Reference Manual

Volume 11
Advanced Programming Guide

Version 6.23
January 31st 2005

CLIPS Advanced Programming Guide
Version 6.23 January 31st 2005

CLIPS Reference Manual

CONTENTS

License Information i
Preface iii
Acknowledgements. vii
Section 1 - Introduction 1
1.1 Warning About Interfacing With CLIPSccooiiiiiiiiieeeeeeeee e 1

1.2 CA4 COMPAIDIIILY ..eoeniiiiiiiieiiieeeiteeee ettt et e st s e et e s esateesaaeees 2

1.3 Threads and CONCUITENCYccuueereureeriiieeeiiieeeiieesieeesiteeesereeessseeesreesseeessseessseeesssessssseesnsses 2

1.4 Garbage COIIECTIONeeruiiiiiiieiiieeeiee ettt ettt ettt e et e st e e st e e sbeessabeesaeeesaneeas 3
Section 2 - Installing and Tailoring CLIPS 9
2.1 InStalling CLIPS......ooiiiiiieee ettt ettt ettt e sb e et e st e st e e sbneesaaeees 9
2.1.1 Additional ConSIAEIAtIONS........uuvvveiieeiiiiiiriireieeeeeeeeiirrreeeeeeeeeensrrrreeeeeeeeesrrrrreeeeeeens 12

2.2 Talloring CLIPScoiiiie ettt ettt e et e et e st esaeee s 13
Section 3 - Integrating CLIPS with External Functions 21
3.1 Declaring User-Defined External FUNCHONScooiiiiiiiiiiniiiiiiieiiiecieecee e 21

3.2 Passing Arguments from CLIPS to External Functions...........ccccccoeevuieiriieenieeeniee e, 25
3.2.1 Determining the Number of Passed Argumentscccecueeeriiieinieeinieennieennieeennne 25

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers...........ccccceeeuvennee. 25

3.2.3 Passing Unknown Data TYPESccccueeiiiiiiiiiiiiieeiiieeeiiecreee et 27

3.2.4 Passing Multifield ValUesccccoeviiririiieiiieeiiicceeete et 30

3.3 Returning Values To CLIPS From External Functions.........c.ccccecveeviinienieeniceieeneenneens 32
3.3.1 Returning Symbols, Strings, and Instance Names..........cccccveeverveeriieercieeenieeenveeenne, 32

3.3.2 Returning Boolean ValUescoocuiiiiiiiiiiiiiiiiieiceeiieeeeeete e 34

3.3.3 Returning External Addresses and Instance Addresses........oeoveereveeenieeenieeenveennne, 35

3.3.4 Returning Unknown Data TYPeS.......cccccueeerieernieiiiiieeniieeniieesite et esiree e 36

3.3.5 Returning Multifield Valuescccveeriiieiiieeiiecieeete et 38

3.4 User-Defined Function EXample..........coooouiiiiiiiiiiiiiiiiiieeieeteeee e 42
Section 4 - Embedding CLIPS 45
4.1 Environment FUNCHOMNScooiiiiiiiieiieecceeeciiiieeeee e e eeecirre e e e e e eeeeetaarereeeeeeeesansaaseseeeeeesnnns 45

v O AN e [=Y Vg 33031t 1o) 4 DO 45

4.1.2 AddPeriodiCFUNCHONccieiiiiiieiiee ettt e e e eeeearrr e e e e e e eeeeeanrrereeeeens 46

4.1.3 AAARESETFUNCHON.uvviiiiiiiiiiiiiiiieiiee et e e e e ee e e e e e e e eennarraeeeeeeees 46

1.4 BAtCRSTAT ... cveiiiiiiiieiiiiieeee ettt eeeee et e e e e e eeettrrreeeeeeeeesetarsreeeaeeeeeeenarrrnaaeaeens 47

O ST 57 oYV PR 47

CLIPS Basic Programming Guide

CLIPS Reference Manual

A.1.6 BSAVE...cuiiiiieeie ettt ettt ettt b e st 48
A 1T BUIL e sttt ettt ebe e 48
O R O [OO RPSPRR PSR 48
AT EVAL ottt e 49
4.1.10 FUnCtionCalll........coouiiiiiiiiieeee ettt s 49
4.1.11 GetAutoF1oatDIvIdend..........coooiiiiiiiiiiiieieiieeeieeete et s 50
4.1.12 GetDynamicConstraintChecKingcc.eeevuveeeiieeriieeniieeeee e evee e e 50
4.1.13 GetSequenceOperatorRECOZNILION.ueeriieiriieiniieeriieeiee e 50
4.1.14 GetStaticConstraiNntChECKING.......cccviieiieeeiieeecieeciee et eeeeeereeesreeesaeeeeeaee e 50
4.1.15 InitialiZ€ENVIIONMENT.ceiiiiiiiiiieiiiieeiie ettt et s e s eas 51
o I (O3 57 T OO RSPSRR PSR 51
4.1.17 RemoveClearFUunCHiONcoooiiiiiiiiiiiiiiiiieeeieeeie ettt s 52
4.1.18 RemovePeriodiCFUNCLION.cooiiiiiiiiiiiieieeeee e 52
4.1.19 RemOVERESEtFUNCHIONccuiiiiiiiiiiiieeiieeeteeee ettt s 52
A 120 RESCL.c..ieienteeite ettt ettt ettt ettt et st e et e bt et e eat e te et e ene e bt et e eneenbeenteeneents 53
AU1.21 SAVE..oiiiiieeeee et 53
4.1.22 SetAutoFloatDIivIAendccccuieeiiiieeiiieeiee et e en 53
4.1.23 SetDynamicConstraintChecking..........c.ceovuieiriiiiniiiiniieiieeieeeee e 53
4.1.24 SetSequenceOperator RECOZNIIONc.eeeevuieieiiieeniieeeiie e e eaee e 54
4.1.25 SetStaticConstraintChECKINGccccuvieiiiiiiiiieiiieeeiie et 54
4.2 Debugging FUNCHIONSccocuiieiiieeiiieeiieeesteeeteeeiteeeiteesaeeesreeesbeeesaseeessseesnsseesnnseesnsseeans 55
4.2.1 DIIDDICACHVE. ..ccutieeiiieeiite ettt ettt ettt st e e et e e sabtessabeessabeesabeesnbeeesbaeeeas 55
R D)y o] o) (<1 @) i SRR PRSI 55
4.2.3 DITDDIEOMN.......eouiiiiiieeiieiee et sttt sttt sttt 55
4.2.4 GEtWatChItOM......eiiiiiieeciie ettt tee s e e e e sbeeeabeesnaeeesaeeens 56
A.2.5 UNWALCH ettt st 56
A.2.60 WALCH ..ottt et 56
4.3 Deftemplate FUNCHONSeiiiiiiiiiiieitieeeeeeeee ettt ettt e st esiaee e 57
4.3.1 DeftemplateMOdUIEcoeiiiieeiieeiiecee e e e en 57
4.3.2 FINADEteMPIALE.cccuveiiiiiieiiieeiieecteeete ettt ettt ettt s 57
4.3.3 GetDeftemMpPlatelLiSt........ccveeriieeiiie et et eree e tee s e e sre e e e e abeeenaaeeeaaeeen 57
4.3.4 GetDeftemplateINAIME.cccoviiiiiieiiiieeiieeeeeeee et s e s 58
4.3.5 GetDeftemplatePPFOIM..........ooiiiiiiiieceeceeeeeee e e 58
4.3.6 GetDeftemplate WatChi........cccueieiiiiiiiieieeee e 58
4.3.7 GetNexXtDEftemMPIALeccc.eeiiiiiiiiiiiieee et 59
4.3.8 IsDeftemplateDeletable...........cooriiiiiiiiiiiiiieeeiieeeie ettt 59
4.3.9 LiStDeftemplatescccueeuiiiiiiieeieee ettt 59
4.3.10 SetDeftemplateWatChccc.eeiiiiiiiiiiieee e 60
4.3.11 UndeftemPlate......ccccveeeiiieeiiieeiieeeieeeceeeeiteeesiteeetee e e aeeesaeeesnseeessaeessseesnsseeensaeeens 60
4.4 FACE FUNCHIONS ..ottt ettt ettt ettt e e st e e st e e st essabeessabeesbneesaneesneeeeas 60
AT ASSETT ettt ettt e h e et b et b e st e e bt e et e e bt e eateenaeeeaee 60
442 ASSETESIIIING. .. eeeeieieeitie ettt ettt et e ettt e st e e s bt e e sabeessabee s abeesabeesbbeesbneenas 61
4.4.3 AsSignFactSIotDEfaulls.cccueieriiieiiieeiee et e 62

