides software
engineers with a standardized means to design, specify, and
visualize software [1]. UML consists of a variety of different
diagrams and textual notation that represent static structure and
dynamic behavior. The class diagram is the most commonly
used diagram to design and specify how the different entities
in a software system relate to each other. These diagrams
are typically built during the analysis and design phase after
requirements are elicited from customers. A diagram consists

Kang-il Park
School of Computing
University of Nebraska - Lincoln
Lincoln, Nebraska USA
Email: kangil.park@huskers.unl.edu

Mohammed Aly
Software Engineering Department
Assiut University
Assiut, Egypt
Email: mohamed.walid@compit.aun.edu.eg

Michael P. DeJournett
School of Computing
University of Nebraska - Lincoln
Lincoln, Nebraska USA
Email: mdejournett2@huskers.unl.edu

Jonathan I. Maletic
Department of Computer Science
Kent State University
Kent, Ohio, USA
Email: jmaletic@kent.edu

of a subset of the model (classes and relationships) drawn in a
specific layout. There are various layouts that can be applied
to a class model to enhance the way the diagram is drawn.
The most commonly used layout is the orthogonal layout
[2] used by most modeling software. The orthogonal layout
prioritizes general aesthetic criteria such as minimizing edge
crossings, edge bends, edge lengths, maximizing symmetry,
and using 90-degree bends for edges. It does not use any
semantic information about the classes or how they are related
to position the classes on the diagram.

In 2005, a pilot study [3] was conducted by Andriyevska
et al. that made use of class stereotypes of control, boundary,
and entity [1] (visually represented by textual annotations and
color) to produce a multi-cluster layout and a three-cluster
layout for class diagrams. Entity classes store persistent infor-
mation, control classes are responsible for main delegation of
work, and boundary classes are what interface the system with
the outside world. The three-cluster layout puts all control,
entity, and boundary classes into three separate clusters. The
multi-cluster layout uses information about the class stereotype
semantics (of control, boundary, and entity) to position classes
into multiple clusters on the diagram.

Each cluster represents a cohesive set of classes that depend
on the types of relationships that exist between the classes
in that cluster. A cluster can represent a specific concept or
feature in the system. The study found that it is important to
prioritize an architecturally meaningful UML class diagram
rather than an aesthetically pleasing one because the clustered
layouts performed better for their comprehension tasks. Since
then, there are several studies [4]—[8] that show the clustered
layouts performed better than the orthogonal layouts. A sum-
mary of the set of experiments assessing multi-cluster vs.
orthogonal layouts is given by Sharif [9].

Prior studies done in the area of UML class diagrams are
on high-level comprehension tasks with the exception of [6],
which focuses on other tasks such as impact analysis, bug fix,
feature addition, and refactoring besides reading and high-level
overview tasks. However, none of the prior studies focus on
finding defects in UML class diagrams (varying layout) with
respect to requirements. This is important because UML class
diagrams often decay or do not always match requirements
during analysis. During design review, common practice is for
a team member to review design documents to make sure they
comply with requirements.

To bridge this gap, we conduct a study to understand how
developers identify defects in UML class diagrams (presented
in two different layouts) with respect to a requirements doc-
ument (presented as text). The requirements and tasks are
derived from two large C++ open-source systems. Besides
the defect detection, we also want to determine if working
memory capacity and spatial ability of the developers have
any effect on their performance. Baum et al. found that
working memory capacity has an effect on bug localization
accuracy in code reviews [10]. Sharafi et al., found that
spatial ability and data structure manipulation are related
neural tasks [11]. For this reason, we include working memory
capacity tasks in the study to determine if doing well on
them transfers to defect detection skills between UML class
diagrams and requirements documents. The study makes the
following contributions: a) systematically studies if layout
impacts defect detection accuracy and time, and b) determines
if working memory capacity has an effect on defect detection
performance.

The results show that there is no significant difference in
defect detection score or time for neither the multi-cluster
nor orthogonal layout in the Doxygen and Qt systems. When
looking for correlations between working memory and defect
detection times, we did not see any significant correlations.
When looking for correlations between working memory and
defect detection accuracy, the object memory score had a
significant correlation for both systems. However, this is only
in one of the layouts for each system (multi-cluster for
Doxygen, orthogonal for Qt).

The rest of the paper is organized as follows. Section II
lists our research questions and hypotheses. Related work is
presented in Section III. The experiment design is given in
Section IV. Section V presents the results for each research
question. We discuss the impact of this work in Section VII
and conclude the paper in Section VIII.

II. RESEARCH QUESTIONS AND HYPOTHESES
This study seeks to address the following research questions.

RQ1 Does layout affect the accuracy of detecting defects in
UML class diagrams with respect to requirements?

RQ2 Does layout affect the time taken to detect defects in
UML class diagrams with respect to requirements?

RQ3 Does working memory correlate with accuracy and time
taken in finding defects in UML class diagrams with
respect to requirements?

TABLE I
NULL AND ALTERNATIVE HYPOTHESES

Null Hypothesis

Alternative Hypothesis

Hlo: There is no significant dif-
ference on defect detection accu-
racy in UML class diagrams be-
tween the orthogonal layout and
the multi-cluster layout with re-
spect to requirements.

H1l,: There is a significant im-
provement on defect detection ac-
curacy in UML class diagrams
following the multi-cluster layout
with respect to requirements.

H20: There is no significant dif-
ference on defect detection time in
UML class diagrams between the
orthogonal layout and the multi-
cluster layout with respect to re-
quirements.

H2,: There is a significant im-
provement on defect detection time
in UML class diagrams following
the multi-cluster layout with re-
spect to requirements.

H30p: There is no significant cor-
relation between working memory
and defect detection accuracy in
UML class diagrams between the
orthogonal layout and the multi-
cluster layout with respect to re-
quirements.

H3,: There is a significant correla-
tion between working memory and
defect detection accuracy in UML
class diagrams in both the orthog-
onal and the multi-cluster layouts
with respect to requirements.

H4o: There is no significant cor-
relation between working mem-
ory and defect detection time in
UML class diagrams between the
orthogonal layout and the multi-
cluster layout with respect to re-

H4,: There is a significant correla-
tion between working memory and
defect detection time in UML class
diagrams in both the orthogonal
and the multi-cluster layouts with
respect to requirements.

quirements.

To answer RQI, we rely on the score of each of the tasks
and compare the two groups of multi-cluster and orthogonal
layouts for each task across the same system. For RQ2, we
test if time plays a factor in how they answer the two tasks
in each respective layout across the same system. It has
been shown that working memory capacity has an effect on
how problem-solving tasks are performed. We operationalize
working memory by testing the participants on two sub-tasks:
object memory [12] and mental rotation [13]. The rationale
for the object memory tasks (where participants had to recall
letters and numbers) is to determine if that skill transferred
to recalling the requirements they read. The rationale for
the mental rotation tasks (where the participants are asked
to determine if the image is the same when rotated) is to
determine if the spatial recognition skill transferred to finding
objects in a diagram when different layouts are used. The
corresponding null and alternative hypotheses for each of the
research questions are given in Table I.

