Extending iTrace-Visualize to Support Token-based
Heatmaps and Region of Interest Scarf Plots for
Source Code

Joshua A. C. Behler
Department of Computer Science
Kent State University
Kent, OH, USA

jbehlerl@kent.edu

Bonita Sharif
School of Computing
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
bsharif@unl.edu

Abstract—The iTrace Infrastructure is a suite of community
eye-tracking tools that enables researchers to conduct eye-
tracking studies on software projects in real development
environments. The infrastructure consists of tools providing
support for data gathering, post processing, and visualization.
iTrace-Visualize provides researchers with a way to visualize
gathered and post-processed eye-movement data. iTrace involves
the analysis of more than just eye-movement data, and includes
information gathered from the development environment and the
source code. This work describes additions to iTrace-Visualize
that provide researchers with visualizations of the gathered source
code data. Specifically, a tokenized heatmap of the source code is
presented, that shows source code tokens that are viewed the most.
Additionally, a region of interest scarf plot that details the timeline
of what parts of the code a participant views is added as a new
feature. A small preliminary study comparing student and
industry developers is presented to demonstrate the use of these
tools.

Demo Video: https://youtu.be/0iZcCC8CK94

Keywords—eye tracking, visualization, heatmaps, pipeline

. INTRODUCTION

The iTrace infrastructure [1-4] allows software engineering
researchers to conduct eye-tracking studies within common
development environments such as Eclipse and Visual Studio.
iTrace-Visualize, a part of the infrastructure, allows for ways to
visualize the eye-tracking information gathered during an eye-
tracking session [5]. Because iTrace supports the dynamic
stimulus of IDEs and other text editors, standard visualization
techniques cannot be used. Visualizations such as heatmaps do
not work well due to the stimulus changing, either from
scrolling, changing files, or pop-up context windows appearing.
In previous work, we explore various visualization methods, and
ruled out typical methods because they tend to not work well
over the dynamic medium of coding environments [5].

Giovanni Villalobos
Department of Computer Science
Kent State University
Kent, OH, USA

gvillalo@kent.edu

Julia Pangonis
Department of Computer Science
Kent State University
Kent, OH, USA

jpangoni@kent.edu

Jonathan I. Maletic
Department of Computer Science
Kent State University
Kent, Ohio, USA

jmaletic@kent.edu

The first version of iTrace-Visualize supports gaze, fixation,
saccade markup, and code line highlighting in gaze video
playback with a fading display to keep the display clutter-free.
In addition, support for video interpolation to support high-
speed tracking [3] is built-in. After the first release, we received
feedback from users that the visualizations offered by iTrace-
Visualize were helpful for visualizing the eye-tracking
information, but do not provide much insight into understanding
which specific parts of the source code is viewed at more detail.
To meet these concerns and support researchers in
understanding what source code elements are examined and how
participants navigate between them, we extend iTrace-Visualize
to support two additional visualizations that are directly
informed by the source code stimulus.

e Tokenized Heatmaps: Using the original source code and
the fixations generated in iTrace-Toolkit, iTrace-Visualize
creates a heatmap of how long tokens in the source code are
viewed. The heatmaps have different options, allowing for
the averaging and normalization of the data, as well as
choosing whether the heatmap uses the duration or number
of the fixations as the main metric of interest.

e Region of Interest Scarf Plots: iTrace-Visualize allows
researchers to define chunks of lines as regions of interest per
source code file, and then generates a scarf plot which details
in a timeline how participants navigate across those regions.

The premise behind adding these additional visualizations is to
aid researchers in further exploring their eye-tracking datasets
for certain hypotheses based on their study goals. The tokenized
heatmaps provide an option to see how long and/or how many
times developers fixate on specific tokens in the code. This can
help researchers identify if certain token types are harder to
understand compared to others. For example, a variable that is
poorly named leads developers to take longer to read and
understand it. The region of interest scarf plots show the gaze
patterns in source code such as usage of def/call chains where

mailto:jbehler1@kent.edu
mailto:gvillalo@kent.edu
mailto:jpangoni@kent.edu
mailto:bsharif@unl.edu
mailto:jmaletic@kent.edu
https://youtu.be/0iZcCC8CK94

/* variable declarations

const aint matAf[2][2] {{0, 1} {2,
15

const int matBl2]|[2] = (fo 1, (2,
int matCl2][2] = £{0Q, O}, {0, 0}};
intl counterl = 0, counter?2 & 0

const int conditionl 8
const int condition?

const int condition3

8 .

