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Abstract—The iTrace Infrastructure is a suite of community 

eye-tracking tools that enables researchers to conduct eye-

tracking studies on software projects in real development 

environments. The infrastructure consists of tools providing 

support for data gathering, post processing, and visualization. 

iTrace-Visualize provides researchers with a way to visualize 

gathered and post-processed eye-movement data. iTrace involves 

the analysis of more than just eye-movement data, and includes 

information gathered from the development environment and the 

source code. This work describes additions to iTrace-Visualize 

that provide researchers with visualizations of the gathered source 

code data. Specifically, a tokenized heatmap of the source code is 

presented, that shows source code tokens that are viewed the most.   

Additionally, a region of interest scarf plot that details the timeline 

of what parts of the code a participant views is added as a new 

feature. A small preliminary study comparing student and 

industry developers is presented to demonstrate the use of these 

tools.  

Demo Video: https://youtu.be/0iZcCC8CK94  

Keywords—eye tracking, visualization, heatmaps, pipeline 

I. INTRODUCTION 

The iTrace infrastructure [1-4] allows software engineering 
researchers to conduct eye-tracking studies within common 
development environments such as Eclipse and Visual Studio. 
iTrace-Visualize, a part of the infrastructure, allows for ways to 
visualize the eye-tracking information gathered during an eye-
tracking session [5]. Because iTrace supports the dynamic 
stimulus of IDEs and other text editors, standard visualization 
techniques cannot be used. Visualizations such as heatmaps do 
not work well due to the stimulus changing, either from 
scrolling, changing files, or pop-up context windows appearing. 
In previous work, we explore various visualization methods, and 
ruled out typical methods because they tend to not work well 
over the dynamic medium of coding environments [5]. 

The first version of iTrace-Visualize supports gaze, fixation, 
saccade markup, and code line highlighting in gaze video 
playback with a fading display to keep the display clutter-free. 
In addition, support for video interpolation to support high-
speed tracking [3] is built-in. After the first release, we received 
feedback from users that the visualizations offered by iTrace-
Visualize were helpful for visualizing the eye-tracking 
information, but do not provide much insight into understanding 
which specific parts of the source code is viewed at more detail.  
To meet these concerns and support researchers in 
understanding what source code elements are examined and how 
participants navigate between them, we extend iTrace-Visualize 
to support two additional visualizations that are directly 
informed by the source code stimulus.  

• Tokenized Heatmaps: Using the original source code and 
the fixations generated in iTrace-Toolkit, iTrace-Visualize 
creates a heatmap of how long tokens in the source code are 
viewed. The heatmaps have different options, allowing for 
the averaging and normalization of the data, as well as 
choosing whether the heatmap uses the duration or number 
of the fixations as the main metric of interest. 

• Region of Interest Scarf Plots: iTrace-Visualize allows 
researchers to define chunks of lines as regions of interest per 
source code file, and then generates a scarf plot which details 
in a timeline how participants navigate across those regions.  

The premise behind adding these additional visualizations is to 
aid researchers in further exploring their eye-tracking datasets 
for certain hypotheses based on their study goals. The tokenized 
heatmaps provide an option to see how long and/or how many 
times developers fixate on specific tokens in the code. This can 
help researchers identify if certain token types are harder to 
understand compared to others.  For example, a variable that is 
poorly named leads developers to take longer to read and 
understand it. The region of interest scarf plots show the gaze 
patterns in source code such as usage of def/call chains where 
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developers chase (navigate across) data values or follow control 
flow. One can do this by creating regions of interest for the 
definition and call areas of the code and plot the gazes across 
these areas via the region of interest scarf plots. It also allows 
researchers to develop their own custom regions to validate a 
hypothesis about how developers read. The plots generated can 
be used to provide evidence of gaze navigation observed.  

II. USAGE OF ITRACE-VISUALIZE 

The videos iTrace-Visualize produces provide a time replay 
of the eye-tracking data on the stimulus gathered from iTrace-
Core and processed by iTrace-Toolkit [5]. iTrace-Visualize has 
been used to improve studies and other tools within the iTrace 
Infrastructure [6-11] We describe a few usage scenarios on how 
we have used iTrace-Visualize. 

A. Fixation Settings Adjustment 

iTrace-Toolkit provides users with three main fixation 
generation algorithms that aggregates recorded gaze information 
into fixations [4]. The three main algorithms are the Olsson 
Basic, I-VT, and I-DT algorithms [12, 13]. These algorithms 
have adjustable parameters, which users can change to better 
adapt to the specific needs of their study. However, it was 
difficult to know what settings would work best for a researcher 
from a glance. Because iTrace-Toolkit outputs its data into a 
SQLite database, viewing the generated fixations is difficult and 
tedious. Researchers would have to create their own 
visualization methods or perform arduous examinations of the 
database to determine if their settings worked well. 
Visualization helps with this process, as a researcher can 
generate a video that visualizes the fixations. Visualizing the 
fixations allows researchers to compare and contrast different 
fixation algorithms, or the same algorithm with different 
parameters. It also enables researchers to detect and address 
erroneous data originating from issues with their eye-tracking 
equipment. This capability not only prevents potential 
challenges but also minimizes time lost in the research process. 