III. RELATED WORK

This section presents related work in the areas of defect
detection in UML diagrams and empirical studies using UML
models and layouts for comprehension.

Ondik et al. discuss the creation and use of a new software
tool to better analyze defects in UML diagrams [14] based on
developers’ activities over models. They do this by detecting
defects in real time and provide a way to incrementally
synchronise the models. Laurent et al. suggests extending
fUML [15] to include built-in error detection and correction.
They provide a prototype for debugging UML models and
present a small case study showing better understanding of the

models to novices (for proper use of constructs) and experts
(to better understand designs). Enckevort sought to detect
defects in UML class diagrams using custom OCL queries
[16]. These studies do not empirically test comprehension of
specific layouts.

Lange and Chaudron empirically investigated the impact of
defects in UML models [17]. Their primary objective was to
determine if defects caused misinterpretation of the models.
The researchers’ goal was to improve modeling practices,
ensure clearer communication, and minimize risks in soft-
ware design and development processes. 111 Masters students
participated in the experiment. Key findings of the research
include that there’s a notable variation in defect detection rates
across different defect types. 96% of participants were able to
detect the “Class not in Sequence Diagram” defect, but only
10 % could spot the “Multiple Definitions of the same Class”
defect. The risks for misinterpretations stemming from these
defects were found to be significant. Overall, the study calls for
enhanced clarity and training in software modeling to ensure
effective communication and flawless development.

There have been other studies focusing solely on layout [18]
such as using page rank algorithms to emphasize important
classes [19], evolutionary algorithms [20], topology shape
metrics [21], and force directed layouts [22]. Purchase et al.
conducted a study to identify important aesthetic criteria for
the automatic layout of UML class diagrams from a human
perspective [23]. They concluded that the aesthetics depend
on the actual semantics of the diagram and entities. They also
studied five notational variants for class diagrams showing that
the task might be a factor in determining the best performing
notation [24].

The layouts used in this study stem directly from work
done by Andriyevska et al. [3]. They found that architectural
important layouts that are based on stereotypes assist in com-
prehension more compared to ones based solely on aesthetics
[3]. Our layouts are directly based off of the architectural
importance guidelines in [3]. Yusuf et al. conducted one of the
first eye tracking studies to assess the comprehension of UML
class diagrams [4]. They tested layouts, color, and stereotype
usage and found that layouts with semantic information were
found most effective with stereotypes playing an important
role.

Sharif and Maletic replicated this study using online ques-
tionnaires and a bigger sample [5]. Results show a significant
improvement in performance when multi-cluster layouts are
used for UML notation and design tasks In 2009, Sharif and
Maletic conducted a controlled experiment with 45 partici-
pants of varied experience levels to determine the effect of
two different layout strategies i.e. orthogonal layout and multi-
cluster layout in UML class diagrams [6]. Their aim was to
investigate whether the layout of class diagrams influences the
accuracy and efficiency of six different categories of software
comprehension tasks. The results indicated that the multi-
cluster layout demonstrates higher accuracy and faster task
completion across a majority of task categories also indicating
its effectiveness in supporting software comprehension.

In 2010, Sharif and Maletic investigated how design patterns
in class diagrams are identified by students [7]. The layout was
determined to have a significant effect on both the accuracy
of identification and also speed of correct identification. Later
Sharif and Maletic sought to identify how design patterns
effect comprehension of UML class diagrams via eye tracking
[8]. Four design patterns were shown to participants as their
eyes were tracked. The participants also answered a question-
naire about the diagrams they were shown. Results showed a
significant increase in accuracy regarding multi-cluster layouts
with the Strategy pattern, the same is true for the Observer
pattern.

In 2018, Storrle et al. investigated how modelers read UML
diagrams and if there are any strategies to be identified [25].
28 modelers viewed 18 diagrams while their eyes were being
tracked, along with several other metrics. The reading strate-
gies vary with expertise and diagram type but not with layout
quality. Storrle et al. sought to replicate previous findings,
and determine if size has an impact on the readability of
UML diagrams [26]. Computer Science students were made
to answer questions about UML diagrams of varying size.
The correlation between size and readability was found to
be significant, and an optimal size was found. Razali et al.
analyzes two previous experiments and determine the efficacy
of UML class diagrams in comparison to other diagram
standards [27]. Using the datasets from the two previous
studies the researchers were able to determine many metrics
and compare them between modeling styles. The paper found
that semi-formal graphical styling could improve accessibility
in formal notation. [28] reviews three experiments to determine
the effectiveness of UML class stereotypes. Data from the
three experiments was aggregated and analyzed. It found that
there was a significant increase in performance among low
experience participants, and stereotypes have great prospects
as training tools.

Savary analyzed a large amount of synthetic UML dia-
grams to determine overall trends in modeling [29]. Tools
were created to automatically collect data, which was used
to determine various quality metrics which could then be
analyzed. The researchers successfully gathered data on large
trends such as diagram size and case type. This data can now
be used to further advance how UML diagrams are made.
Pourali et al. asked students to fix errors in UML diagrams
and found that tools did not offer enough support and were
ineffective for users who were dissatisfied [30]. Bergstrom et
al. provide various criteria that can be used to evaluate layouts
(with no semantics considered) [31]. Their results point to the
orthogonal layout as the one that is most liked by users.

Prior studies have not studied how developers find defects
in UML class diagrams with respect to a requirements speci-
fication. The study presented in this paper seeks to add to the
body of evidence supporting the use of UML class modeling
via empirically validated layouts that are based on architectural
importance.

(]
_—~ 5 —
52
—
o O
3"
£ 5
3] X 3
23
8z,
—a
vy le]
B =1 .
Programming Analysis and UML Usage
Skills Design Skills
Question
Fig. 1. Distribution of values of participant skill self assessment.

IV. EXPERIMENTAL DESIGN

The experiment seeks to analyze the effect of two class
diagram layouts (orthogonal and multi-cluster) for the purpose
of evaluating defect detection in class diagrams related to a re-
quirements document with respect to effectiveness (accuracy)
and efficiency (time) from the point of view of the researcher in
the context of students at two universities. Table III provides
an overview of the experimental factors. The study follows
a within-subjects group design, where each participant sees
both layouts albeit in two different systems. This allowed us
to collect more data points for each of the layout categories.

A. Participants

The participants are students recruited from two Midwestern
universities in the USA. The recruitment was done from soft-
ware engineering classes that had exposure via several lecture
modules on UML diagrams including design patterns. There
are 89 participants who took part in the study.Figure 1 shows
the skill distribution collected from the pre-questionnaire prior
to the study, with the full set of questions on self-reported
knowledge shown in Table II.