1

5 -
3} 15
/* third matrix */

counter3 = 0;

/* Eilrst matrix */
/* gecond matrix */

/* iteration wvariables */

; /* first decision wariable */
4; |/* second decision variable */
; /* third decision variable */

4 7 11 14 18

Figure 1: A segment of code turned into a tokenized heatmap. The legend is in number of fixations.

developers chase (navigate across) data values or follow control
flow. One can do this by creating regions of interest for the
definition and call areas of the code and plot the gazes across
these areas via the region of interest scarf plots. It also allows
researchers to develop their own custom regions to validate a
hypothesis about how developers read. The plots generated can
be used to provide evidence of gaze navigation observed.

Il. USAGE OF ITRACE-VISUALIZE

The videos iTrace-Visualize produces provide a time replay
of the eye-tracking data on the stimulus gathered from iTrace-
Core and processed by iTrace-Toolkit [5]. iTrace-Visualize has
been used to improve studies and other tools within the iTrace
Infrastructure [6-11] We describe a few usage scenarios on how
we have used iTrace-Visualize.

A. Fixation Settings Adjustment

iTrace-Toolkit provides users with three main fixation
generation algorithms that aggregates recorded gaze information
into fixations [4]. The three main algorithms are the Olsson
Basic, I-VT, and I-DT algorithms [12, 13]. These algorithms
have adjustable parameters, which users can change to better
adapt to the specific needs of their study. However, it was
difficult to know what settings would work best for a researcher
from a glance. Because iTrace-Toolkit outputs its data into a
SQL.ite database, viewing the generated fixations is difficult and
tedious. Researchers would have to create their own
visualization methods or perform arduous examinations of the
database to determine if their settings worked well.
Visualization helps with this process, as a researcher can
generate a video that visualizes the fixations. Visualizing the
fixations allows researchers to compare and contrast different
fixation algorithms, or the same algorithm with different
parameters. It also enables researchers to detect and address
erroneous data originating from issues with their eye-tracking
equipment. This capability not only prevents potential
challenges but also minimizes time lost in the research process.

B. Identifying Bugs

The videos from iTrace-Visualize have been used within our
own development team to identify issues with our other toolsets.
Previously, iTrace-Toolkit had a semi-rare bug where extremely
large fixations are generated under the I-DT algorithm. The I-
DT filter requires the gazes of a fixation to be within a certain
dispersion radius. Gazes that fall outside of this radius trigger
the end of a fixation, and the calculation of a new one will begin.

However, this algorithm had no limit on time, so long as the
dispersion radius is maintained. Thus, if a participant looked off-
screen for an extended period of time, and then looked back at
roughly the same area they had left the screen from, an
incredibly long fixation is recorded. These fixations are tens of
seconds long, and interfere with studies where a participant has
to look away from a screen occasionally. Using iTrace-
Visualize, we were able to detect this bug and identify that the
eye traveling off the screen is what triggered them. Researchers
can then decide if they want to filter out such fixations. In our
case, we fixed how the I-DT filter works to address the above
concern.

C. Going Beyond Video Playback

The videos generated by iTrace-Visualize have many helpful
attributes, but they did not solve all of the community’s requests
and needs for visualization. As stated in the introduction, a more
specific source-code specific visualization was requested. This
paper meets that need for providing two additional
visualizations that directly aid in further analyzing eye tracking
data. Some examples include using the tokenized heatmaps to
determine which tokens are harder to comprehend by observing
the frequency and duration of gazes. The region of interest scarf
plots could help in understanding how novices and experts
navigate code sections while fixing a bug for instance.