il Table of Contents

CLIPS Reference Manual

N @ 42 (=) - Te1 PR 62
4.4.5 DecrementFaCtCOUNToooiiiiiiieiiee ettt eee et e e e e e e e eeearrreeeeeeees 65
4.4.6 FaCtDeftemMPIatec.eeeiiiieiiieeiiie ettt etee e tee e e e e e aee b e esnaeeenaeeens 65
44T FACHEXISIP..ceeutieiiiie ettt ettt ettt ettt e s e e st e et e st e s bt e s abeesbbeesbaeeeas 65
R e 1o 1 3 T (), GO 66
A9 FACES ..ottt eeeeee et e e et ee et e e e e e e e e et tbaaeaeeeeeee e ttrrraaaaaeeeeenarrraaaaaaans 66
v OO o T] (01 A\ Vo o 1 SRR 67
4.4.11 GetFactDUPIICAIONccutieiiiieiiiieeiieeeite ettt sttt e st esaaeeeas 67
v O € 14 3F: Ve 1 I3 T SRR 67
4.4.13 GetFactLiStCRanZed........ccooviiiiiiiiiiieeiieeeteeee ettt 68
Vi N VA @ 114 aF: Vo1 o B 210 o s 1 WU 68
44,15 GIFACISIO . cccciiiieiiiieieeee ettt e e e eee e e e e e e eeeeetarsreeeeeeeeeesnanrrareeeeens 68
O Y Y € 8N\ [-) A4 37 Te] SRR 69
4.4.17 GetNextFactInTemplate..........cccueeiiiiiiiiiiieeiieeeeeecee e 69
4.4.18 IncrementFaCtCOUNL...........oooviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 70
44,19 LOAAFACES ...cceeeieieeiiieeeee ettt ettt et eee e e e e e eeeettrsreeeaeeeeenenarrraraeaeens 71
4.4.20 LoadFactSFrOMSIIING......cccoiiieeiiieeiieeeiee et eiteeeiee e ieeesveeesveeesveeeaaeessaaeeesaeeens 71
4421 PULFACESIO.c..cci ittt e e eeeetrr e e e e e e e e eeearrraraeeeens 71
N N i v Lo TR 72
4423 SAVEFACES ...eeviiiieieiiieeeee ettt e et e e e e e e e e et raraaaaens 72
4.4.24 SetFactDUPIICAtION.cccuiiiiiieeiiieeiiee ettt e tee s e et e e beeeaaeesnaaeeesaeeens 73
4.4.25 SetFactLiStChangedcoocueiiiiiiiiiieeiieeeeeeee ettt 73
4.5 Deffacts FUNCHIONSuuvvviiiiiiiiiicciiitieeee et eee e e e e e e e e aaaeeeeeeeessennasarrreeeseseennes 74
4.5.1 DeffactSIMOAUIE.cvvviiiiiieieieeeeee e e eee e e e e e e e aerreeaeeaees 74
I S 1116 | D 1S €2 Tl £SO 74
4.5.3 GetDETaCISLLIST.....eiviiiieeee ettt e e eee et e e e e e e e arrrrraeaeeas 74
RN €T D 1) i ;1o)\ \F: V' 4 SRR 75
4.5.5 GetDeffactSPPEOIIcoooiiiiiieeie et 75
N N €N B L i :1e1 £ PR 75
4.5.77 ISDeffactSDEletabIe.ccceeeiieiiiieieeee et 76
I D111 DS & 2Tt - DR 76
4.5.9 UNAEITACES ..vvviiieieeeeciieeeee ettt e e e e eee e e e e e e eeeettrsreeeeeeeeeesansrareeeeens 76
4.6 DefTule FUNCHOMNS.cuvvviiiiiiiei ettt eee e e e e e e e e e aaaeeeeeeeessennasaaereeeeeseennns 77
4.6.1 DefruleHasBreakpointcooiieiiiiiiiieeniieeeiieeeiee ettt s e s 77
4.6.2 DefruleMOAUIEuvvvveiiiiiiieeeeeee e 77
4.6.3 FINADEITULCcoooiiiiiiieee et e e e e e e e e e e e eanrraeaeeeees 77
R €1 D 1 i 11 (< 5] PR 77
4.6.5 GetDefruleNAMEcvvvvieiiiiieeciieieeee et e e e eee e e e e e e eeeeearrrereeaeens 78
4.6.6 GetDefTULEPPEOIMN.......cvviiiiiiiiieeeeee e e e e e 78
4.6.7 GetDefruleWatChACHIVALIONS.vevieeieeieeiirieeeeeeeeeeeiiirreeeeeeeeeeeeirrreeeeeeeeeeearrreeeeeeens 78
4.6.8 GetDefruleWatChFIringsc...ooiiiiiiiieieeeeeee e 79
4.6.9 GetINCremeENtalRESEL..........ccoeiiciiiieeiee et eeeee et e e e e e eeeeearrreeeeeeens 79
4.6.10 GEtNEXDEITULEuvvveeiiiiiiieeeeee e e e e e 79

CLIPS Basic Programming Guide iii

CLIPS Reference Manual

v

4.6.11 ISDEfTUIEDEIEtADIEeeeeeeeieiiieeeeee e 80
4.6.12 LiSDEITULES......coieeiiieieeeee ettt eeeee e e e e e e eeeeetarrreeeeeeeeeennansraeeeeeens 80
T R IR\ 1 7e] o 1< RO 80
0. 14 RETESN ..uuvvvieiiee et e e e e e e e e e e trar e e e e e e eeeeearrraraeaaens 81
4.6.15 REMOVEBIEAK.......c.evvvvviiiiiiiiiiiiieeeeee et e et e e e e e e eabaaeeeee e 81
460,16 SCIBICAKcceeieiiiiiiiiiiieee ettt e et e ee e e e e e e e e e e arb e e e e e e e eenarrraraaaaens 81
4.6.17 SetDefrule WatChACHIVATIONSeviieiiiiiieiieeieeeeeeeeiiireeeeeeeeeeesiirrreeeeeeeeeenarraeeeeeeees 81
4.6.18 SetDefruleWatChFITINGS.coiiiiiiiiiiiiieeeieeeieeeiee et 82
4.6.19 SetINCremeENtAlRESEcoiiieiiiiiiiiie et e e e e e arraereee e 82
4.6.20 SNOWBICAKScooiiiiiiiieeee ettt e e e e ee e trr e e e e e e e e eenanrraraeeeeas 82
) UV 13§) (RO 83
4.7 AZeNda FUNCHIONSeeiiiiiiiiiieiiiieeiiteeite ettt ettt e st e st e st e sateesaeeeeas 83
4.77.1 AAARUNFUNCHONuviiiiiiiiiiiiiiiieeeee et e ettt e e e e e e enaarraeeeeeeees 83
AT 2 AZENAA ...ttt sttt e st e st esaaeeeas 84
G O 1T g fe T | I 7: Lo SRR 84
4774 DEIet@ACIIVALIONuvvvvveeeeeeeeeeiiirreeeeeeeeeeeiirrereeeeeeeessitrrrreeeeeeeessearsreeeeeeeesenssrrrneeeeeens 85
g B T 1o Yol TR 85
4.7.6 GEtACHVALIONINAITIC ...vvvveeeeeeieiiiirieeeeeeeeeeeiirreeeeeeeeeeeiierrrreeeeeeeessetrsrereeeeeesesssrrrneeeeeens 85
4.7.7 GetActiVatiONPPEFOIM..........ooiiiiiiiiiiic e 86
4.7.8 GetACHVAIONSALIEIICE ..eeeeeeeeiiiiiieeeeeeeeeectree e e eeecrrr e e e e e eeeetrrreeeeeeeeeeenarrreeeeeeens 86
4.7.9 GetAgendaChangedcooueiiiiiiiieeee e 86
A.7T.10 GEIFOCUS ..vvvveeeieeeeeciieeeee ettt eeee et e e e e eeeetrr e e e e e e eeesettrsreeeeeeeeeeenarrrnraeaeens 87
47711 GEtFOCUSSTACK ...cooeeeeeiiiiiieee e 87
4.77.12 GEtNEXEACHIVALION ..uvvvveeeeeeieeiiirreeeeeeeeeeeiirreeeeeeeeeeesirrreeeeeeeeeesetrsreeeeeeeesesssrrrseeeeens 87
4.7.13 GetSalienCeEvaluation.........cccvvvveiiiiiiiieieee e 87
AT T4 GOESTIALEZY ...veeeueieeiiieeitee et ee et e et e ettt e st e e et e e sabee e s bt e e sabeessabeesabeesnbeesenseesasneenas 88
B T I B 0 3 1o 1 S 72Tl PR 88
A.T.16 POPEFOCUS ...ttt ettt ettt et e st eseabeesabeesbteesbaeeeas 88
A.7.17 RefreSHAZENAA.oiiiiiiiiiiiieeee et e 89
4.7.18 RemOVERUNFUNCLIONccoiiiiiiiiiiiiee ettt e eeeerrr e e e e eeeeeanrrneeeeeees 89
4.7.19 REOTAETAZENAAeeiiiiiiiiiiieeieeee ettt sttt e sb e st e b 89
AT.20 RUD ..ottt e e e ettt e e e e e e e eeettaaraeeeeeeeestsssreeeeeeeeennnnsraseeeeens 90
4.77.21 SetActiVatiONSALIENCEcooveiviiieiiiee et eee et e e e e e esarrarreeeeees 90
4.77.22 SetAgendaChanged..........ccccueeiiiiiiiiiiiiieeeeeeeeee et 90
4.7.23 SetSalienCeEvaluation.........cooovvviiiiiiiiiiceeeee et 91
AT 24 SEESTIALEEY ...veeeerieeiieeeitte et ee et ettt e ettt e ettt e st e e sabeeesabeessabeeesabeesnbeesnbeesneeesasaeenas 91
4.8 Defglobal FUNCHIONScco.uiitiiiiiiiieee ettt st 91
4.8.1 DefglobalMOdUIEcccouiiiiiiiiiiiieeieeee ettt s 92
4.8.2 FINADETZIODALoeiiiiieiiieeieeeee ettt e e e e s aaee e 92
4.8.3 GetDEfZIODALLIST....ccutiieiiieeiiieeiiee ettt ettt st 92
4.8.4 GetDefglobalNAMEoocuiiiiiiiiiieeeee e e 93
4.8.5 GetDefglobalPPEOIMI........cccciiiiiiiiiiiieeiieeceeee ettt s 93
4.8.6 GetDefglobalVallecoueiiiiiiiiiieieee e 93

Table of Contents

CLIPS Reference Manual

4.8.7 GetDefglobal ValuCFOIM.........cocuiiiiiiiiiieiee e 93
4.8.8 GetDefglobalWatChooiiiiiiiiiiie et 94
4.8.9 GetGlobalsSChangedcoouiiiiiiiiiiieeet ettt 94
4.8.10 GetNextDefglobalcooiiiiiiiie e 94
4.8.11 GetRESEUGIODALS.......eeeeiiiieeiiieeiieeee ettt e tee s e e e e eeeabeeeaaeeesaeeens 95
4.8.12 ISDefglobalDEletablecoeriieiiiiiiiieeiiieeeiieeeiee ettt s 95
4.8.13 LiStDEfZlODalS......cceeiiiiiiieiiieeee e e 95
4.8.14 SetDefglobalValUe..........cooiiiiiiiiiiiiieieeeeeeeee et 96
4.8.15 SetDefglobalWatChi.......cc.coiiiiiiiiiii e 96
4.8.16 SetGlobalsSChanged...........ccuiiiiiiiiiiiiiieeeeeeee et 96
4.8.17 SEtRESEIGIODALSeveeeiiieeiiieeiee ettt e e e e v e e abeeesaaeeennaeeens 97
4.8.18 ShOWDETZIODALSeeiiiiiiiiiiieieeeeee e st 97
4.8.19 Undefglobal.........cooiiiiiiiie e 97
4.9 Deffunction FUNCHONS.c..iiiiiiiiiiieeiee ettt e st e st esaaee e 98
4.9.1 DeffunctioNMOAUIE...........eeiiiieeiieeiee ettt tee s e e e e aeeeabeeenaaeeeeaee e 98
4.9.2 FINADETTUNCHONoooiiiiiiiiiiiiieeiieee ettt ettt s eas 98
4.9.3 GetDeffuNCIONLISEceciiieeiie ettt e e e e b e e b e eaaeeeaaee e 98
4.9.4 GetDeffunctioNINAMEeeiiiiiiiiiieiieeete ettt e e e saaeeeas 99
4.9.5 GetDeffunctionPPFOIMc.oiiiiiiiciieceeceeeeeee e e e 99
4.9.6 GetDeffunctioNWatCh.......ccooiiiiiiiiiiie e 99
4.9.7 GetNeXtDEfUNCHION.cccuiieiieeiie ettt e e e s aaeeenaaeas 100
4.9.8 IsDeffunctionDeletable...........coooiiiiiiiiiiiiiiieiiece et 100
4.9.9 ListDeffUNCHIONS.ccuiieiiieeiie ettt ettt e e e et eeabeesaaeeenaaeas 100
4.9.10 SetDeffunctioNWatCh.......cccueiiiiiiiiiiiieceee e 101
4.9. 11 UNAeffUNCHONoeeiiiieeiieeiee ettt ete e et e e tee e s teeeeaeeesnseeesaeeesseesnnseesnneeas 101
4.10 Defgeneric FUNCHONSc..eiiriiiiiiieiitieeieeeite ettt ettt et e st e st e st esbt e saeees 101
4.10.1 DefgenericMOdUIEcoeiiiiiiieeieeeeeee et e e 101
4.10.2 FINADEIZENETIC. ...cccutiieiiieiiiieeiieeeieeeet ettt ettt sttt e s 102
4.10.3 GetDefZeNeriCLISE. . .ceciiiieiiieeciee ettt ettt ee e e e sb e e eeabeesnaeeennaeas 102
4.10.4 GetDefgeneriCINAIMEC.ccovviiiiiieriiieeiie ettt ettt st 102
4.10.5 GetDefgeneriCPPFOIM.......c..ciiiiiieiieceeceeee e e s 103
4.10.6 GetDefgeneriCWatCh........cooviiiiiiiiiiieieeeeee et 103
4.10.7 GEtNEXIDETZENETIC ...eeevviieiiieeiiieeiiee et et et ee e ree et e e sabeeeareeesbeesnaeeenneeas 103
4.10.8 IsDefgenericDeletable...........cooiiiiiiiiiiiieiiieeeiteeee et 104
4.10.9 LiStDEEZENETICS ...cuveitieeiiieiieiieeeite ettt ettt ettt et e bt st saeesareens 104
4.10.10 SetDefgeneriCWatChcccviiiiiiiiiiiieeee e 104
i L B 0116 (S 0531 1<) o (TSR 105
4.11 Defmethod FUNCHONS....ccc.uiiiiiiiiiiieeiiteeeeee ettt sttt e st s 105
4.11.1 GetDefmethOdDESCIIPLIONcccvvieeiiieeiieeeiieeeiee et eette e e e ee e e eeaeeeeaeas 105
4.11.2 GetDefMmethOdLLiSt......ccc.uiiiiiiiiiieeiieeeteeee et s 106
4.11.3 GetDefmethOdPPFOIM......cc.uiiiiiieeiiecieeeeeee e s e 106
4.11.4 GetDefmethOdWatChcocuiiiiiiiiiee e 106
4.11.5 GetMethOdRESIIICHIONScccuviieiiieeiiieeiieeeiieeeieeeeieeeereeeeveeesreeesereeesaeesnseeenneeas 107