Of all 89 participants in this study 45% of them started
with C as their first language. 51% of the participants rated
themselves ”Average” skilled in programming, with a low
level of standard deviation of 0.62. 54% of the participants
rated themselves as ”Average” when evaluating their ability
to do analysis and design of programming systems, with a
small standard deviation of 0.8. 59% of the programmers
have been programming for 2-5 years. 49% of programmers
studied 2-5 years of object oriented programming. 37% of
participants report occasionally using UML, 32% report using
UML frequently. 62% report having not learning a specific
layout for UML. 82% of the participants use UML exclusively
in academia.

B. Study Variables

An overview of the study variables in the experiment is
shown in Table III. The main factor (independent variable) in
the study is the UML layout with two treatments: multi-cluster
or orthogonal layouts. The dependent variables in the study
are task accuracy and task time. Secondary variables include
working memory capacity measured by object memory task

score and mental rotation task score as separate measures. The
accuracy has a maximum score of 10 points (5 for each task).
Time is measured in seconds. The object memory score can
be up to 14 points and the mental rotation score goes up to 4
points.

C. Subject Systems and Layouts

The subject systems used for the defect detection tasks are
two open-source systems written in C++, namely, Doxygen (v.
1.6.1) and Qt (v. 4.3.3), each with 100+ classes. Doxygen is a
documentation generation application and Qt is a GUI applica-
tion. The systems are reverse-engineered using a static analysis
reverse engineering tool in MS Visual Studio to generate the
corresponding UML models. We manually refined the models
after inspecting the code to include other relationships that
are missed such as associations and aggregations. In addition,
these relationships are verified are the tool by Sutton et al.
[32], [33].

For each system, a UML class diagram is drawn with
a subset of the model and relationships relevant to the re-
quirements being tested. The diagram is presented in both
the orthogonal layout and the multi-cluster layout. In total,
there are 4 diagrams drawn, 2 for Doxygen and 2 for Qt.
An example of the orthogonal and multi-cluster layouts for
Doxygen is shown in Figure 2. The diagram shows a subset
of the UML model along with all the relationships between
the classes. Only certain attributes and methods relevant to
the tasks are shown that were relevant to the task at hand.
These diagrams were hand crafted to fit on a printed 8.5
by 11 page. The diagrams are drawn in MS Visio using the
imported reversed engineered model. Refer to our replication
package for the layouts in Qt. The multi-cluster layout is
designed to meet the heuristics for the multi-cluster layout.
Note that it is possible for someone to devise a different set
of clusters for the multi-cluster layout based on what they
deem important. The orthogonal layout is generated using MS
Visio’s in-built orthogonal layout with minor adjustments to
fit the page. These minor adjustments did not alter the layout
drastically.

Both the orthogonal and the multi-cluster layouts are drawn
with the stereotype information via textual annotation and
color to avoid any confounding factors or biases even though
the only layout that actually used this information to posi-
tion classes and relationships is the multi-cluster layout. The
orthogonal layout does not use the stereotype information.

D. Tasks

The experiment is split into two parts: defect detection tasks
and working memory capacity tasks. A requirements document
approximately 2 pages in length was written for each system
in which the features and modules of each system and the
relationship between classes are explained. The requirements
are derived from existing documentation of the open-source
system. Enough information is given to help participants
understand what the system does.

TABLE II
SELF-REPORTED LEVEL OF KNOWLEDGE FOR EACH ATTRIBUTE

. Theoretical Applied in Academic Applied in 1 Applied in 1
Question \ Response No Knowledge PP ppliec . ppliec > .
Knowledge Environment Industrial Project Industrial Project
UML 0 7 44 4 6
Designing Software 1 17 30 7 5
Documenting Software 3 12 33 5 7
Implementing Software 0 11 31 7 11
Reviewing Source Code 2 15 32 6 4
Reviewing Designs 4 20 26 8 3
Maintaining/Debugging Software 2 20 23 6 10
Software Inspections 18 20 17 1 3
Quality Assurance for Software 13 30 11 3 3
0O Programming 1 4 39 7 10
Diagrams — Group 1 page 20f3 Diagrams - Group 2 page 203
seoliyy wentitys . m =
e = BT e
I . ! Kindy) : OptionType Config | [, oiatieSpecifier bool [—
:Palse;lipamgaﬂ) l+needsPreprocessing() ' = I r L) |+pureSpecifier : bool : : @
a0 : : s) b L ‘
l+getParser() | l——i‘l}—; Ent onfigEnum| {Configint| =
Ty ~5oundaTs frarglist : ArgumentList centity» _z‘x_
— <G 5 jo| |Bythons | s : Fm_parsers - QDici<Parserinterface> | | frargList: ArgumentList® |
Bosyaen Ay Entry’) [m_extensions : QDict<Parserintertace> | 1 et ot
TainPage - PageDel © wentity> m_defaukParser : Parserinterface * bpssiEly™ |
Store ParserManager() l+addSubEntry(in e : Entry’) |
2 bool [+registerParser() i e i 1 i
. {+registerExtension) i ! |
lssymbolStorage : Store * rgetParser) ! | | T !
e T oa— . :
<entitys i Parserinterface ' i S ! !
;@ ubeun‘dalyt;f- e — .,454 <: | [Fisabiein o - OutputTyPe]
(O O e ot [WJW\ /;nlm el e
centitys | ["wentity» centity» wentity entity» wentitys |- [parsetad H. ator| |L i}
L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [“mnm&mm b, . o-ﬂm :
boundary» o:«mu;n Foutputs - QLst™ | :
=k T : :
i enty> ahotacees __ . [Faisabiefino- OuputType) e L , e [EETR] |
=X} i e = e]
Yind() - OptionType l E l+popGeneratorState() | soarseSourceshieeded boal T e
= — ! ' ’_,:43_‘ | symboisiorsce Stoe * s
! «entity» ” wentity» | ["«entity» | cenmy:.“ wentity» | [-bwnaaryn ! ! «boundary» |L' o«mnm- oot —— e
Fig. 2. The Doxygen UML class diagrams in the multi-cluster (left) and orthogonal (right) layouts
TABLE III TABLE IV
EXPERIMENT OVERVIEW DEFECTS INJECTED IN DOXYGEN AND QT. EACH OF THE 5 QUESTIONS
HAD SPECIFIC ITEMS (CLASSES AND RELATIONSHIPS) TO CHECK. ONLY
Goal Study the effect of two types of class ONE OF THE FIVE QUESTIONS WAS A MATCH FOR EACH SYSTEM.

diagram layouts on defect detection
in class diagrams with respect to a
requirements document

Class diagram layouts with two treat-
ments: orthogonal layout and multi-
cluster layout

Accuracy, Time

Working Memory Capacity (object
memory and mental rotation)

Independent variable

Dependent variables
Secondary factors

A defect detection task with 5 sub-parts (questions) was cre-
ated for each system i.e., Doxygen and Qt. Each sub-part is a
checklist of classes, methods, and corresponding relationships
to be checked for compliance with the requirements document
of that system. For each sub-part the participant can choose
Match or Defect for their answer based on their inspection of
the items to be checked. The participants are encouraged to
explain why they chose Defect in words for each sub-part.