I1l. TOKENIZED HEATMAP

In previous work, we initially dismissed heatmaps for
visualizing the eye-tracking information generated iTrace due to
the dynamic nature. We examined the works of Spakov and
Miniotas [14], and Pfeffer and Memili [15] to see how heatmaps
are currently being used with eye-tracking. Because iTrace
allows for the recording of dynamic development environments,
heatmaps could add a lot of visual clutter on top of an already
complex development environment. Additionally, scrolling
causes the heatmap to no longer align with the tokens in the
source code. Visualizing the source code token information
requires an entirely different methodology. The eye-tracking
information is recorded in x and y pixel coordinates on the
screen, which causes the main issue with visualization on a
dynamic target. However, the source code information is
recorded by saving the line and column from within the source
code that the participant is examining. Using this, we can fully
recreate the source code and visualize the individual tokens and
characters that are viewed during the session.

ing nod- BENGIENEERS cata valiea for dynamics ||y BINIGESEEH mencry BRSEE an catpata the results

lacated wewary fwica ard outputs the resulta.

linclude gszdia b
#include €sidlib ks

int mEEnlE
1

{1 eheck if memory allscation wis maccesaful
Le e NULL)

exit LN

FR 5al Lhe array ENERERIR
EoE S B omAE e e

RN e

1

The tollewing cods calonlates data valves for aynanical ly al

| EREEEE < SEEE L
[EeTide <LraniE B>

Znt mainly

ddress for polntes created *
||

elements -~/

(n ¥ sizecflint):;
Ji check §F wewory B 1 successful
Lf Hple B= BULL)

EREE (I

77 Hel Lhe srrey
fof MED RER
I

pEilEl W

P mutput men=s
rintZg" 1 s Of Lo EEEEy BEE: N

iy

porllli

elemenl wilh laclor @

",

seturn 0

1 11 21 w2 1

Figure 2: Two tokenized heatmaps of the three novice (left) and three professional (right) developers. The heatmaps depict the average.

A. Implementation

iTrace-Visualize is implemented using Python and the Qt
Python bindings. To recreate the source code for the heatmap,
the OpenCV 4.8.1.78 and Pillow 10.3.8 imaging libraries are
used. To separate the heatmap from the video replay from the
first version of iTrace-Visualize, we add a tabbed view, where a
user can switch between tabs depending on the type of
visualization they want to perform. To create the heatmap,
iTrace-Visualize converts the source code from the original
study into an image. This image is sized depending on the size
of the original source code, which means large files may result
in very large images. As input, the heatmap generation takes an
iTrace-Toolkit database, that has fixations calculated from the
raw gaze data, and has the fixations mapped to source code
tokens from the source code. The tool also requires a srcML [16,
17] archive of the source code to be able to recreate the code into
an image and easily map the line and column information to
individual tokens in the source code. srcML provides an XML
representation of the source code’s AST, and makes identifying
tokens which are syntactically relevant easy.

B. Generating a Heatmap

After importing an iTrace-Toolkit database and a srcML
archive, iTrace-Visualize populates a list with each session
contained within the database. Selecting a database reveals the
list of fixation runs — sets of fixations calculated with a specific
fixation algorithm — that are associated with the selected session.
Multiple sessions and fixation runs can be selected, allowing for
batch processing. All selected fixation runs generate a single
image per viewed file. For example, if two separate sessions had
participants look at main.cpp and calc.hpp, generating heatmaps
on both results in four images, two for each session from each
file. The heatmaps use a standard visible light spectrum range to
represent intensity, with violet representing the least viewed
tokens and red representing the most viewed tokens. Each token
viewed during a session is given a highlight of the corresponding
color intensity. A user can specify the number of colors, from
violet to purple, to use for their markup, with five being the

default. These colors and their requisite values are drawn in as a
legend at the bottom right of the image. Figure 1 demonstrates
an example of the tokenized heatmap.

If a user wants to aggregate their data together instead of
generating multiple images, they can average each selected
fixation run together. This process will group all of the fixation
data together per file, and will ignore participant and fixation run
information. Only one image per source code file will be
generated, showing the average heatmap of the file across all
viewings. Two types of averaging are available, with either all
fixation runs being added together, or all runs being normalized
before adding, allowing a researcher to diminish the effect of
outlier tokens. Additionally, iTrace-Visualize provides two
ways to value each fixation for the heatmap. A user can either
use the fixation count or the total fixation duration on a token.