CLIPS Basic Programming Guide v

CLIPS Reference Manual

4.11.6 GetNexXtDEfMEtNOWcccooiiiiieie e 107
4.11.7 IsDefmethodDeletableooccuvvvieiiiiiieiiieeeee e e e 108
4.11.8 LiStDEfMEtNOMASccooouieiiiieeeieeeeeeee e e e eaaee e e e eanes 108
4.11.9 SetDefmethodWatCh..........coooviiiiieiie e e 108
4.11.10 UNdefmetROd.......evveeieeiiiiieieeeeeeee ettt e e e e 109
4,12 DefClass FUNCHOMNSvvviieeeeiieeiiiereeeee e eeeeccirreeee e e e eeeeerrreeeeeeeeeeenbnaeeeeeeeeeennnnnrrnreeeeens 109
4.12.1 BIOWSECIASSES ...coouvvvrveeeieeeeieeiitteeeee e e e eeeerttee e e e e e e e eessrareeeeseeeesessararreessessennassenees 109
4.12.2 CIaSSADSIIACIP ...ttt e e e e e et e e ee e e e e eeeeaannees 109
4.12.3 CIaSSREACHVEPevviiieiiiiiieieeeee et e e e 110
A 12,4 CLaSSSIOS . .uueieieeeeeieciirieeeee e e e ettt e e e eeeeecbreeeeeeeeeessettarreeeeeeeeeesiararraeeeeeeesnnnsnrrees 110
4.12.5 ClasSSUDCIASSES......uvvvvveiiiieiiieiiiireeeee e et e e et e eesa e e e e e e eesaararreeeeeesesnnsasenees 110
4.12.6 ClasSSUPETCIASSES.....ueieiiiiiiiieeiiie ettt ettt e st e s e st e sbteesaaeees 111
4.12.7 DefClaSSIMOMUIEovvvveieiieiiieeiieeeeee et e e et e e e e e eeaaaaees 111
4.12.8 DESCIIDECLASS.cceetirieeeeee e ettt eeeecctree e e e e e eeeearreeeeeeeeeeeararreeeeeeeesnnsnrrees 112
4.12.9 FINADEICIASS.cooiieiiiiieeiiee ettt e et e e e e e s et aeree e e e e s eennaaseeees 112
4.12.10 GetClassDefaultSMOdEcccvvvveeieeieeeeciiieeeee et ee e e e e e eeeanneees 112
v B B € 114 B 1S (o] P T 5 T RO 113
4.12.12 GetDefClasSINAIE.c.ceeiieiiiiiiieeee ettt eeeeeectr e e e e eeeeeararreeeeeeeeeeeennees 113
4.12.13 GetDefClassSPPEOIM.......ccocuviiiiiiiie e e 113
4.12.14 GetDefclassWatChINStANCES........veviiiiieieeiiiieieee et eeeeerrrr e e e eeeeeanneees 114
4.12.15 GetDefclassWatChSIOLS.ooouvvriiiieieeeeeeeeee et 114
4.12.16 GEtNEXIDEICIASSuvvvereeeeiiieiiiriieeee ettt eeeeerr e e e eeeeeararreeeeeeeeeeaanrees 114
4.12.17 ISDefclasSDEIEtable..........ccoovvuvvvieiiiiiiiieeeeeeee et e e e 114
412,18 LiStDETCIASSES ..ccuvvvrieeieee ettt e e eeeerr e e e eeeeeabrrraeeeeeeeennannees 115
4.12.19 SetClassDefaultSIMOAE........coovvvveeiiieiieieeeeee et e e e 115
4.12.20 SetDefclassWatChINSANCESveevieiieieeiiirieeieeeeeeeeeireee e eeeeerrereeeeeeeeeeaanneees 115
4.12.21 SetDefclassSWatCISIOLScooouviieieiiie ettt 116
4.12.22 SIOtAIIOWEAVAIUES ...oeeeeeeeiieiiieieeee ettt et e e e eeaanneees 116
4.12.23 SIOtCArdiNalityccveeeriieeiiieeiieeeiee et e eteeeiee e e eeesreeeeaeeesbeeesseeensseesnneesnneeas 116
4.12.24 SIOtDIT@CLACCESSP...uvveeeeeeieieeeeee e et e e e eanaeees 117
A.12.25 SIOtEXISTP....coieiiiei et e ettt e e e et e e e e eaaaeeeeennees 117
4.12.26 SIOtFACELScceeeeiiirieeeee ettt e e e e eeeear e e e e e eeeeeararreeeeeeeeennsnnnes 117
4.12.27 SIOtINIADIEP.......oooiieiiiieieeee et eeeanes 118
A4.12.28 SIOtPUDLICP.......oviiiieiiiee e e et e e eaaae e e eeannes 118
4.12.29 SIOtRANZEeeiuiieeciie ettt ettt et e e et ee e e e e e snbeeesbeeesseesnaeeennaeas 118
4.12.30 SIOESOUICES......cceieeuirieeeeee et eeeeirrreeee e e eeeeeiirreeeeeeeeeessetarreeeeeeeeeesssrrrseeeeeeeesnnnsrreees 119
O DG B BN (0o) o1 TSRS 119
4.12.32 SIOtWIILADIEPcooociiiieeceeee e e e eanes 120
A.12.33 SUDCIASSP .ot e e e e eanes 120
4.12.34 SUPETCIASSP ... s 120
v e R B4V 155 (o] B Ty 120
4.13 INStANCE FUNCHOMS.uvvviiieieiiieeireieeee e eeeecctreee e e e eeeeerrreeeeeeeeeesntaareeeeeeeeesnnnnrreeeeeeens 121
4.13.1 BinaryLoadInStancCes.cccueeeriieeiieeeiieeeieeeiteeeeeeeeeeesreeesveeeseaeeenaeesaseeennaeas 121