For each system, four defects are injected in different parts
of the diagram. The defects included the following: missing
class data members, incorrect relationship types, incorrect
class stereotypes, incorrect hierarchies, reversed dependency

Q# Doxygen Qt
| Match Dgfgct (subclass
missing)

N Defect (missir}g sec_tion field, Match
incorrect relationship)

3 Defect (incorrect class stereotype Defect (incorrect
and class relationship) relationship)

4 Defect (incorrect relationship, Defect (missing
reversed dependency) dependency)

5 Defect (redundant classes, Defect (missing
incorrect hierarchy) relationship)

relationships, redundant classes, missing classes and missing
relationships. There is only 1 task in each system that is a
Match and not a Defect. See Table IV for a list of defects
injected. The replication package provides more details on the
Classes and items to check along with more details on the
missing and incorrect items.

There are two types of working memory capacity tasks:
mental rotation tasks and object memory tasks. There are
four questions for the mental rotation tasks and two questions
for the object memory tasks. In the first two mental rotation

questions, the prompt read “In the figures below, one of the
shapes (A-D) is identical to the first figure but has been rotated.
Which figure is identical to the first?”. The first two questions
are on 2D figures. The next two mental rotation questions are
similar but with 3D shapes. The prompt read “Which of the
three comparison shapes on the right is identical to the shape
on the left except for its rotation angle?”. In the object memory
tasks, there are two questions. The first question asked the
participants to study an array of letters and numbers of size
9 in length for 1 minute. The prompt read “Circle the items
in the array that have been circled or swapped.”. The second
question is similar but now the participants had to study an
array of five object shapes in order for 1 minute. The prompt
for the second question read “Number each item in the array
according to its position in the original array from 1 to 5.”

E. Grouping

The participants are randomly split into two groups. Group
1 had 46 participants and Group 2 had 43 participants. See
Table V for how the groups are split across the two layouts and
subject systems. With this design, we are able to expose each
participant to each layout albeit in a different system. We use
a different system for the second task to avoid learning effects.
The comparisons that we seek to make are between the groups.
Our analysis compares the Doxygen multi-cluster layout with
the Doxygen orthogonal layout across groups. Similarly, the
Qt multi-cluster layout is compared with the Qt orthogonal
layout across groups.

TABLE V
PARTICIPANT GROUPINGS AND LAYOUTS USED FOR EACH DEFECT
DETECTION TASK.

Task Group 1 (N=46) Group 2 (N=43)

Task 1 Doxygen in multi-cluster lay- Doxygen in orthogonal layout
out

Task 2 Qt in orthogonal layout Qt in multi-cluster layout

F. Study Procedure and Data Collection

The study was conducted at two universities in the USA.
Approval for the study was obtained from the Institutional
Review Board before the study was conducted. The entire
study is performed in one sitting in a classroom-like setting
using a paper-based questionnaire. We direct the reader to our
replication package for an example of the study booklet.

Since this study is conducted during a software engineering
class during a semester, the instructor designated lab time
for the students to complete the study. Students are given
extra credit for participating in the study. The students are all
seated at their individual tables and given the paper booklet.
The computer in front of them had the time, which they use
to record the start and end time for each task sub-part. The
computer is not logged in and only displayed the time. They
are not allowed to use the web to find the answers to the
questions. The lab is monitored by a lab assistant to make
sure everyone is on task.

The study started with the students completing the pre-
questionnaire on paper. After that they proceed to read a one-
page instruction list to prepare them for what the study is
about. They are told that the requirements document given
to them is correct with no defects. The diagram however
may or may not contain defects. Their task is to check if
certain parts of the class diagram are compliant with the
requirements document. They are given guidance to first read
the requirements document and then asked to look for defects
in the diagram with respect to the following.

o Missing classes, relationships, attributes.

« Incorrect class/attribute visibility, incorrect class stereo-
type, incorrect relationship between classes, incor-
rect multiplicity, wrong directionality, incorrect attribute
types.

o Redundant and misleading information in the class dia-
gram that causes ambiguity.

o Any other kind of inconsistency observed compared to
the requirements document.

Next, a sample tutorial task is presented on an Automated
Teller System (ATM) system. A 1-page description of an ATM
system is given followed by a class diagram of an ATM
system. The tutorial task has only 3 sub-parts and is solved
for them. For example, there is one match and two defects
in the tutorial task. When it is a defect, an explanation is
required to be given. One of the defects in the ATM system is
that a subclass for Balancelnquiry is missing even though the
requirements document specified it. Another defect is that the
multiplicities between the ATM and UIConsole are incorrectly
shown as 1 to many instead of 1 to 1. Once this task is
done, the end of the page instructed them that the actual
study will begin on the following page. All participants then
continue to do Doxygen task (in the layout assigned to their
group) followed by the Qt task (in the layout assigned to their
group). The start time and end time for each of the sub-parts
in Doxygen and Qt is recorded using wall clock time shown in
front of them on the monitor. After the Doxygen and Qt task,
they are asked a short feedback questionnaire on whether they
understood the diagram, requirements document, question,
found all defects, level of difficulty, and defect detection
confidence. There is also space for open-ended comments if
they wished to write more. This feedback between each task
is not timed. Note that the participants are not aware of the
different layouts used between tasks.

After both the defect detection tasks, they are asked to
complete four trials of mental rotation tasks - two in 2D and
two in 3D. These are also timed for each set of 2D and 3D
tasks. Following this, they completed two object memory tasks
- the first is on the letter and number array and the second is
on shapes. Finally, they completed a short post-questionnaire
on their experience in the study.

G. Verifiability

The study replication package is at https://osf.io/2u3p5.
Provided in the package are the paper-based questionnaires
for each group, the digitized responses along with the mapping

;\; 100% -

S 75%

o

3 50% -

<

v 25%

7]

©

= 0% ! ! !
Q1-1score Q1-2score Q1-3score Q1-4score Q1-5 score

Question

Layout [l Mmult-Cluster [l Orthogonal

Fig. 3. Answer accuracy of each sub-task question on the Doxygen system
for the multi-cluster layout and orthogonal layout.

scheme used, correct answers for all tasks, and the scripts used
to analyze the data.

V. EXPERIMENTAL ANALYSES AND RESULTS

This section discusses the steps taken to first pre-process
the data in a form that is ready for statistical analysis. Results
for each of the research questions are presented next. Finally
results from the post questionnaire are presented.

A. Data Pre-processing

Before the results are analyzed, all the paper-based ques-
tionnaire data was digitized into a spreadsheet. The data from
pre-questionnaires, post-questionnaires, defect detection tasks,
object memory tasks, and mental rotation tasks are entered
into electronic format. We divided this work among five
undergraduate researchers. A lead was assigned to collate all
the results and double-check the data for accuracy. A scheme
of tabulating each answer for all the tasks was carefully
crafted to make sure all the data was coded correctly. The
replication package is listed in Section IV-G and contains a
complete mapping of the column information that matches the
paper-based tests. Trustworthiness of the data was established
through splitting parts across multiple data entry coders. An
R script was written to process this digitized file to grade
the answers for the defect detection tasks based on Table IV.
Based on the start and end time recorded, the time elapsed
for each question was calculated by the script as well. The
working memory tasks were also graded in a similar way. We
now present the results for each research question.