IV. REGION OF INTEREST SCARF PLOTS

Alongside the individual tokens, researchers are interested in
examining sections of the code and how developers transition
between them during a task such as bug fixing for instance.
These regions of interest provide insight into how developers
read code and in what order. To aid researchers with this
analysis, we provide the ability to generate region of interest
scarf plots. These plots showcase which regions of the source
code the participant viewed. The plots are generated using the
matplotlib library [18]. Scarf plots are a popular way for
researchers to visualize the viewing of regions of interest. We
examined the Alpscarf tool by Yang et al. [19] and by Falzone
et al. [20], who used scarf plots to visualize and analyze various
search tasks on websites. These studies gave us a basis for how
scarf plots are being used, and allow us to implement our scarf
plots in adherence with community standards.

A. Generating a Scarf Plot

Like a heatmap, the region of interest scarf plots require an
iTrace-Toolkit database as input. After importing the database,
a list of sessions and fixations runs is shown, allowing a user to
select one or more fixation runs for processing. Additionally, a
user can specify the regions of interest on the source code.

File: code3.c

Session Timeline

ek e ‘Ill‘ ‘.| |‘ ‘ | ‘ ‘ll | “lIII|||||I|I.|.-I.‘III II‘ ‘” I ‘ “ ‘HH | ‘ | ‘ II. |II.II‘ II|| .II.”II
o IO I ‘ III||“” ‘l II .I | ‘Il H ‘ ‘ “|H ||I III‘ I||I I .|I| ‘ ‘lll-.‘ mll‘
pre b me—in .l| ‘ ”I-”” | H‘ ‘l‘l‘l -|II-‘|||HI Ill-“

MNovicel-task 3-1718752609498

Run ID

ErneT || I|m||||| |IIII.H|. II| I|I ‘ ‘I.I |I ‘ II| | |I I..l

- ROI1: 1116
ROI_2: 19-22
ROI3: 25.29
ROL4: 31-36

. ROIS: 38-42

S s .I‘ ‘ ||‘|IH|| | I III| ‘IIIII”III |I.|I II I.I‘Il’ IIIII.I Illlll‘l I I-.‘-lIIH"II II|I‘|I.-I
o

100000 200000 300000

400000 500000 600000 700000

Time in milliseconds

Figure 3: A region of interest scarf plot of all six developers. The top three (Novice 1-3) are the novice developers, and the bottom three (Expert 1-3) are the
professional developers. The x-axis represents the milliseconds elapsed from the beginning of the recording session.

Target files can be added manually by a researcher, and then
individual regions of interest can be specified. Regions of
interest can be exported and imported by a researcher to save
time if processing is done over multiple launches of the program.
A researcher can specify a start and an end line for each region.

Generating the images will generate one image per file added
to the list. For each image, each fixation run is examined for any
fixations which targeted the corresponding file. If one is found,
the fixation run will be plotted on the image. Like with the
heatmaps, the colors will range from violet to red along the
visible light spectrum. However, the colors hold no intensity
meaning, and are automatically chosen to give each region of
interest a specific color. Alongside those colors, two different
shades of grey are plotted to represent fixations on lines not
within a region of interest and fixations on other files or periods
of times when the user was not looking at the screen. If a
researcher defines no regions of interest, the graphs will still plot
when the user was looking at the file and when they were
looking at other files or were not looking at the screen. The
graphs are plotted with respect to time, which additionally
allows researchers to compare the length of the sessions.