vi Table of Contents

CLIPS Reference Manual

4.13.2 BinarySavelnStanCesccccviieriieeiiieeiieeeteeeiteeeiteeereeesreeesveeeeseeesaeesnaeeennaeas 121
4.13.3 CreateRAWINSIANICE.ceeieiiiieeiiiiieeee et eeeeeearr et e e e eeeeeararreeeeeeeeenneneees 122
4.13.4 DecrementInStanCeCOUNLcoevvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 122
4.13.5 DeleteINSTANCE.....cccuvvrveeeeeeeeieeiiireeeee e e eeeectree e e e e e eeeetarreeeeeeeeeeearrrreeeeeeeesnnsnreees 122
4.13.60 DITECTGEISION .ottt e e e e e e e e s eeaab b e e eeeeeeseennsssnees 123
4.13.7 DITECIPULSIOcceiiirieeeee ettt eeeeerree e e e eeeear e e e e e e eeeeeabarreeeeeeeennnsnrnes 123
4.13.8 FINAINSTANCEcooioiiiiiiiiiee ettt eee e e e e e e et e ee e e e e s eeenasseeees 124
4.13.9 GetInStanCECIASS.......uvviiieeieiieiiiiieeeee e eeeeecrree e e e eeeeerr e e e e e eeeeeararreeeeeeeeeensnrees 124
4.13.10 GetInStanCeNAIMIEcoovviiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 124
4.13.11 GetInstanCePPEOITcoooiiiiiiieeei et 125
4.13.12 GetInstanceSChanged..........ccccvieeriieeiiiieeieeeee et eerte e e esereeeeaeesaaeeenaaeas 125
4.13.13 GEetNEXLINSTANCE. ... uuvveeeeeeeeieiiiiiieeeee e e eeeecirreeeeeeeeeeeeerrreeeeeeeeeeearareeeeeeeeesnnsnneees 125
4.13.14 GetNextInstanceINCIaSS......ccocuvvvveiiiiiieieieeeeee et e e 126
4.13.15 GetNextInstanceInClass AndSubcClasses........eeeeieieeiieiirreeeeeeeeieiiiiieeeeee e, 126
4.13.16 IncrementInStanceCOUNtuvvveiiiiiiiiiiiiieiiee et eeeaaaaeees 127
13,17 INSTANCES. .ueveeeeeeeeeeeirieeeeeeeeeeecetrrr et e e e eeeeerreeeeeeeeeeesttsraeeeeeeeeenstasrreseeeaeeeennnnsrrrnes 129
4.13.18 LoAdINSIANCES.ceeeviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 129
4.13.19 LoadInstanCesSFromMSIIINGcoviiiiiiiiiiiiieeiieeeeee et 129
4.13.20 MAKEINSLANCEooeveeiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 130
4.13.21 ReStOrEINSTANCES.uvveeieeeeeieiiiiriieeeeeeeeeeeiitreeeeeeeeeeeietrrreeeeeeeeeeeararreeeeeeeeennsnneees 130
4.13.22 RestoreInstanceSFromMSIIINgccvveeiiiiieiieeeieeeie e e e 131
4.13.23 SAVEINSTANCEScuuvvvrieeeeeeeeieeiireeeeeeeeeeeeeirreeeeeeeeeesietarreeeeeeeeeesiarrrreeeeeeeesannsnrrees 131
O IR Y s U« F RO 131
4.13.25 SetInstanceSChangedcoovuieeriiiiiiiiieiieeeieeeee et s 132
4.13.26 UNMAKEINSTANCE.....uvvvveiieiiiiiiiiieeeeei ettt eeeetaree e e e e e e eearrrreeeeeeseennssseees 132
4.13.27 ValidInStanCeAdAIESScooevurrrreieeeeeeeecirreeeee e e eeeecrrree e e e eeeeearrrreeeeeeeeeeeanreees 133
4.14 Defmessage-handler FUNCHONScc.eieiiiiiiiiecieceieccee et 133
4.14.1 FindDefmessageHandler.............coooiiiiiiiniiiiniieieeee e 133
4.14.2 GetDefmessageHandlerLiStcccveeeiiiieiiiieiieeeie et 134
4.14.3 GetDefmessageHandlerName...........coocueeriiiiniiiiniiiiiniieeeeee e 134
4.14.4 GetDefmessageHandlerPPFOIMcccooviiiiieiiiieiiiceieccee e 134
4.14.5 GetDefmessageHandlerTyPecccueeviiiiiiiiiiiieiniieeteeee e 135
4.14.6 GetDefmessageHandlerWatCh...........occviveiiiieiiiieiiieeie e 135
4.14.7 GetNextDefmessageHandlIer.............cooviiiiiiiiniiiiniiiiiieeccce e 135
4.14.8 IsDefmessageHandlerDeletable...........cc.cooviieeiiiiieiiieniieceiicceee e 136
4.14.9 ListDefmessageHandlerscooviiiiiiiiniiiiiiieiieeteceeeee e 136
414,10 PreVIEWSEINA.....coooeiiiieeeie ettt e e e et e e e e e s esabarree e e e e s eennaaraeees 137
4.14.11 SetDefmessageHandlerWatcCh............ccooviiiiniiiiiiiiiniieiccccce e 137
4.14.12 UndefmessageHandIerccueeeiiiieiiiieieceiecee et 137
4.15 Definstances FUNCLIONSoooviiiviriiiee et eeeeeerrree e e e e e eeectrrrreeeeeeeeeenanrrereaeeens 138
4.15.1 DefinstanCeSMOAUIE.cooorvirreeiiieeeeeeeteeeee e et e e e e e eeaaaeeees 138
4.15.2 FINADETINSIAINICES. ... uvvvvreeeeeeeieeiiirieeeeeeeeeeeeiitreeeeeeeeeesitnrreeeeeeeeeesiarrrseeseeeeesnnsnrrees 138
4.15.3 GetDefINStANCESLISE....uvviiiiiiiieiiieeeeee e e et e e e e e e e 138

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

4.15.4 GetDefinstanCeSNaAME...........ooevvvvveeeeeeeiiiiiiireeeeeee e
4.15.5 GetDefinstancesSPPForm...........cccoceeveieiieiiiiiiieeiieceeeenineee.
4.15.6 GetNextDefINStancCescooovvvvvveeeeeeieiiiiiiieeeeeeee e
4.15.7 IsDefinstancesDeletable...........cccoveeeeeeeiiiiiiiirieeiieeeeeeiineee.
4.15.8 LiStDefINStanCeS.uvvvvevieeieeiiiiiirieeeeeeeeeeeeiereee e e e eeeeraaeeeens
4.15.9 UndefinStances.......ccccvveveeeeeeeeiiciirrreeeeeeeeeeeiernreeeeeeeeeeeeennnneeeens
4.16 Defmodule FUNCHIONS.........ccieiiiiiiiiieeiiiee e
4.16.1 FindDefmoduleoeeeviiiiieiiiiiiieiieeeeeeeeieeeeee e
4.16.2 GetCurrentMOoduleooovveviriveeieeieeieeieeeeeee e
4.16.3 GetDefmoduleLiSt..........oeeeeeieiiiiiiieeeeeeee e,
4.16.4 GetDefmoduleNamecoovvvvvvverieeieiiiiieeeeee e,
4.16.5 GetDefmodulePPForm..........cccccovveeeeiieiiiiiinieeeeee e,
4.16.6 GetNextDefmodule............coovvvvviveeiiiiiiiiiieeeeeeeeeeieee,
4.16.7 ListDefmodules.......cccuvveeeiiieieiiirieeeee e
4.16.8 SetCurrentModule.............ocovvivviviveeieeieiiiiieeeeee e,
4.17 Embedded Application Examples........ccccceeviieiniiiinieiniieinieenee.
4.17.1 User-Defined FUNCHONSccoovuvvveeeeeiiiiiiiiieeeeeee e

4.17.2 Manipulating Objects and Calling CLIPS Functions

Section 5 - Creating a CLIPS Run-time Program

5.1 Compiling the CONSLIUCES......c.veeiriiieriieiiieeeiieeriieeeeeeeee e

Section 6 - Combining CLIPS with Languages Other Than C

6.1 INErOdUCTION....c.uteiiiieiiieiierieee et
6.2 Ada and FORTRAN Interface Package Function List......................
6.3 Embedded CLIPS - Using an External Main Program......................
6.4 Asserting Facts into CLIPS.........ccccoovviieiiiieieeeeeeeee e
6.5 Calling a Subroutine from CLIPS........ccccccoiiiiiniiiiiiiieeeeeeen
6.6 Passing Arguments from CLIPS to an External Function
6.7 StriNG CONVETSION ...eevuviiiriiieeritieeriieenieeeriieeesiteesireesreeesreeesabeeenaneens
6.8 Compiling and LinKingcccceevviireriieeiiieeieeeieeeeeeeee e

6.8.1 VMS Ada VErsion........ccocueevuiirieiiienieieceieeieeseceeeee e

6.8.2 VMS FORTRAN Version........cccecceveeierienieeienienenieseeneeene

6.8.3 CLIPS LibIary......cccccueiiiiiiiiiiieiieeieeeeeeeieeeeite et
6.9 Building an Interface Packagecocooiieniiiiiniiiiiiiee,

Section 7 -1/0 Router System

T 1 INETOAUCTION ...vvvveiiiee ettt e e e e e eeaaraereeeeeeeeas
7.2 LogICal NAMES ...eeovuvieiiiiieiiieeiieeeitee ettt et
T3 ROULETS .ottt avevevesaseseeeseseeseesnenennes
7.4 ROULET PrIOTItIESeeeeeeiirieieeeeeeeeeeiirreeeeeeeeeeeeirrreeeeeeeeeeeararreeeeeeeens
7.5 Internal I/O FUNCHONSvvvviiieiiiiciiiieeeee et

T.5.1 EXItROULET ..uvvveeiiiceeeiieeeee et

T.5.2 GEICROULEToevveeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e veveveeneaaaaes

viil

Table of Contents

7.5.3 PrintROULETcccoiiiiiieiieeee e
7.5.4 UngetCROULET ...c.uveiiiiiieiiieiieeeeeeeee e
7.6 Router Handling Functions...........ccceeevvveerciieenciiecniee e,
7.6.1 ActivateROULETc.evvvvveeeieieeeiiiiieeeee e
T.6.2 AAAROULEToooiiiiiiiiiieiieece e
7.6.3 DeactiVateROULET..........ceveeiiieeiiciiiieeeee e
7.6.4 DeleteROULETooovvvveiieiiei e

Section 8 - Memory Management

CLIPS Reference Manual

8.1 How CLIPS Uses MemMOTYccoevevverreriuiiieiiiiieeeeiieee e
8.2 Standard Memory Functions..........ccccceevieernieennieennieenineene
8.2.1 GetConserveMEemOTYvveeerriieeeeniiiieeeriieeeseiieeeennns
8.2.2 MeMREQUESLS......ccvuieiriieiiieiiieeite et
8.2.3 MemUSEd......cccouiieeiiieeiieeeiie ettt
8.2.4 ReleaseMem........cocueeriiiiieniiiiieeiecieceeeee e
8.2.5 SetConserveMemOTry.......ccocuveerueeeriveeenieeenreeereeenneeeens
8.2.6 SetOutOfMemoryFunctionccceevveevnieeniieennneenne

Section 9 - Environments

9.1 Creating, selecting, and destroying environments.................
9.2 Environment Companion Functionsccocceevveeeieenicnneen.
9.3 Standard Environment FUnCtions..............ccoeeeevvvveeeeeeeerecnnnnen.
9.3.1 AddEnvironmentCleanupFunctionccccceeceeeueenee.
9.3.2 AllocateEnvironmentData.............ccceeeeeeeeeiinneeeeeeeeennnns
9.3.3 CreateEnvironmentcoooevvvvveeeieeeeiiiiinneeeeeeeeeeennns
9.3.4 DeallocateEnvironmentData................ccoeeevvveeeeeeeeeennn.
9.3.5 DestroyEnvironment...........o.ccceveerieeieenieniieenieeieeee.
9.3.6 GetCurrentEnvironment...........ccccveeeeeeeeeeeiiinneeeeeeeeeennnns
9.3.7 GetEnvironmentByIndeXcccoooeeeieiniiniiiniincnnen.
9.3.8 GetEnvironmentDatacccccevveeeeeeeeieiiiiieeeeeeeeeenns
9.3.9 GetEnvironmentIndeX..........cooovvvvveeiiiiiiiiiiiiieeieeeeeeenns
9.3.10 SetCurrentEnvironmentcccceeeeeeeeeeeiiinneeeeeeeeeennnns
9.3.11 SetCurrentEnvironmentByIndex............ccccceeveennennee.
9.4 Environment Aware User-Defined Functions........................
9.5 Allocating Environment Dataccooeeviiniiiniinicnnicnenn,
9.6 Environment Globalsccoovveivieeeeiieiiiiiiiieeeeeee e,
9.7 Other ConSiderations.............coovveevuvereeeeeeeiiiiireeeeeeeeeeeesnneeess

Appendix A - Language Integration Listings

A.1 Ada Interface Package for CLIPS..........ccccooviiiniiiinieeeen.
A.2 FORTRAN Interface Package for VAX VMS.........cccceeee.
A.3 Function to Convert C Strings for VMS Ada or FORTRAN

Appendix B -1/0 Router Examples

CLIPS Basic Programming Guide

173
173
174
174
174
175
175
176
176

179
179
180
182
182
183
184
184
184
185
185
185
186
186
186
187
188
191
191

193
193
197
200

203

CLIPS Reference Manual

B.1 Dribble SYSIEIM ...ccciiiiiiiieiiiieiee ettt ettt te e tee st e e st e e ssbeeessbeeenbeeenaeeenseeennneas 203
B.2 Better Dribble SYStEMccc.uiiiiiiiiiiiiiiiiieeieeeete ettt 205
LT 21 1] BN 4] 155 4 o DRSPS 206
B.4 Simple WINAOW SYSTEIMciiiiiiiiiiiiiiiieeiieeeiieeete ettt ettt e st e s e e 208
Appendix C - Update Release Notes 213
CLl VErSION 6.23 .ottt et e e st e s et e sabe e s abeesabeesbteesaneas 213
C.2 VETSION 0.22 ..ttt ettt et e s e et sat e st e bt e et e e nbeesabeenbeeeaee 213
C.3 VEISION 6. 21 oottt ettt et sab e et e et e s bt e sbteesbteesaaneas 214
Ci VETSION 0.2 ..ttt ettt et et e et e bt st e e sbt e st e nbeesabeenbeeeaee 214
C.5 VEISION 6.1 Lottt ettt ettt et e et e s abe e sabeesbteesaaneas 215
C.0 VETSION 0.05 ...ttt ettt st e bt e st e e sae e s e e nbee e 216
Index 217

X Table of Contents

CLIPS Reference Manual

License Information

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

CLIPS is released as public domain software and as such you are under no obligation to pay for
its use. However, if you derive commercial or monetary benefit from use of the software or just
want to show support, please consider making a voluntary payment based on the worth of the
software to you as compensation for the time and effort required to develop and maintain CLIPS.
Payments can be made online at http://order.kagi.com/?JKT.