B. RQI Results: Accuracy

1) Doxygen System: The task accuracy for each question
sub-task on the Doxygen layouts can be seen in Figure 3.
We observed that overall, participants who read the Doxygen
UML class diagram in the multi-cluster layout had a higher
accuracy in answering questions correctly with a mean score
of 3.543 out of 5. On the other hand, participants who read the
diagram in the orthogonal layout had a mean score of 3.256
out of 5.

The feedback after answering each question for the Doxy-
gen system is shown in Figure 5. When looking at the feedback
for the multi-cluster layout on average, we saw a higher level

N

o

3

B
|

75% -

50% -

25%

Task Accuracy (%)

Q2-1 ‘score Q2-2 ‘score Q2-3 score
Question

0%

Q2-4 score Q2-5 ‘sco re

Layout [l Mmutt-Cluster [l Orthogonal

Fig. 4. Answer accuracy of each sub-task question on the Qt system for the
multi-cluster layout and orthogonal layout.

4

3
27 .
0

Difficulty

(5 Point Likert)

Average Score
N

Class Diagram Requirement Questions Found befects Conﬁ::lenoe

Document
Feedback Question

Layout I Mutti-Cluster] Orthogonal

Fig. 5. Average participant feedback for the Doxygen system for each layout
type.

of confidence and a higher level of understanding of the
class diagram, questions, and defect finding compared to the
orthogonal layout.

To see if there is any statistical difference, we first per-
formed the Shapiro-Wilk test on each participant’s scores on
the Doxygen system. We found the scores are not normally
distributed (W = 0.878,p < 0.001), and therefore we use
the Wilcoxon rank sum test. There is no significant effect of
layout on score observed (W = 1096,p = 0.357, Cohen’s
d = 0.258), and therefore we fail to reject the null hypothesis
H1y.

2) Ot System: The task accuracy for each question sub-
task on the Qt layouts can be seen in Figure 4. Similar to
the Doxygen layouts, we observe a higher overall question

4

3
27 .
0 T T

Confidence

5 Point Likert)

Average Score

Class Diagram Requirement Questions Found Defects Difficulty
Document

Feedback Question

Layout Bl Multi-Cluster [l Orthogonal

Fig. 6. Average participant feedback for the Qt system for each layout type.

g .

2 15 o .

3

! : i—:|7l

= ()

B % g

S 5 o

. %% % %% =

8 o

C Q1-3 Q1-5
Question

Layout EJ Multi-Cluster E5 Orthogonal

Fig. 7. Durations of each sub-task for the Doxygen system.

accuracy on the multi-cluster layout vs. the orthogonal layout
(mean scores of 2.581 out of 5 vs. 2.456 out of 5). However,
the scores on both are overall lower compared to the Doxygen
layouts.

The feedback after answering the set of questions for the
Qt system can be see in Figure 6. On average, we see a
higher level of self-reported confidence, difficulty, and level
of understanding of the class diagram, but the perceived
level of understanding is lower for the requirement document,
questions, and finding defects.

To determine if the difference is statistically significant,
we again test the normality with the Shapiro-Wilk test. We
again observe the scores to be not normally distributed (W =
0.935,p < 0.001), and therefore use the Wilcoxon rank sum
test. We did not observe a significant effect (W = 1030.5,p =
0.731, Cohen’s d = 0.093), and therefore we do not reject the
null hypothesis H 1.

C. RQ?2 Results: Time

The average time taken for participants to complete the
entire study was 38.9 minutes. Of these, the average time
participants took for the Doxygen system questions was 18.6
minutes while the Qt system took on average 14.9 minutes.

1) Doxygen System: The task duration in minutes for each
sub-task on the Doxygen layouts can be seen in Figure 7.
We observe that overall, participants who read the Doxygen
UML class diagram in the orthogonal layout spent more time
answering each question (mean = 4.045) compared to the
multi-cluster layout (mean = 3.385).

We look to see if these observations are statistically signif-
icant. However, when we performed the Shapiro-Wilk test on
the question answer times for the Doxygen system, we see
that it is significantly non-normal (W = 0.824,p < 0.001).
Because of this, we use the Wilcoxon rank sum test to see
if the differences in answer times for each treatments are
significant. However, we do not observe a significant effect
(W = 1054.5,p = 0.626, Cohen’s d = —0.288). Therefore,
we do not reject the null hypothesis H?2g.

2) Ot System: The task duration in minutes for each sub-
task on the Qt layouts can be seen in Figure 8. Unlike the
Doxygen layout, we observe participants spending less times
answering each question when they read the Qt UML class

o o NN
o o o O
LX)

°
°

o

i %% %% é% é@ %i

Q2-2 Q2-3 Q2-4 Q2-5
Question

Task Duration (minutes)

Layout EJ Multi-Cluster E3 Orthogonal

Fig. 8. Durations of each sub-task for the Qt system.

diagram in the orthogonal layout (mean = 2.6) compared to
the multi-cluster layout (mean = 3.322).

When looking for statistical significance, we observe that
times are also non-normal when performing the Shapiro-Wilk
test (W = 0.697,p < 0.001). We therefore also use the
Wilcoxon rank sum test to compare between the layouts, but
find the differences to be not significant (W = 891, p = 0.075,
Cohen’s d = 0.450). Because of this, we do not reject the null
hypothesis H2.

D. RQ3 Results: Working Memory

We want to correlate our working memory results with
defect detection task accuracy for each system and see if one
system correlates more than the other. Each of the participants
completed two working memory tasks: the object memory task
and the mental rotation task. The object memory task had
a total of 14 points, and the mean score was 12.989 across
all participants with a mean task time of 1.472 minutes. The
mental rotation score had a total of 4 points, and the mean
score was 3.011 across all participants, with a mean task time
of 3.629 minutes.

Our data for the defect detection score, defect detection
duration, object memory test score, and mental rotation test
score were not normally distributed when running the Shapiro-
Wilk test on each metric (W = 0.952,p = 0.002, W =
0.867,p < 0.001, W = 0.611,p < 0.001, W = 0.818,p <
0.001 respectively). Because of this, we will use Spearman’s
correlation to determine any significant correlations.

1) Doxygen System:

a) Object Memory Test: The distribution of object mem-
ory scores versus defect detection scores on the two Doxygen
system layouts can be seen in Figure 9. When we test for
a statistically significant correlation, we find that there is a
significant positive correlation between object memory scores
and defect detection scores (rs = 0.325, p = 0.027) for defect
detection tasks on the Doxygen system with the multi-cluster
layout. However, there was no significant correlation when the
layout was orthogonal (r; = 0.133, p = 0.394). From this, we
have partial support for the alternate hypothesis H3,,.