B. Identifying Bugs 

The videos from iTrace-Visualize have been used within our 
own development team to identify issues with our other toolsets. 
Previously, iTrace-Toolkit had a semi-rare bug where extremely 
large fixations are generated under the I-DT algorithm. The I-
DT filter requires the gazes of a fixation to be within a certain 
dispersion radius. Gazes that fall outside of this radius trigger 
the end of a fixation, and the calculation of a new one will begin. 

However, this algorithm had no limit on time, so long as the 
dispersion radius is maintained. Thus, if a participant looked off-
screen for an extended period of time, and then looked back at 
roughly the same area they had left the screen from, an 
incredibly long fixation is recorded. These fixations are tens of 
seconds long, and interfere with studies where a participant has 
to look away from a screen occasionally. Using iTrace-
Visualize, we were able to detect this bug and identify that the 
eye traveling off the screen is what triggered them. Researchers 
can then decide if they want to filter out such fixations. In our 
case, we fixed how the I-DT filter works to address the above 
concern.  

C. Going Beyond Video Playback 

The videos generated by iTrace-Visualize have many helpful 
attributes, but they did not solve all of the community’s requests 
and needs for visualization. As stated in the introduction, a more 
specific source-code specific visualization was requested. This 
paper meets that need for providing two additional 
visualizations that directly aid in further analyzing eye tracking 
data.  Some examples include using the tokenized heatmaps to 
determine which tokens are harder to comprehend by observing 
the frequency and duration of gazes. The region of interest scarf 
plots could help in understanding how novices and experts 
navigate code sections while fixing a bug for instance.  

III. TOKENIZED HEATMAP 

In previous work, we initially dismissed heatmaps for 
visualizing the eye-tracking information generated iTrace due to 
the dynamic nature. We examined the works of Špakov and 
Miniotas [14], and Pfeffer and Memili [15] to see how heatmaps 
are currently being used with eye-tracking. Because iTrace 
allows for the recording of dynamic development environments, 
heatmaps could add a lot of visual clutter on top of an already 
complex development environment. Additionally, scrolling 
causes the heatmap to no longer align with the tokens in the 
source code. Visualizing the source code token information 
requires an entirely different methodology. The eye-tracking 
information is recorded in x and y pixel coordinates on the 
screen, which causes the main issue with visualization on a 
dynamic target. However, the source code information is 
recorded by saving the line and column from within the source 
code that the participant is examining. Using this, we can fully 
recreate the source code and visualize the individual tokens and 
characters that are viewed during the session. 

Figure 1: A segment of code turned into a tokenized heatmap. The legend is in number of fixations. 



A. Implementation 

iTrace-Visualize is implemented using Python and the Qt 

Python bindings. To recreate the source code for the heatmap, 

the OpenCV 4.8.1.78 and Pillow 10.3.8 imaging libraries are 

used. To separate the heatmap from the video replay from the 

first version of iTrace-Visualize, we add a tabbed view, where a 

user can switch between tabs depending on the type of 

visualization they want to perform. To create the heatmap, 

iTrace-Visualize converts the source code from the original 

study into an image. This image is sized depending on the size 

of the original source code, which means large files may result 

in very large images. As input, the heatmap generation takes an 

iTrace-Toolkit database, that has fixations calculated from the 

raw gaze data, and has the fixations mapped to source code 

tokens from the source code. The tool also requires a srcML [16, 

17] archive of the source code to be able to recreate the code into 

an image and easily map the line and column information to 

individual tokens in the source code. srcML provides an XML 

representation of the source code’s AST, and makes identifying 

tokens which are syntactically relevant easy. 

B. Generating a Heatmap 

After importing an iTrace-Toolkit database and a srcML 
archive, iTrace-Visualize populates a list with each session 
contained within the database. Selecting a database reveals the 
list of fixation runs – sets of fixations calculated with a specific 
fixation algorithm – that are associated with the selected session. 
Multiple sessions and fixation runs can be selected, allowing for 
batch processing. All selected fixation runs generate a single 
image per viewed file. For example, if two separate sessions had 
participants look at main.cpp and calc.hpp, generating heatmaps 
on both results in four images, two for each session from each 
file. The heatmaps use a standard visible light spectrum range to 
represent intensity, with violet representing the least viewed 
tokens and red representing the most viewed tokens. Each token 
viewed during a session is given a highlight of the corresponding 
color intensity. A user can specify the number of colors, from 
violet to purple, to use for their markup, with five being the 

default. These colors and their requisite values are drawn in as a 
legend at the bottom right of the image. Figure 1 demonstrates 
an example of the tokenized heatmap. 

If a user wants to aggregate their data together instead of 
generating multiple images, they can average each selected 
fixation run together. This process will group all of the fixation 
data together per file, and will ignore participant and fixation run 
information. Only one image per source code file will be 
generated, showing the average heatmap of the file across all 
viewings. Two types of averaging are available, with either all 
fixation runs being added together, or all runs being normalized 
before adding, allowing a researcher to diminish the effect of 
outlier tokens. Additionally, iTrace-Visualize provides two 
ways to value each fixation for the heatmap. A user can either 
use the fixation count or the total fixation duration on a token. 