CLIPS Advanced Programming Guide i

CLIPS Reference Manual

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section (now the
Software Technology Branch) had developed over a dozen prototype expert systems applications
using state-of-the-art hardware and software. However, despite extensive demonstrations of the
potential of expert systems, few of these applications were put into regular use. This failure to
provide expert systems technology within NASA’s operational computing constraints could
largely be traced to the use of LISP as the base language for nearly all expert system software
tools at that time. In particular, three problems hindered the use of LISP based expert system
tools within NASA: the low availability of LISP on a wide variety of conventional computers,
the high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP with
other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet all of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two months.
Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was
made to very closely resemble the syntax of a subset of the ART expert system tool developed
by Inference Corporation. Although originally modeled from ART, CLIPS was developed
entirely without assistance from Inference or access to the ART source code.

The original intent for CLIPS was to gain useful insight and knowledge about the construction of
expert system tools and to lay the groundwork for the construction of a replacement tool for the
commercial tools currently being used. Version 1.0 demonstrated the feasibility of the project
concept. After additional development, it became apparent that CLIPS would be a low cost
expert system tool ideal for the purposes of training. Another year of development and internal
use went into CLIPS improving its portability, performance, functionality, and supporting
documentation. Version 3.0 of CLIPS was made available to groups outside of NASA in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released

CLIPS Advanced Programming Guide ii

CLIPS Reference Manual

respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of
1988, was a complete rewrite of CLIPS for code modularity. Also included with this release
were an architecture manual providing a detailed description of the CLIPS software architecture
and a utility program for aiding in the verification and validation of rule-based programs.
Version 4.3 of CLIPS, released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms: procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces. Version 6.0 of CLIPS, released in
1993, provided support for the development of modular programs and tight integration between
the object-oriented and rule-based programming capabilities of CLIPS. Version 6.1 of CLIPS,
released in 1998, removed support for older non-ANSI C Compilers and added support for C++
compilers. Commands to profile the time spent in constructs and user-defined functions were
also added.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of
CLIPS has helped to improve the ability to deliver expert system technology throughout the
public and private sectors for a wide range of applications and diverse computing environments.
CLIPS is being used by numerous users throughout the public and private community including:
all NASA sites and branches of the military, numerous federal bureaus, government contractors,
universities, and many private companies.

CLIPS is now maintained as public domain software by the main program authors who no longer
work for NASA. See appendix A of the Basic Programming Guide for information on obtaining
CLIPS and support.

CLIPS Version 6.2

Version 6.2 of CLIPS contains two major enhancements. First, CLIPS now provides a
mechanism which allows an embedded application to create multiple environments into which
programs can be loaded. Second, an improved Windows 2000/XP CLIPS interface is now
available and the Macintosh CLIPS interface has been enhanced to support MacOS X. For a
detailed listing of differences between the 6.x releases of CLIPS, refer to appendix B of the Basic
Programming Guide and appendix C of the Advanced Programming Guide.

v Preface

CLIPS Reference Manual

CLIPS Documentation
Two documents are provided with CLIPS.
e The CLIPS Reference Manual which is split into the following parts:

e Volume I - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

* Volume Il - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

* Volume Il - The Interfaces Guide, which provides information on machine-specific
interfaces.

e The CLIPS User’s Guide which provides an introduction to CLIPS rule-based and

object-oriented programming and is intended for people with little or no expert system
experience.

CLIPS Advanced Programming Guide v

CLIPS Reference Manual

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, who conceived the project and provided overall direction
and support; Chris Culbert, who managed the project and wrote the original CLIPS Reference
Manual; Gary Riley, who designed and developed the rule-based portion of CLIPS, co-authored
the CLIPS Reference Manual, and developed the Macintosh interface for CLIPS; Brian Donnell,
who designed and developed the CLIPS Object Oriented Language (COOL) and co-authored the
CLIPS Reference Manual; Bebe Ly, who developed the X Window interface for CLIPS; Chris
Ortiz, who developed the original Windows 95 interface for CLIPS; Dr. Joseph Giarratano of the
University of Houston-Clear Lake, who wrote the CLIPS User’s Guide; and Frank Lopez, who
designed and developed CLIPS version 1.0 and wrote the CLIPS 1.0 User's Guide.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Bill Paseman, Cynthia Rathjen, Eric
Raymond, Reza Razavipour, Marsha Renals, Monica Rua, Tim Saito, Michael Sullivan, Gregg
Swietek, Eric Taylor, James Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and
Wes White.

CLIPS Advanced Programming Guide vii

CLIPS Reference Manual

Section 1 - Introduction

This manual is the Advanced Programming Guide for CLIPS. It describes the Application
Programmer Interface (API) that allows users to integrate their programs with CLIPS and use
some of the more sophisticated features of CLIPS. It is written with the assumption that the user
has a complete understanding of the basic features of CLIPS and a background in programming.
Many sections will not be understandable without a working knowledge of C. Knowledge of
other languages also may be helpful. The information presented here will require some
experience to understand, but every effort has been made to implement capabilities in a simple
manner consistent with the portability and efficiency goals of CLIPS.

Section 2 describes how to install and tailor CLIPS to meet specific needs. Section 3 of this
document describes how to add user-defined functions to a CLIPS expert system. Section 4
describes how to embed a CLIPS application in a C program. Section 5 describes how to create
run-time CLIPS programs. Section 6 discusses integrating CLIPS with languages other than C.
Section 7 details the input/ output (I/O) router system used by CLIPS and how the user can
define his own I/O routers. Section 8 discusses CLIPS memory management. Section 9 discusses
environments which allow multiple expert systems to be loaded and run concurrently.

Not all of the features documented here will be of use to all users. Users should pick those areas
which are of specific use to them. It is advised that users complete the Basic Programming
Guide before reading this manual.

1.1 WARNING ABOUT INTERFACING WITH CLIPS

CLIPS provides numerous methods for integrating with user-defined code. As with any powerful
capability, some care must be taken when using these features. By providing users with the
ability to access internal information, we have also opened the door to the possibility of users
corrupting or destroying data that CLIPS needs to work properly. Users are advised to be careful
when dealing with data structures or strings which are returned from calls to CLIPS functions.
Generally, these data structures represent useful information to CLIPS and should not be
modified or changed in any way except as described in this manual. A good rule of thumb is to
duplicate in user-defined storage space every piece of information taken out of or passed into
CLIPS. In particular, do not store pointers to strings returned by CLIPS as part of a permanent
data structure. When CLIPS performs garbage collection on symbols and strings, the pointer
reference to the string may be rendered invalid. To store a permanent reference to a string,
allocate storage for a copy of the string and then copy the string returned by CLIPS to the copy’s
storage area.

CLIPS Advanced Programming Guide 1

CLIPS Reference Manual

1.2 C++ COMPATIBILITY

The CLIPS source code can now be compiled using either an ANSI C or C++ compiler.
Minimally, non-ANSI C compilers must support full ANSI style function prototypes and the
void data type in order to compile CLIPS. If you want to make CLIPS API calls from a C++
program, it is usually easier to do the integration by compiling the CLIPS source files as C++
files. This removes the need to make an extern "C" declaration in your C++ program for the
CLIPS APIs. Some programming environments allow you to specify the whether a file should be
compiled as C or C++ code based on the file extension. Other environments allow you to
explicitly specify which compiler to use regardless of the extension (e.g. gcc for the C compiler
and g++ for the C++ compiler). In some environments, the same compiler is used to compile
both C and C++ programs and the compiler uses the file extension to determine whether the file
should be compiled as a C or C++ program. In this situation, changing the .c extension of the
CLIPS source files to .cpp usually allows the source to be compiled as a C++ program.

1.3 THREADS AND CONCURRENCY

The CLIPS architecture is designed to support multiple expert systems running concurrently
using a single CLIPS application engine. The environment API, described in section 9, is used to
implement this functionality. In order to use multiple environments, CLIPS must be embedded
within your program either by linking the CLIPS source code with your program or using a
shared library such as a Dynamic Link Library (DLL). The standard command line version of
CLIPS as well as the operating system specific development interfaces for Windows, Mac OS X,
and X Windows provide access to a single environment. It is not possible to load and run
multiple expert systems using these versions of CLIPS.

If multiple environments are created, a single thread of execution can be used to run each expert
system. In this situation, one environment must finish executing before control can be passed to
another environment. The user explicitly determines which environment should be executed by
using the environment API to set the current environment. Once execution of an API call for that
environment begins, the user must wait for completion of the API call before passing control to
another environment.

Most likely, this type of execution control will be used when you need to make several expert
systems available to a single end user, but don’t want to go through the process of clearing the
current expert system from a single environment, loading another expert system into it, and then
resetting the environment. Instead, each expert system is loaded into its own environment, so to
change expert systems it is only necessary to switch to the new environment and reset it.

A less likely scenario for this type of execution control is to simulate multiple expert systems

running concurrently. In this scenario, each environment is allowed to execute a number of rules
before control is switched to the next environment.

2 Section 1 - Introduction

CLIPS Reference Manual

Instead of simulating multiple expert systems running concurrently, using the multi-threading
capabilities native to the operating system on which CLIPS is running allows concurrent
execution to occur efficiently and prevents one environment from blocking the execution of
another. In this scenario, each environment uses a single thread of execution. Since each
environment maintains its own set of data structures, it is safe to run a separate thread on each
environment. This use of environments is most likely for a shared library where it is desirable to
have a single CLIPS engine running that is shared by multiple applications.

|| Warning ||

Each environment can have at most one thread of execution. The CLIPS internal data structures
can become corrupted if two CLIPS API calls are executing at the same time for a single
environment. For example, you can’t have one thread executing rules and another thread
asserting facts for the same environment without some synchronization between the two threads.