We then evaluate the correlation between object memory
scores versus the time it took to complete defect detection
tasks on the two Doxygen system layouts. When testing

5
4)))
o° t !
82 .
A4
c
S0
g 1 2 3 4 0 1 2 3 4
as :
° 4 ° L]
% 3 ® °
(a] 2 °
1
0
25 50 75 100 125 8 10 12 14

Working Memory Score

Fig. 9. Distribution of the total defect detection score vs. working memory
scores on the Doxygen System.

for significant correlations, we did not find any significance
between defect detection times and object memory scores for
either the multi-cluster layout (r; = —0.06, p = 0.681) or the
orthogonal layout (rs = —0.183, p = 0.277). Because of this,
we fail to reject the null hypothesis H4y.

b) Mental Rotation Task: The distribution of mental
rotation scores versus defect detection scores on the two
Doxygen system layouts can be seen in Figure 9. We were
not able to find a significant correlation for either the multi-
cluster layout (ry = 0.074, p = 0.623) or the orthogonal layout
(rs = 0.277,p = 0.073). Therefore, we fail to reject the null
hypothesis H 3.

We also evaluate the correlation between mental rotation
scores versus the time it took to complete defect detection
tasks on the two Doxygen system layouts. When testing
for significant correlations, we did not find any significance
between defect detection times and mental rotation scores for
neither the multi-cluster layout (rs = 0.232,p = 0.121) nor
the orthogonal layout (rs = 0.130,p = 0.445). As such, we
fail to reject the null hypothesis H4y.

2) Qt System:

a) Object Memory Test: The distribution of object mem-
ory scores versus defect detection scores on the two Qt system
layouts can be seen in Figure 10. When testing for significance,
we observe a significant correlation between object memory
scores and defect detection scores on the orthogonal layout
(rs = 0.338,p = 0.022) but not the multi-cluster layout
(rs = 0.280,p = 0.069). Therefore, we have partial support
for the alternative hypothesis H 3,. We then evaluate the corre-
lation between object memory scores versus the time it took to
complete defect detection tasks on the two Qt system layouts.
When we test for correlation, there was no significance for
neither the multi-cluster layout (r; = —0.003, p = 0.983) nor
orthogonal layout (rs = —0.140,p = 0.387). Because of this,
we fail to reject the null hypothesis H4y.

b) Mental Rotation Test: We also evaluated whether
there was a correlation between mental rotation scores and
defect detection scores on the two Qt system layouts. There

5
4 L

o° 1

82

a4

c

S0

g8 o 1 2 3 4 1 2 3 4

©

85

G4 hd

ok .

D2 L] °
1 °
0

8 10 12 1425 50 75 100 125

Working Memory Score

Fig. 10. Distribution of the total defect detection score vs. working memory
scores on the Qt System.

was no significant correlation for neither the multi-cluster
layout (r; = 0.106,p = 0.498) nor the orthogonal layout
(rs = 0.072,p = 0.634). As such, we fail to reject the
null hypothesis H3,. When evaluating a correlation between
mental rotation scores and defect detection task times, no
significant correlations were found for neither the multi-
cluster layout (rs = 0.031,p = 0.846) nor orthogonal layout
(rs = 0.121, p = 0.455). This fails to reject the null hypothesis
H4,.

E. Post-Questionnaire Results

In the post questionnaire, 79% of participants chose the
option of“I know and understand UML class diagrams”. 38%
of participants rated Doxygen defects as difficult, and 33%
rated finding defects in Doxygen layout as very easy. 35%
of participants rated Qt defect detection as difficult, and
34% rated it as undecided. 36% of the participants do not
believe they found the most defects in the study, another 35%
are undecided. 40% of participants found it harder to find
defect inside of design patterns, with 37% being undecided.
70% of participants found the study a nice exercise. 54% of
participants believe they performed average with 27% rating
they performed below average. 48% of participants used to
Doxygen but were not familiar with the design and 38%
were very familiar with the design and structure. 49% of
participants heard of Qt but were not familiar with the design,
and 38% were familiar with the design and structure of Qt.
43% of participants disagreed with the tutorial helping them
understand UML concepts, with 42% strongly disagreeing.
46% of participants somewhat disagree that they understand
UML class stereotypes, with 28% strongly disagreeing, and
22% being neutral. 81% of participants replied yes when asked
if this exercise gave them useful insights into class diagrams
in real life. Other comments include that the study is a good
practical exercise to see how class diagrams are used in real
world software. Some comment on how they found the use of
design patterns in real world software shown in the diagram

quite refreshing. They also commented that the tutorial helped
them calibrate for what the study is about.

VI. THREATS TO VALIDITY

We discuss some of the threats to validity pertaining to this
study and discuss ways in which we try to mitigate them.

A. Internal Validity

With respect to internal validity, to avoid learning effects
of the system as a whole, we have two groups and switch
the layouts for each system between them. This means we
perform paired analyses across two groups, where one group
used the orthogonal layout and the other used the multi-cluster
layout for the same system. We acknowledge mistakes could
have occurred during the digitizing of the data from paper
questionnaires. To minimize this, we use multiple people code
in the answers and had one person double-check all the data.
The entire study is done in one sitting in a classroom-like
setting and the paper-based test is the best option we had at
the time. The participants are not aware of the hypothesis of
the study or that they are tested on the layout of the diagrams.

To make sure there are no confounding variables with
diagram layout, models chosen in the diagram, and accu-
racy/time, each sub-part of each task in each subject system
pertained to a different part of the diagram so as to avoid major
learning effects within each task. The models used are reverse-
engineered and double-checked for accuracy. The diagrams are
manually engineered following heuristics for the multi-cluster
and orthogonal layouts [5]-[8] presented in prior literature
with no other differences. There is however, a possibility for
someone to create a slightly different variation within each
layout type. Also, it could be the case that the layout could
have been biased to the questions. The multi-cluster layouts are
drawn to represent different features/modules of the system.
Care is taken to make sure the aesthetic criteria is met in all
diagrams.

B. External Validity

With respect to external validity, we use real open-source
systems and realistic tasks to validate the two layout schemes
instead of toy applications. A subset of the models are care-
fully chosen to represent the main high-level features for each
system. Another threat is that we use students in this study. We
do not claim these results generalize to industry participants or
to other tasks besides defect detection between requirements
when UML class diagrams with these layouts are used.

C. Construct Validity

To make sure we minimize any threats to construct validity,
we chose dependent measures that accurately reflect our
accuracy and time data. A script is run to score the answers
as well as calculate elapsed time for each question sub-part.
The mental rotation and object memory tasks are standardized
instruments to gauge memory capacity.

D. Conclusion Validity

Finally, to support conclusion validity, we use the appro-
priate non-parametric tests due to the non-normality of the
data and perform paired Wilcoxon analyses to verify our
hypotheses.