V. PRELIMINARY CASE STUDY

We examine in a small pilot case study the differences
between student and industry-level developers to demonstrate
the new visualization techniques. Our data is taken from a
separate currently ongoing research study measuring the
efficacy of code review techniques. From this dataset, we
randomly pull data from three undergraduate student developers
and three professional developers who currently work in
industry. The participants are instructed to view the source code
and examine it for any issues or formatting errors. Any found
errors were to be recorded in a separate text file in the code
editor. For clarification, we are not making any concrete claims
about the nature of novice and professional developers in this
work - rather, we are using them as an example to explain an

1 https://osf.io/xw8bf/?view_only=5f86c328426e481ca48f512b19be4469

example use of iTrace-Visualize. Using this data, we run the
novices and the industry developers through iTrace-Visualize
and generate the tokenized heatmaps and the scarf plots shown
in Figures Figure 2 and Figure 3 respectively. The generated
graphs, both combined and individual, are available in our
artifact!.

Examining the heatmaps, we see from a glance that the
industry developers spent more time looking at the comment
near the top of the file than the novices, but the novices looked
at the comments above the statements within the functions. On
the scarf plots, each region of interest is a significant section of
the source code shown in the heatmaps. The red region
represents the declarations at the top of the main, the yellow is
the if statement after, and the remainder are the for loops within
the else. The dark gray represents when the user was either
looking off-screen or at the response sheet. Looking at the scarf
plots, we see that the professionals switch between regions of
the code and their response sheet more often than the novices,
who tend to examine the code for longer. The professionals also
did not view ROI 3 as much as the novices, which contains a
loop that sets the initial contents of the array.

V1. CONCLUSIONS AND FUTURE WORK

iTrace-Visualize offers researchers a quick and easy way to
understand eye-tracking data on source code and provides
qualitative analysis for statistical results. Through our own use,
we found that using iTrace-Visualize allows us to draw
conclusions about our results, which we can then further
investigate. iTrace-Visualize is available for download from our
website at https://www.i-trace.org. In the future, we plan to
expand the visualizations supported based on further feedback
from our community. One possible addition is incorporating an
optional timelapse to the tokenized heatmap generation to see
the heatmap change over time. Augmenting the scarf plots
similar to Alpscarfs [19] to support the display of revisits and
longer stimuli is another venue for future improvements.

https://osf.io/xw8bf/?view_only=5f86c328426e481ca48f512b19be4469
https://www.i-trace.org/

[1]

(2]

(3]

(4]

[5]

(6]

(7

8]

(9]

[10]

REFERENCES

Bonita Sharif and Jonathan I. Maletic, “iTrace: Overcoming the
Limitations of Short Code Examples in Eye Tracking Experiments,”
presented at the 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), Oct. 2016, pp. 647-647. doi:
10.1109/ICSME.2016.61.

D. T. Guarnera, C. A. Bryant, A. Mishra, J. |I. Maletic, and B. Sharif,
“iTrace: eye tracking infrastructure for development environments,” in
10th ACM Symposium on Eye tracking Research and Applications,
Warsaw, Poland, Jun. 2018, p. 3. doi: 10.1145/3204493.3208343.

V. Zyrianov et al., “Deja Vu: semantics-aware recording and replay of
high-speed eye tracking and interaction data to support cognitive studies
of software engineering tasks—methodology and analyses,” Empir
Software Eng, vol. 27, no. 7, p. 168, Dec. 2022, doi: 10.1007/s10664-
022-10209-3.

J. Behler, P. Weston, D. T. Guarnera, B. Sharif, and J. I. Maletic, “iTrace-
Toolkit: A Pipeline for Analyzing Eye-Tracking Data of Software
Engineering Studies,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
May 2023, pp. 46-50. doi: 10.1109/ICSE-Companion58688.2023.00022.
J. Behler, G. Chiudioni, A. Ely, J. Pangonia, B. Sharif, and J. I. Maletic,
“iTrace-Visualize: Visualizing Eye-Tracking Data for Software
Engineering Studies,” in 2023 11th IEEE Working Conference of
Software Visualization, Aug. 2023.

K. Park, P. Weill-Tessier, N. C. C. Brown, B. Sharif, N. Jensen, and M.
Kolling, “An eye tracking study assessing the impact of background
styling in code editors on novice programmers’ code understanding,” in
Proceedings of the 2023 ACM Conference on International Computing
Education Research - Volume 1, in ICER °23, vol. 1. New York, NY,
USA: Association for Computing Machinery, Sep. 2023, pp. 444-463.
doi: 10.1145/3568813.3600133.