1.4 GARBAGE COLLECTION

Garbage collection is a process used by CLIPS to manage memory that most users do not need to
understand to use CLIPS. In some cases, when users embed CLIPS within their applications, a
knowledge of the garbage collection process is necessary to understand when values returned by
CLIPS to an embedding program can be safely accessed.

As a CLIPS program executes, it allocates and deallocates numerous types of data structures. In
many cases, some data structures cannot be immediately deallocated because either outstanding
references to the data structure still exist or the need to deallocate the data structure is
questionable. Data which has been marked for later deallocation is referred to as garbage. The
process of deallocating this garbage is referred to as garbage collection. CLIPS only performs
garbage collection when it can determine that it is safe to deallocate the data structures marked
for deallocation.

The following example illustrates several important concepts:

CLIPS>
(defrule gc-example

?f <- (factoid ?g)

=>

(retract ?f)

(printout t "The value is " ?g crlf))
CLIPS> (assert (factoid (gensym*)))
<Fact-0>
CLIPS> (run)

The value is genl
CLIPS>

CLIPS Advanced Programming Guide 3

CLIPS Reference Manual

First the gc-example rule is entered at the command prompt. The RHS of this rule retracts the
factoid fact bound on the LHS of the rule. It then prints out one of the field values contained in
this fact. The next command creates a facroid fact that activates the rule. This fact contains the
unique symbol genl/ returned by the gensym* function. The genl symbol is initially considered
to be garbage when created since nothing refers to it, but when it is asserted as part of the factroid
fact it’s no longer considered as garbage and isn’t subject to garbage collection.

When the run command is issued, the gc-example rule fires. The first action of the rule retracts
the factoid fact bound on the LHS of the rule. The fact is now considered to be garbage. The
symbol genl contained in the fact is also marked as being garbage since the fact contains the
only reference to it. The next action in the rule prints the value from the factoid fact bound to the
variable ?g. Since CLIPS directly retrieves this value from the fact, if the fact and symbols
associated with it had been immediately deallocated when the retract command was executed,
these values would not be available when the printout command is executed.

Since garbage created by the RHS actions may be accessed by other RHS actions, CLIPS does
not initiate garbage collection for garbage created by RHS actions until the rule has finished
firing. In this example, once the gc-example rule has finished firing, since there are no
outstanding references to the factoid fact or the genl symbol the data structures associated with
these can be deallocated.

The garbage collection behavior would be changed by adding an assert command to the rule
RHS:

(defrule gc-example
?f <- (factoid ?g)
=>
(retract ?f)
(printout t "The value is " ?g crlf)
(assert (info 7g)))

In this case, the factoid fact and the genl symbol would be marked as garbage as a result of the
retract command, but the assertion of the info fact with the gen/ symbol removes the symbol
from consideration for garbage collection. Once the rule finishes executing, however, the other
data structures associated with the fact are still subject to garbage collection.

This next example is a simpler example of garbage collection that will be used to compare and
contrast garbage collection triggered by the command prompt to that triggered by an embedding
application.

CLIPS> (gensym*)
gen2
CLIPS>

The gensym* function entered at the command prompt returns the unique symbol gen2. This
newly created symbol is assumed to be garbage until an outstanding reference to the symbol is

4 Section 1 - Introduction

CLIPS Reference Manual

established. In this case, once the return value has been displayed and control returned to the
command prompt, garbage collection is initiated as part of the command prompt loop and the
data structures associated with the symbol can be deallocated,

The following main routine is an equivalent embedded program that makes a call to the gensym™*
function.

main()
DATA_OBJECT rtn;
InitializeEnvironment();

FunctionCall("gensym*" /NULL,&rtn);
3

The key difference between this example and the command loop example is that the gen2
symbol returned to the command loop can be garbage collected after it is printed, but the value
returned to the embedding main program can not be safely garbage collected until the embedding
program has finished using it.

If the values returned to an embedding program are never garbage collected, continuous
execution would result in a program eventually running out of memory. CLIPS addresses this
issue by automatically invoking garbage collection for the following embedded functions:
Assert, AssertString, Clear, DeleteInstance, DirectPutSlot, FunctionCall, MakelInstance,
Reset, Send, SetDefglobalValue, Undefclass, Undeffacts, Undeffunction, Undefgeneric,
Undefglobal, Undefinstances, Undefmethod, Undefrule, Undeftemplate, and
Unmakelnstance. Calling one of these functions will not garbage collect any data returned from
that call, but it could garbage collect data returned from prior calls.

The following main routine is an example of how garbage collection affects whether you can
safely access data returned by CLIPS.

main()

DATA_OBJECT rtn;
char *strl, *strZ;

InitializeEnvironment();

FunctionCall("gensym*" NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" /NULL,&rtn);
str2 = DOToString(rtn);

/* Not safe to refer to strl here. */

CLIPS Advanced Programming Guide 5

CLIPS Reference Manual

The first call to FunctionCall could trigger garbage collection, but since no data has been
returned yet to the embedding program this does not cause any problems. The next call to
DOToString stores the string value in the DATA_OBJECT rtn in the strl variable. At this point,
strl can be safely referenced.

The second call to FunctionCall could also trigger garbage collection. In this case, however, the
value returned by the prior call to FunctionCall could be garbage collected as a result. Therefore
it is not safe to reference the value stored in str/ after this point. This is a problem if, for
example, you want to compare the value of str/ to str2.

There are two ways to work around this problem. The first is to create your own copies of str/
and str2. This is somewhat inconvenient since you have to determine the size of the strings,
allocate space for them, copy them, and then delete them once they’re no longer needed. The
second way is more convenient. CLIPS provides two functions, IncrementGCLocks and
DecrementGCLocks, which allow you to temporarily disable garbage collection. Each call to
IncrementGCLocks places a lock on the garbage collector. Each call to DecrementGCLocks
removes a lock from the garbage collector. If the garbage collector has one or more locks place
on it, it is disabled and garbage collection does not occur.

void IncrementGCLocks();
void DecrementGCLocks();

The use of these functions is demonstrated in the following revised main routine:

main()

{
DATA_OBJECT rtn;
char *strl, *str2;
InitializeEnvironment();

IncrementGCLocks();

FunctionCall("gensym*" NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" NULL,&rtn);
str2 = DOToString(rtn);

/* Safe to refer to strl here. */

DecrementGCLocks();

6 Section 1 - Introduction

CLIPS Reference Manual

In this case, the second call to FunctionCall can’t garbage collect the string referenced by stri/,
so it is safe to refer to this string after the call. The same effect could also be achieved by moving
the IncrementGCLocks call after the first call to FunctionCall.

The garbage collector should not be disabled indiscriminately as shown in the following
example:

main()

{

InitializeEnvironment();
IncrementGCLocks();

Load("mab.clp");
Reset();
Run(-1);

DecrementGCLocks();
}

First, while calling Reset could trigger garbage collection on values returned to the embedding
program, in this case there are no such values. Second, while Load and Run won’t trigger
garbage collection on values returned to the embedding program, they do trigger garbage
collection to remove garbage generated during their execution. Garbage collection should only
be disabled for brief periods of time. The primary execution of your program should occur with
garbage collection enabled.

It is only necessary to consider the effects of garbage collection when an embedding program is
retrieving data from CLIPS. When calls to a user function by CLIPS are made (such as to a
user-defined function), the possible consequences of garbage collection do not have to be
considered. In this case, garbage collection will not be triggered for any data retrieved by the
user function until after the user function has exited.

CLIPS Advanced Programming Guide 7

CLIPS Reference Manual

Section 2 - Installing and Tailoring CLIPS

This section describes how to install and tailor CLIPS to meet specific needs.

2.1 INSTALLING CLIPS

CLIPS executables for DOS, Windows 95/98/NT/XP, and MacOS are available for download
from the internet. See Appendix A in the Basic Programming Guide for details. To tailor CLIPS
or to install it on another machine, the user must port the source code and create a new
executable version.

Testing of CLIPS 6.23 included the following hardware/software environments:

e Dell Dimension 8250 running Windows XP Professional with DJGPP 3.21 (for creating 32-
bit protected mode DOS applications), Microsoft Visual C++ 6.0, Borland C++ 5.0, and
CodeWarrior 9.4.

* Apple iBook running MacOS X 10.3.7 using CodeWarrior 9.4 and Xcode 1.2.

CLIPS was designed specifically for portability and has been installed on numerous other
computers without making modifications to the source code. It should run on any system which
supports an ANSI C or C++ compiler. Some compilers have extended syntax to support a
particular platform which will add additional reserved words to the C language. In the event that
this extended syntax conflicts with the CLIPS source, the user will have to edit the code. This
usually only involves a global search-and-replace of the particular reserved word. The following
steps describe how to create a new executable version of CLIPS:

1) Load the source code onto the user's system
The following C source files are necessary to set up the basic CLIPS system:

agenda.h dffnxpsr.h globlpsr.h prccode.h
analysis.h dfinsbin.h immthpsr.h prcdrfun.h
argacces.h dfinscmp.h incrrset.h prcdrpsr.h
bload.h drive.h inherpsr.h prdctfun.h
bmathfun.h ed.h inscom.h pratutil.h
bsave.h emathfun.h insfile.h proflfun.h
classcom.h engine.h insfun.h reorder.h
classexm.h envrnmnt.h insmngr.h reteutil.h
classfun.h evaluatn.h insmoddp.h retract.h
classinf.h expressn.h insmult.h router.h
classini.h exprnbin.h inspsr.h rulebin.h
classpsr.h exprnops.h insquery.h rulebld.h