VII. DISCUSSION

The main findings of this study are not significant. However,
we observed that on average the multi-cluster layout had a
higher accuracy than the orthogonal layout in both Doxygen
and Qt. The multi-cluster layout also took less time compared
to the orthogonal one for Doxygen but not Qt. The participants
also reported a higher level of confidence and understanding
for the multi-cluster layouts. The only significant correlation
for working memory capacity is between accuracy and object
memory scores for the multi-cluster layout only on Doxygen
and orthogonal layout only on Qt.

Defect detection is a more complicated task than just
comprehension and hence prone to more individual differences
in cognitive processing than just comprehension. Furthermore,
there are not too many studies in the literature that focus on
UML class diagram comprehension on realistic systems. We
posit this being one of the factors why we did not see major
differences in the results. A simpler (memory only) recall
task might have seen more differences but is left as a future
exercise. In hindsight, we also believe the experiment design
was too complicated to produce any conclusive findings.
Reflecting on the design further, we would focus each defect
detection task to just one question and not five sub-parts.
The design pattern questions should also be posed as separate
questions from the syntax related ones.

The fact that the scores are higher for the multi-cluster
layouts could mean that with a larger sample size we might
tend to see more significant results in support of the multi-
cluster layout. Prior research showns that UML documentation
helps in improving correctness and quality in more complex
tasks [34]. Other researchers show that the use of UML mod-
eling potentially reduces defect density in software systems
[35]. Raghuraman et al. uses statistical modeling to show
that projects that create UML models are less likely to be
defect prone [36]. Given this evidence of the importance of
UML modeling, the inconsistencies of these results call for
additional studies using other data collection methods that give
us more insight into how developers actually read the layouts
while solving defects. We also observe that the task type can
affect how the layout is being used. In other task types in
earlier studies [6], the multi-cluster is significantly better in
a majority of tasks (reading, overview, impact analysis, bug
fix) but not all tasks (feature addition, refactoring). This paper
presents a first study to test if layout plays a role in defect
detection with respect to requirements. Given that previous
experiments have shown the multi-cluster layout to be better
with this current study showing it is not worse than the
orthogonal layout, perhaps indicates that the recommendation
for layout should be that multi-cluster be used for UML class
diagrams.

Educators can use these results to help improve the teaching
of UML class diagram defect detection skills by using the
multi-cluster layout to help with comprehension and incorpo-
rating object memory tasks into the curriculum. In addition, a
triager can use these results to identify people who might be
better at finding critical bugs in model design based on their
object memory score. More studies are needed to extrapolate
these results to industry professionals.

VIII. CONCLUSIONS AND FUTURE WORK

The paper presents a controlled experiment examining the
effects of two layouts namely, orthogonal and multi-cluster
on defect detection in class diagrams with respect to a re-
quirements document. The working memory capacity is also
measured and correlated to performance. Results do not show
any significance in time or accuracy towards either the multi-
cluster or the orthogonal layouts for either system, even though
we find the average scores on tasks using the multi-cluster
layout to be slightly higher, albeit statistically insignificant.
The object memory score is significantly correlated with
accuracy for the Doxygen multi-cluster layout and the Qt
orthogonal layout tasks. Due to these inconsistent results, we
believe future studies should be done to further look into
other tasks and systems to pinpoint perhaps other features
that could have played a role. As part of future work, we
plan to conduct eye-tracking studies on UML diagrams from
open source systems [37] with different expertise groups to
gain further insight into how developers actually read the
diagrams to uncover any differences that may exist in gaze
measures. In addition, collecting qualitative feedback about
what participants did (not) like about the diagram could give
valuable additional information.

ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation under Grant Number CCF 18-55756. The au-
thors are grateful to undergraduate researchers Aaron Linnell,
Nathaniel Liess, Anthony Vinton, and Saicharith Vaitla for
helping with digitizing the paper-based questionnaires and
verification of data entry. We are thankful to all the participants
who took part in the study.

REFERENCES

[11 G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language
user guide, 2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2005.

[2] M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jiinger,
S. Leipert, K. Klein, P. Mutzel, and M. Siebenhaller, “Automatic
layout of UML class diagrams in orthogonal style,” Information
Visualization, vol. 3, no. 3, pp. 189-208, 2004. [Online]. Available:
https://doi.org/10.1057/palgrave.ivs.9500078

[3] O. Andriyevska, N. Dragan, B. Simoes, and J. Maletic, “Evaluating
UML class diagram layout based on architectural importance,” in 3rd
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, 2005, pp. 1-6.

[4] S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the comprehension
of UML class diagrams via eye tracking,” in /5th IEEE International

Conference on Program Comprehension (ICPC '07), 2007, pp. 113-122.
[5] B. Sharif and J. I. Maletic, “An empirical study on the comprehension

of stereotyped UML class diagram layouts,” in The [7th IEEE
International Conference on Program Comprehension, ICPC 2009,
Vancouver, British Columbia, Canada, May 17-19, 2009. IEEE
Computer Society, 2009, pp. 268-272. [Online]. Available: https:
/ldoi.org/10.1109/ICPC.2009.5090055

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

——, “The effect of layout on the comprehension of UML class
diagrams: A controlled experiment,” in Proceedings of the 5th IEEE
International Workshop on Visualizing Software for Understanding
and Analysis, VISSOFT 2009, Edmonton, Alberta, Canada, September
25, 2009, H. A. Miiller, M. Lanza, and M. D. Storey, Eds.
IEEE Computer Society, 2009, pp. 11-18. [Online]. Available:
https://doi.org/10.1109/VISSOF.2009.5336430

——, “The effects of layout on detecting the role of design patterns,” in
Proceedings 23rd IEEE Conference on Software Engineering Education
and Training, CSEE&T 2010, Pittsburgh, Pennsylvania, USA, 9-12
March 2010. IEEE Computer Society, 2010, pp. 41-48. [Online].
Available: https://doi.org/10.1109/CSEET.2010.23

——, “An eye tracking study on the effects of layout in understanding
the role of design patterns,” in 26th IEEE International Conference
on Software Maintenance (ICSM 2010), September 12-18, 2010,
Timisoara, Romania, R. Marinescu, M. Lanza, and A. Marcus,
Eds. IEEE Computer Society, 2010, pp. 1-10. [Online]. Available:
https://doi.org/10.1109/ICSM.2010.5609582

B. Sharif, “Empirical assessment of UML class diagram layouts based
on architectural importance,” in IEEE 27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September
25-30, 2011. 1EEE Computer Society, 2011, pp. 544-549. [Online].
Available: https://doi.org/10.1109/ICSM.2011.6080828

T. Baum, K. Schneider, and A. Bacchelli, “Associating working memory
capacity and code change ordering with code review performance,”
Empirical Software Engineering, vol. 24, no. 4, pp. 1762-1798, 2019.
Z. Sharafi, Y. Huang, K. Leach, and W. Weimer, “Toward an objective
measure of developers’ cognitive activities,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 30, no. 3, pp.
1-40, 2021.

A. R. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm,
and R. W. Engle, “Working memory span tasks: A methodological
review and user’s guide,” Psychonomic bulletin & review, vol. 12, no. 5,
pp. 769-786, 2005.