J. A. Saddler et al., “Studying Developer Reading Behavior on Stack
Overflow during API Summarization Tasks,” in 2020 IEEE 27th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb. 2020, pp. 195-205. doi:
10.1109/SANER48275.2020.9054848.

C. S. Peterson, J. A. Saddler, N. M. Halavick, and B. Sharif, “A Gaze-
Based Exploratory Study on the Information Seeking Behavior of
Developers on Stack Overflow,” in Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems, in CHI EA °19.
New York, NY, USA: Association for Computing Machinery, May 2019,
pp. 1-6. doi: 10.1145/3290607.3312801.

K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and T.
Fritz, “Eye gaze and interaction contexts for change tasks — Observations
and potential,” Journal of Systems and Software, vol. 128, pp. 252-266,
Jun. 2017, doi: 10.1016/j.jss.2016.03.030.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension - ICPC

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

’18, Gothenburg, Sweden: ACM Press, 2018, pp. 286-296. doi:
10.1145/3196321.3196347.

. Bertram, J. Hong, Y. Huang, W. Weimer, and Z. Sharafi,
“Trustworthiness Perceptions in Code Review: An Eye-tracking Study,”
in ESEM °20: ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Bari, Italy, October 5-7, 2020,
M. T. Baldassarre, F. Lanubile, M. Kalinowski, and F. Sarro, Eds., ACM,
2020, p. 31:1-31:6. doi: 10.1145/3382494.3422164.

D. D. Salvucci and J. H. Goldberg, “Identifying Fixations and Saccades
in Eye-tracking Protocols,” in 2000 Symposium on Eye Tracking
Research & Applications, in ETRA ’00. Palm Beach Gardens, Florida,
USA: ACM, Nov. 2000, pp. 71-78. doi: 10.1145/355017.355028.

P. Olsson, “Real-time and Offline Filters for Eye Tracking,” Masters
Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2007.
Accessed: Jun. 21, 2019. [Online]. Available:
https://pdfs.semanticscholar.org/4167/7844556582adc68a5al4dbblceald
b28d9016.pdf

0. Spakov and D. Miniotas, “Visualization of Eye Gaze Data using Heat
Maps,” Elektronika Ir Elektrotechnika, vol. 74 No. 2, pp. 55-58.

T. Pfeiffer and C. Memili, “Model-based real-time visualization of
realistic three-dimensional heat maps for mobile eye tracking and eye
tracking in virtual reality,” in Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications, in ETRA °16.
New York, NY, USA: Association for Computing Machinery, Mar. 2016,
pp. 95-102. doi: 10.1145/2857491.2857541.

M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight
Transformation and Fact Extraction with the srcML Toolkit,” in 2011
IEEE 11th International Working Conference on Source Code Analysis
and Manipulation, Williamsburg, Virginia, USA: IEEE, Sep. 2011, pp.
173-184. doi: 10.1109/SCAM.2011.19.

M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration,” in 29th IEEE International Conference on Software
Maintenance (ICSM), 2013, pp. 516-519. doi: 10.1109/ICSM.2013.85.
“Matplotlib — Visualization with Python.” Accessed: Jun. 16, 2024.
[Online]. Available: https://matplotlib.org/

C.-K. Yang and C. Wacharamanotham, “Alpscarf: Augmenting Scarf
Plots for Exploring Temporal Gaze Patterns,” in Extended Abstracts of
the 2018 CHI Conference on Human Factors in Computing Systems,
Montreal QC Canada: ACM, Apr. 2018, pp. 1-6. doi:
10.1145/3170427.3188490.

K. Falzone, S. Lemonnier, T. Grébert, and C. Bastien, “Using Scarf Plots
to Visualize Moment-to-Moment Visual Search Behavior on Websites,”
in Adjunct Proceedings of the 34th Conference on I’Interaction Humain-
Machine, in IHM 23 Adjunct. New York, NY, USA: Association for
Computing Machinery, Jul. 2023, pp. 1-8. doi:
10.1145/3577590.3589604.