CLIPS Advanced Programming Guide

CLIPS Reference Manual

10

clips.h
clsltpsr.h
cmptblty.h
commline.h
conscomp.h
constant.h
constrct.h
constrnt.h
crstrtgy.h
cstrebin.h
cstrccmp.h
cstrccom.h
cstrepsr.h
cstrnbin.h
cstrnchk.h
cstrncmp.h
cstrnops.h
cstrnpsr.h
cstrnutl.h
default.h
defins.h
developr.h
dffctbin.h
dffctbsc.h
dffctcmp.h
dffctdef.h
dffctpsr.h
dffnxbin.h
dffnxcmp.h
dffnxexe.h
dffnxfun.h

agenda.c
analysis.c
argacces.c
bload.c
bmathfun.c
bsave.c
classcom.c
classexm.c
classfun.c
classinf.c
classini.c

exprnpsr.h
extnfunc.h
factbin.h
factbld.h
factcmp.h
factcom.h
factfun.h
factgen.h
facthsh.h
factlhs.h
factmch.h
factmngr.h
factqpsr.h
factqury.h
factprt.h
factrete.h
factrhs.h
filecom.h
filertr.h
generate.h
genrcbin.h
genrccmp.h
genrccom.h
genrcexe.h
genrcfun.h
genrcpsr.h
globlbin.h
globlbsc.h
globlcmp.h
globlcom.h
globldef.h

drive.c
edbasic.c
edmain.c
edmisc.c
edstruct.c
edterm.c
emathfun.c
engine.c
envrnmnt.c
evaluatn.c
expressn.c

insqypsr.h
iofun.h
lgcldpnd.h
match.h
memalloc.h
miscfun.h
modulbin.h
modulbsc.h
modulcmp.h
moduldef.h
modulpsr.h
modulutl.h
msgcom.h
msgfun.h
msgpass.h
msgpsr.h
multifld.h
multifun.h
network.h
objbin.h
objcmp.h
object.h
objrtbin.h
objrtbld.h
objrtcmp.h
objrtfnx.h
objrtgen.h
objrtmch.h
parsefun.h
pattern.h
pprint.h

globlcom.c
globldef.c
globlpsr.c
immthpsr.c
incrrset.c
inherpsr.c
inscom.c
insfile.c
insfun.c
insmngr.c
insmoddp.c

Section 2 - Installing and Tailoring CLIPS

rulebsc.h
rulecmp.h
rulecom.h
rulecstr.h
ruledef.h
ruledlt.h
rulelhs.h
rulepsr.h
scanner.h
setup.h
shrtlnkn.h
sortfun.h
strngfun.h
strngrtr.h
symblbin.h
symblcmp.h
symbol.h
sysdep.h
textpro.h
tmpltbin.h
tmpltbsc.h
tmpltcmp.h
tmpltdef.h
tmpltfun.h
tmpltlhs.h
tmpltpsr.h
tmpltrhs.h
tmpltutl.h
userdata.h
utility.h
watch.h

pprint.c
prccode.c
predrfun.c
prcdrpsr.c
prdctfun.c
protutil.c
proflfun.c
reorder.c
reteutil.c
retract.c
router.c

classpsr.c exprnbin.c insmult.c rulebin.c
clsltpsr.c exprnops.c inspsr.c rulebld.c
commline.c eXprnpsr.c insquery.c rulebsc.c
conscomp.c extnfunc.c insqypsr.c rulecmp.c
constrct.c factbin.c iofun.c rulecom.c
constrnt.c factbld.c lgcldpnd.c rulecstr.c
crstrtgy.c factcmp.c main.c ruledef.c
cstrebin.c factcom.c memalloc.c ruledlt.c
cstrccom.c factfun.c miscfun.c rulelhs.c
cstrepsr.c factgen.c modulbin.c rulepsr.c
cstrnbin.c facthsh.c modulbsc.c scanner.c
cstrnchk.c factlhs.c modulcmp.c sortfun.c
cstrncmp.c factmch.c moduldef.c strngfun.c
cstrnops.c factmngr.c modulpsr.c strngrtr.c
cstrnpsr.c factprt.c modulutl.c symblbin.c
cstrnutl.c factgpsr.c msgcom.c symblcmp.c
default.c factqury.c msgfun.c symbol.c
defins.c factrete.c msgpass.c sysdep.c
developr.c factrhs.c msgpsr.c textpro.c
dffctbin.c filecom.c multifld.c tmpltbin.c
dffctbsc.c filertr.c multifun.c tmpltbsc.c
dffctcmp.c generate.c objbin.c tmpltcmp.c
dffctdef.c genrcbin.c objcmp.c tmpltdef.c
dffctpsr.c genrccmp.c objrtbin.c tmpltfun.c
dffnxbin.c genrccom.c objrtbld.c tmpltlhs.c
dffnxcmp.c genrcexe.c objrtcmp.c tmpltpsr.c
dffnxexe.c genrcfun.c objrtfnx.c tmpltrhs.c
dffnxfun.c genrcpsr.c objrtgen.c tmpltutl.c
dffnxpsr.c globlbin.c objrtmch.c userdata.c
dfinsbin.c globlbsc.c parsefun.c utility.c
dfinscmp.c globlcmp.c pattern.c watch.c

CLIPS Reference Manual

Additional files must also be included if one of the machine specific user interfaces is to be
set up. See the Utilities and Interfaces Guide for details on compiling the machine specific
interfaces.

2) Modify all include statements (if necessary)
All of the “.c” files and most of the “.h” files have #include statements. These #include
statements may have to be changed to either match the way the compiler searches for

include files or to include a different ".h" file.

3) Tailor CLIPS environment and/or features

CLIPS Advanced Programming Guide 11

CLIPS Reference Manual

Edit the setup.h file and set any special options. CLIPS uses compiler directives to allow
machine-dependent features. The first flag in the setup.h file tells CLIPS on what kind of
machine the code is being compiled. The default setting for this flag is GENERIC, which
will create a version of CLIPS that will run on any computer. The user may set this flag for
the user’s type of system. If the system type is unknown, the first flag should be set to
GENERIC. If you change the system type to anything other than GENERIC, make sure that
the version number of your compiler is greater than or equal to the version number listed in
the setup.h file (as earlier versions of a compiler may not support some system dependent
features). Other flags in the setup.h file also allow a user to tailor the features in CLIPS to
specific needs. For more information on using the flags, see section 2.2

4) Compile all of the ".c" files to object code
Use the standard compiler syntax for the user's machine. The ".h" files are include files used
by the other files and do not need to be compiled. Some options may have to be set,
depending on the compiler.

If user-defined functions are needed, compile the source code for those functions as well and
modify the UserFunctions or EnvUserFunctions definition in main.c to reflect the user's
functions (see section 3 for more on user-defined functions).

5) Create the interactive CLIPS executable element
To create the interactive CLIPS executable, link together all of the object files. This
executable will provide the interactive interface defined in section 2.1 of the Basic
Programming Guide.

2.1.1 Additional Considerations

Although compiling CLIPS should not be difficult even for inexperienced C programmers, some
non-obvious problems can occur. One type of problem is linking with inappropriate system
libraries. Normally, default libraries are specified through the environment; i.e., not specified as
a part of the compile/link process. On occasion, the default system libraries are inappropriate for
use with CLIPS. For example, when using a compiler which supports different memory models,
be sure to link with the system libraries that match the memory model under which the CLIPS
code was compiled. The same can be said for floating-point models. Some computers provide
multiple ways of storing floating-point numbers (typically differing in accuracy or speed of proc-
essing). Be sure to link with system libraries that use the same storage formats with which the
CLIPS code was compiled. Some additional considerations for compiling CLIPS with specific
compilers and/or operating systems are described following.

DJGPP v3.21

The CLIPS 32 bit DOS executable for 386 or higher PCs was created using the free DIGPP C
compiler. This executable can access memory beyond the DOS 640K limit, but your
environment must have DMPI services available in order to run this executable. If you are

12 Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

running Windows or OS/2, DPMI services are provided for you. Information on this compiler is
available at the WWW URL http://www.delorie.com/djgpp/. A free DPMI server is also
available at this location.

The built-in MicroEMACS editor will not work with this compiler, so the EMACS_EDITOR
compiler directive in setup.h should be set to 0. With the compiler installed, the following
command will compile CLIPS

gcc -o clipsdos *.c -1m

UNIX

If the EX_MATH compiler directive is enabled, then the -lm option must be used when
compiling CLIPS with the gcc command. Similary, if the EMACS_EDITOR compiler directive
is enabled, the -ltermcap option must be used when compiling CLIPS. If all of the CLIPS source
code is contained in the same directory and the compiler directives are set to their default values
in the setup.h file, then the following command line will compile CLIPS

gcc -o clips *.c -1Im -ltermcap

2.2 TAILORING CLIPS

CLIPS makes use of compiler directives or setup flags to allow easier porting and recompiling
of CLIPS. Compiler directives allow the incorporation of system-dependent features into CLIPS
and also make it easier to tailor CLIPS to specific applications. All available compiler options
are controlled by a set of flags defined in the setup.h file.

The first flag in setup.h indicates on what type of compiler/machine CLIPS is to run. The source
code is sent out with the flag for GENERIC CLIPS turned on. When compiled in this mode, all
system-dependent features of CLIPS are excluded and the program should run on any system. A
number of other flags are available in this file, indicating the types of compilers/machines on
which CLIPS has been compiled previously. If the user's implementation matches one of the
available flags, set that flag to 1 and turn the GENERIC flag off (set it to 0). The code for most
of the features controlled by the compiler/machine-type flag is in the sysdep.c file.

Many other flags are provided in setup.h. Each flag is described below.

ALLOW_ENVIRONMENT_GLOBALS
If this flag is on, then global variables are used to track the current
environment and environment indices. If this flag is off, then no
global variables are used by CLIPS. If this is disabled, then
ENVIRONMENT_API_ONLY will be automatically enabled and
EMACS_EDITOR will be automatically disabled. This is on in the
standard CLIPS executable.

CLIPS Advanced Programming Guide 13

CLIPS Reference Manual

AUXILIARY_MESSAGE_HANDLERS

BASIC_IO

BLOAD

BLOAD_AND_BSAVE

BLOAD_INSTANCES

BLOAD_ONLY

BLOCK_MEMORY

14

This flag determines if before and after message-handlers are
available for use in object message dispatch. These handler types
enhance declarative control over the message dispatch (see section
9.4.3 of the Basic Programming Guide). This flag is on in the
standard CLIPS executable. Turning this flag off can save some
memory and marginally increase the speed of the message dispatch.

This flag controls access to the basic I/O functions in CLIPS. These
functions are printout, read, open, and close. If this flag is off,
these functions are not available. This would be used to save some
memory in systems which used custom I/O routines. This is on in
the standard CLIPS executable.

This flag controls access to the binary load command (bload). This
would be used to save some memory in systems which require
binary load but not save capability. This is off in the standard
CLIPS executable.

This flag controls access to the binary load and save commands.
This would be used to save some memory in systems which require
neither binary load nor binary save capability. This is on in the
standard CLIPS executable.

This flag controls the ability to load instances in binary format from
a file via the bload-instances command (see section 13.11.4.7 of
the Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

This flag controls access to the binary and ASCII load commands
(bload and load). This would be used to save some memory in
systems which require binary load capability only. This flag is off
in the standard CLIPS executable.

This option controls memory allocation. If the flag is on, memory is
allocated from the operating system in large blocks. This can
improve performance if the system memory allocation routines are
extremely inefficient or place arbitrary restrictions on the number of
memory allocations that can be made. This flag is off in the stan-
dard CLIPS executable.

Section 2 - Installing and Tailoring CLIPS

BSAVE_INSTANCES

CLIPS Reference Manual

This flag controls the ability to save instances in binary format to a
file via the bsave-instances command (see section 13.11.4.4 of the
Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

CONFLICT_RESOLUTION_STRATEGIES

This flag controls the availability of conflict resolution strategies
(see sections 5.2 and 5.3 of the Basic Programming Guide) for use
with the defrule construct. If it is off, then the depth conflict
resolution strategy is the only strategy used and the functions set-
strategy and get-strategy are not available. This is on in the standard
CLIPS executable.