S. G. Vandenberg and A. R. Kuse, “Mental rotations, a group test of
three-dimensional spatial visualization,” Perceptual and Motor Skills,
vol. 47, no. 2, pp. 599-604, 1978, pMID: 724398. [Online]. Available:
https://doi.org/10.2466/pms.1978.47.2.599

J. Ondik, M. Olejér, K. Réstocny, and M. Bielikovd, “Activity-based
model synchronization and defects detection for small teams,” in 2017
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2017, pp. 8-15.

Y. Laurent, R. Bendraou, and M.-P. Gervais, “Executing and debugging
UML models: an fUML extension,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC *13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 1095-1102.
[Online]. Available: https://doi.org/10.1145/2480362.2480569

T. v. Enckevort, “Refactoring UML models: using openarchitectureware
to measure UML model quality and perform pattern matching on
UML models with ocl queries,” in Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA *09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 635-646.
[Online]. Available: https://doi.org/10.1145/1639950.1639959

C. F. J. Lange and M. R. V. Chaudron, “Effects of defects in UML
models: An experimental investigation,” in Proceedings of the 28th
International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
401-411. [Online]. Available: https://doi.org/10.1145/1134285.1134341
H. Storrle, “On the impact of layout quality to understanding uml
diagrams: Diagram type and expertise,” in 2012 [EEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2012, pp.
49-56.

H. Hu, J. Fang, Z. Lu, F. Zhao, and Z. Qin, “Rank-directed layout
of UML class diagrams,” in Proceedings of the First International
Workshop on Software Mining, ser. SoftwareMining *12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 25-31.
[Online]. Available: https://doi.org/10.1145/2384416.2384420

J. W. v. Gudenberg, A. Niederle, M. Ebner, and H. Eichelberger,
“Evolutionary layout of UML class diagrams,” in Proceedings of the
2006 ACM Symposium on Software Visualization, ser. SoftVis ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
163-164. [Online]. Available: https://doi.org/10.1145/1148493.1148525

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Eiglsperger, M. Kaufmann, and M. Siebenhaller, “A topology-
shape-metrics approach for the automatic layout of UML class
diagrams,” in Proceedings of the 2003 ACM Symposium on Software
Visualization, ser. SoftVis '03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 189—ff. [Online]. Available:
https://doi.org/10.1145/774833.774860

T. Dwyer, “Three dimensional UML using force directed layout,”
in Proceedings of the 2001 Asia-Pacific Symposium on Information
Visualisation - Volume 9, ser. APVis '01. AUS: Australian Computer
Society, Inc., 2001, p. 77-85.

H. C. Purchase, M. McGill, L. Colpoys, and D. Carrington, “Graph
drawing aesthetics and the comprehension of UML class diagrams: an
empirical study,” in Proceedings of the 2001 Asia-Pacific Symposium on
Information Visualisation - Volume 9, ser. APVis ’01. AUS: Australian
Computer Society, Inc., 2001, p. 129-137.

H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C. Britton,
“UML class diagram syntax: an empirical study of comprehension,”
in Proceedings of the 2001 Asia-Pacific Symposium on Information
Visualisation - Volume 9, ser. APVis 01. AUS: Australian Computer
Society, Inc., 2001, p. 113-120.

H. Storrle, N. Baltsen, H. Christoffersen, and A. M. Maier, “How do
modelers read UML diagrams? preliminary results from an eye-tracking
study,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ser. ICSE *18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 396-397.
[Online]. Available: https://doi.org/10.1145/3183440.3195025

H. Storrle, “Diagram size vs. layout flaws: Understanding quality
factors of UML diagrams,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’16. New York, NY, USA: Association
for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.
1145/2961111.2962609

R. Razali, C. F. Snook, and M. R. Poppleton, “Comprehensibility
of UML-based formal model: a series of controlled experiments,” in
Proceedings of the Ist ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, ser. WEASELTech *07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
25-30. [Online]. Available: https://doi.org/10.1145/1353673.1353680
F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato,
“The role of experience and ability in comprehension tasks supported
by UML stereotypes,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE 07. USA: IEEE
Computer Society, 2007, p. 375-384. [Online]. Available: https:
//doi.org/10.1109/ICSE.2007.86

M. Savary-Leblanc, X. L. Pallec, P. Palanque, C. Martinie, A. Blouin,
F. Jouault, M. Clavreul, and T. Raffaillac, “Mining human factors

(30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

general trends from +100k UML class diagrams,” in Proceedings
of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, ser. MODELS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
913-922. [Online]. Available: https://doi.org/10.1145/3550356.3559098
P. Pourali and J. M. Atlee, “An empirical investigation to understand the
difficulties and challenges of software modellers when using modelling
tools,” in Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, ser. MODELS
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 224-234. [Online]. Available: https://doi.org/10.1145/3239372.
3239400

G. Bergstrom, F. Hujainah, T. Ho-Quang, R. Jolak, S. A. Rukmono,
A. Nurwidyantoro, and M. R. Chaudron, “Evaluating the layout
quality of uml class diagrams using machine learning,” Journal of
Systems and Software, vol. 192, p. 111413, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122200125X
A. M. Sutton and J. I. Maletic, “Mappings for accurately reverse
engineering UML class models from C++,” in 12th Working Conference
on Reverse Engineering, WCRE 2005, Pittsburgh, PA, USA, November
7-11, 2005. 1EEE Computer Society, 2005, pp. 175-184. [Online].
Available: https://doi.org/10.1109/WCRE.2005.21

A. Sutton and J. I. Maletic, “Recovering UML class models
from C++: A detailed explanation,” Information and Software

Technology, vol. 49, no. 3, pp. 212-229, 2007, 12th Working
Conference on Reverse Engineering. [Online]. Available: https:

/Iwww.sciencedirect.com/science/article/pii/S0950584906001844

E. Arisholm, L. Briand, S. Hove, and Y. Labiche, “The impact of UML
documentation on software maintenance: an experimental evaluation,”
IEEE Transactions on Software Engineering, vol. 32, no. 6, pp. 365—
381, 2006.

A. Nugroho and M. R. Chaudron, “Evaluating the impact of
UML modeling on software quality: An industrial case study,” in
Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems, ser. MODELS °09. Berlin,
Heidelberg: Springer-Verlag, 2009, p. 181-195. [Online]. Available:
https://doi.org/10.1007/978-3-642-04425-0_14

A. Raghuraman, T. Ho-Quang, M. R. V. Chaudron, A. Serebrenik,
and B. Vasilescu, “Does UML modeling associate with lower defect
proneness? A preliminary empirical investigation,” in Proceedings of
the 16th International Conference on Mining Software Repositories,
ser. MSR ’19. IEEE Press, 2019, p. 101-104. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00024

G. Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A.
Fernandez, “An extensive dataset of UML models in github,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR *17. IEEE Press, 2017, p. 519-522. [Online].
Available: https://doi.org/10.1109/MSR.2017.48