IV. REGION OF INTEREST SCARF PLOTS 

Alongside the individual tokens, researchers are interested in 
examining sections of the code and how developers transition 
between them during a task such as bug fixing for instance. 
These regions of interest provide insight into how developers 
read code and in what order. To aid researchers with this 
analysis, we provide the ability to generate region of interest 
scarf plots. These plots showcase which regions of the source 
code the participant viewed. The plots are generated using the 
matplotlib library [18]. Scarf plots are a popular way for 
researchers to visualize the viewing of regions of interest. We 
examined the Alpscarf tool by Yang et al. [19] and by Falzone 
et al. [20], who used scarf plots to visualize and analyze various 
search tasks on websites. These studies gave us a basis for how 
scarf plots are being used, and allow us to implement our scarf 
plots in adherence with community standards. 

A. Generating a Scarf Plot 

Like a heatmap, the region of interest scarf plots require an 
iTrace-Toolkit database as input. After importing the database, 
a list of sessions and fixations runs is shown, allowing a user to 
select one or more fixation runs for processing. Additionally, a 
user can specify the regions of interest on the source code. 

Figure 2: Two tokenized heatmaps of the three novice (left) and three professional (right) developers. The heatmaps depict the average. 



Target files can be added manually by a researcher, and then 
individual regions of interest can be specified. Regions of 
interest can be exported and imported by a researcher to save 
time if processing is done over multiple launches of the program. 
A researcher can specify a start and an end line for each region.  

Generating the images will generate one image per file added 
to the list. For each image, each fixation run is examined for any 
fixations which targeted the corresponding file. If one is found, 
the fixation run will be plotted on the image. Like with the 
heatmaps, the colors will range from violet to red along the 
visible light spectrum. However, the colors hold no intensity 
meaning, and are automatically chosen to give each region of 
interest a specific color. Alongside those colors, two different 
shades of grey are plotted to represent fixations on lines not 
within a region of interest and fixations on other files or periods 
of times when the user was not looking at the screen. If a 
researcher defines no regions of interest, the graphs will still plot 
when the user was looking at the file and when they were 
looking at other files or were not looking at the screen. The 
graphs are plotted with respect to time, which additionally 
allows researchers to compare the length of the sessions.  

V. PRELIMINARY CASE STUDY 

We examine in a small pilot case study the differences 
between student and industry-level developers to demonstrate 
the new visualization techniques. Our data is taken from a 
separate currently ongoing research study measuring the 
efficacy of code review techniques. From this dataset, we 
randomly pull data from three undergraduate student developers 
and three professional developers who currently work in 
industry. The participants are instructed to view the source code 
and examine it for any issues or formatting errors. Any found 
errors were to be recorded in a separate text file in the code 
editor. For clarification, we are not making any concrete claims 
about the nature of novice and professional developers in this 
work - rather, we are using them as an example to explain an 
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example use of iTrace-Visualize. Using this data, we run the 
novices and the industry developers through iTrace-Visualize 
and generate the tokenized heatmaps and the scarf plots shown 
in Figures Figure 2 and Figure 3 respectively. The generated 
graphs, both combined and individual, are available in our 
artifact1. 

Examining the heatmaps, we see from a glance that the 
industry developers spent more time looking at the comment 
near the top of the file than the novices, but the novices looked 
at the comments above the statements within the functions. On 
the scarf plots, each region of interest is a significant section of 
the source code shown in the heatmaps. The red region 
represents the declarations at the top of the main, the yellow is 
the if statement after, and the remainder are the for loops within 
the else. The dark gray represents when the user was either 
looking off-screen or at the response sheet. Looking at the scarf 
plots, we see that the professionals switch between regions of 
the code and their response sheet more often than the novices, 
who tend to examine the code for longer. The professionals also 
did not view ROI 3 as much as the novices, which contains a 
loop that sets the initial contents of the array. 

VI. CONCLUSIONS AND FUTURE WORK 

iTrace-Visualize offers researchers a quick and easy way to 
understand eye-tracking data on source code and provides 
qualitative analysis for statistical results. Through our own use, 
we found that using iTrace-Visualize allows us to draw 
conclusions about our results, which we can then further 
investigate. iTrace-Visualize is available for download from our 
website at https://www.i-trace.org. In the future, we plan to 
expand the visualizations supported based on further feedback 
from our community. One possible addition is incorporating an 
optional timelapse to the tokenized heatmap generation to see 
the heatmap change over time. Augmenting the scarf plots 
similar to Alpscarfs [19] to support the display of revisits and 
longer stimuli is another venue for future improvements.  

Figure 3: A region of interest scarf plot of all six developers. The top three (Novice 1-3) are the novice developers, and the bottom three (Expert 1-3) are the 

professional developers. The x-axis represents the milliseconds elapsed from the beginning of the recording session. 
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