CONSTRUCT_COMPILER

This flag controls the construct compiler functions. If it is turned
on, constructs may be compiled to C code for use in a run-sime
module (see section 5). This is off in the standard CLIPS
executable.

DEBUGGING_FUNCTIONS

This flag controls access to commands such as agenda, facts,
ppdefrule, ppdeffacts, etc. This would be used to save some
memory in BLOAD_ONLY or RUN_TIME systems. This flag is
on in the standard CLIPS executable.

DEFFACTS_CONSTRUCT

DEFFUNCTION_CONST

This flag controls the use of deffacts. If it is off, deffacts are not
allowed which can save some memory and performance during
resets. This is on in the standard CLIPS executable. If this flag is
off, the (initial-fact) fact is still created during a reset if the
DEFTEMPLATE_CONSTRUCT flag is on.

RUCT

This flag controls the use of deffunction. If it is off, deffunction is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFGENERIC_CONSTRUCT

CLIPS Advanced Programming Guide

This flag controls the use of defgeneric and defmethod. If it is off,
defgeneric and defmethod are not allowed which can save some
memory. This is on in the standard CLIPS executable.

15

CLIPS Reference Manual

DEFGLOBAL_CONSTRUCT
This flag controls the use of defglobal. If it is off, defglobal is not
allowed which can save some memory. This is on in the standard
CLIPS executable.

DEFINSTANCES_CONSTRUCT
This flag controls the use of definstances (see section 9.6.1.1 of the
Basic Programming Guide). If it is off, definstances are not allowed
which can save some memory and performance during resets. This
is on in the standard CLIPS executable. If this flag is off, the
[initial-object] instance is still created during a reset if the
INSTANCE_PATTERN_MATCHING flag is on.

DEFMODULE_CONSTRUCT
This flag controls the use of the defmodule construct. If it is off,
then new defmodules cannot be defined (however the MAIN
module will exist). This is on in the standard CLIPS executable.

DEFRULE_CONSTRUCT
This flag controls the use of the defrule construct. If it is off, the
defrule construct is not recognized by CLIPS. This is on in the
standard CLIPS executable.

DEFTEMPLATE_CONSTRUCT
This flag controls the use of deftemplate. If it is off, deftemplate is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DYNAMIC_SALIENCE
This flag controls the availability of dynamic salience (see sections
5.2 and 5.4.9 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then dynamic salience can not be used
and the functions refresh-agenda, get-salience-evaluation, and get-
salience-evaluation are not available. This is on in the standard
CLIPS executable.

EMACS_EDITOR This flag controls the integrated MicroEMACS editor. If it is turned
on, the editor will be available. If it is turned off, the editor will not
be available but about 40K of memory will be saved. NOTE: The
editor is machine dependent and will not run on all machines. See
the setup.h file for a description of which machines can support the
editor. This is on in the standard CLIPS executable.

16 Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

ENVIRONMENT_API_ONLY
If this flag is on, then the standard embedded functions require their
first argument to be a generic pointer to an environment. This is off
in the standard CLIPS executable.

EX_MATH This flag indicates whether the extended math package should be
included in the compilation. If this flag is turned off (set to 0), the
final executable will be about 25-30K smaller, a consideration for
machines with limited memory. This is on in the standard CLIPS
executable.

EXT_IO This flag controls access to the extended I/O functions in CLIPS.
These functions are format and readline. If this flag is off, these
functions are not available. This would be used to save some
memory in systems which used custom I/O routines or only the
basic I/O routines. This is on in the standard CLIPS executable.

FACT_SET_QUERIES
This flag determines if the fact-set query functions are available.
These functions are any-factp, do-forfact, do-for-all-facts,
delayed-do-for-all-facts, find-fact, and find-all-facts,. This is on
in the standard CLIPS executable. Turning this flag off can save
some memory.

HELP_FUNCTIONS If this flag is on, the ondine help system will be available from the
CLIPS top-level interface. When this is turned on, the
HELP_DEFAULT flag should be set to point to the full path name
for the CLIPS help file. This is on in the standard CLIPS
executable.

IMPERATIVE_MESSAGE_HANDLERS

This flag determines if around message-handlers and the following
functions are available for use in object message dispatch:
next-handlerp, call-next-handler and override-next-handler.
These functions allow imperative control over the message dispatch
by calling shadowed message-handlers (see section 9.5.3 of the
Basic Programming Guide). This flag is on in the standard CLIPS
executable. Turning this flag off can save some memory and
marginally increase the speed of the message dispatch.

IMPERATIVE_METHODS
This flag determines if the following functions are available for use
in generic function methods: next-methodp, call-next-method,
override-next-method and callspecificc-method. These functions

CLIPS Advanced Programming Guide 17

CLIPS Reference Manual

allow imperative control over the generic dispatch by calling
shadowed methods (see section 8.5.3 of the Basic Programming
Guide). This flag is on in the standard CLIPS executable. Turning
this flag off can save some memory and marginally increase the
speed of the generic dispatch.

INCREMENTAL_RESET

This flag controls the availability of incremental reset (see sections
5.1 and 12.1.7 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then newly defined rules are not aware
of facts or instances that were created before the rule was defined.
In addition, the functions set-incremental-reset and get-incremental-
reset are not available if this flag is off. This is on in the standard
CLIPS executable.

INSTANCE_SET_QUERIES

This flag determines if the instance-set query functions are
available. These functions are any-instancep, do-for-dinstance,
do-for-all-instances, delayed-do-for-all-instances, find-instance,
and find-all-instances,. This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

INSTANCE_PATTERN_MATCHING

This flag controls the ability to include object patterns on the LHS
of rules (see section 5.4.1.8 of the Basic Programming Guide). This
is on in the standard CLIPS executable. Turning this flag off can
save some memory.

LOGICAL_DEPENDENCIES

This flag controls the availability of logical dependencies (see
section 5.4.8 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then the logical CE cannot be used on
the LHS of a rule and the functions dependencies and dependents
are not available. This is on in the standard CLIPS executable.

MULTIFIELD_FUNCTIONS

18

This flag controls access to the multifield manipulation functions in
CLIPS. These functions are subseq$, delete$, insert$, replace$,
explode$, implode$, nth$, member$, first$, rest$, progn$, and
subsetp. The function create$ is always available regardless of the
setting of this flag. This would be used to save some memory in
systems which performed limited or no operations with multifield
values. This flag is on in the standard CLIPS executable.

Section 2 - Installing and Tailoring CLIPS

OBJECT_SYSTEM

CLIPS Reference Manual

This flag controls the use of defclass, definstances, and defmessage-
handler. If it is off, these constructs are not allowed which can save
some memory. If this flag is on, the MULTIFIELD_FUNCTIONS
flag should also be on if you want to be able to manipulate
multifield slots. This is on in the standard CLIPS executable.

PROFILING_FUNCTIONS

RUN_TIME

SHORT_LINK_NAMES

STRING_FUNCTIONS

TEXTPRO_FUNCTIONS

CLIPS Advanced Programming Guide

This flag controls access to the profiling functions in CLIPS. These
functions are get-profile-percent-threshold, profile, profile-info,
profile-reset, and set-profile-percent-threshold. This flag is on in
the standard CLIPS executable.

This flag will create a run-time version of CLIPS for use with
compiled constructs. It should be turned on only after the
constructs-to-c function has been used to generate the C code
representation of the constructs, but before compiling the constructs
C code. When used, about 90K of memory can be saved from the
basic CLIPS executable. See section 5 for a description of how to
use this. This is off in the standard CLIPS executable.

ANSI C compilers must be able to distinguish between identifiers
which use at least 31 significant characters. Some linkers, however,
use considerably fewer characters when determining name conflicts
(potentially as few as 6 characters). If this flag is on, then identifiers
which cannot be uniquely distinguished within 6 characters are
replaced with alternate names that are distinguishable with 6
characters. This is off in the standard CLIPS executable.

This flag controls access to the string manipulation functions in
CLIPS. These functions are str-cat, sym-cat, str-ength,
str-compare, upcase, lowcase, substring, str-index, eval, and
build. This would be used to save some memory in systems which
perform limited or no operations with strings. This flag is on in the
standard CLIPS executable.

This flag controls the CLIPS text-processing functions. It must be
turned on to use the fetch, toss, and print-region functions in a
user-defined help system. It also must be turned on to use the
on-line help system. This is on in the standard CLIPS executable.

19

CLIPS Reference Manual

WINDOW_INTERFACE

This flag indicates that a windowed interface is being used. In some
cases, this may include CLIPS console applications (for example
Win32 console applications as opposed to a DOS application).
Currently, the help system uses this flag to determine whether it
should handle more processing by itself or allow the interface to
take care of more processing. This is off in the standard CLIPS
executable.

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

Section 3 - Integrating CLIPS with External Functions

One of the most important features of CLIPS is an ability to integrate CLIPS with external
functions or applications. This section discusses how to add external functions to CLIPS and
how to pass arguments to them and return values from them. A user can define external functions
for use by CLIPS at any place a function can normally be called. In fact, the vast majority of
system defined functions and commands provided by CLIPS are integrated with CLIPS in the
exact same manner described in this section. The examples shown in this section are in C, but
section 6 discusses how other languages can be combined with CLIPS. Prototypes for the
functions listed in this section can be included by using the clips.h header file.

3.1 DECLARING USER-DEFINED EXTERNAL FUNCTIONS

All external functions must be described to CLIPS so they can be properly accessed by CLIPS
programs. User-defined functions are described to CLIPS by modifying the function
UserFunctions or EnvUserFunctions (if the function is environment aware as described in
section 9.4). This function is initially in the CLIPS main.c file and may be modified there or
moved to a user's file. Within UserFunctions, a call should be made to the DefineFunction rou-
tine for every function which is to be integrated with CLIPS. The user's source code then can be
compiled and linked with CLIPS.

int DefineFunction(functionName, functionType,
functionPointer,actualFunctionName);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();

An example UserFunctions declaration follows:

void UserFunctions()

{
/* —-- */
/* Declare your C functions if necessary. */
/* = */

extern double rta();
extern void *dummy();

/* =================== ===%*/
/* Call DefineFunction to register user-defined functions. */
/* = =%/

DefineFunction("rta",'d',PTIF rta,"rta");
DefineFunction("mul”,'1',PTIF mul,"mul");

}

The first argument to DefineFunction is the CLIPS function name, a string representation of the
name that will be used when calling the function from within CLIPS.

CLIPS Advanced Programming Guide 21

CLIPS Reference Manual

The second argument is the type of the value which will be returned to CLIPS. Note that this is
not necessarily the same as the function type. Allowable return types are shown as follows:

Return Code Return Type Expected

External Address

Boolean

Character

Double Precision Float

Single Precision Float

Integer

Unknown Data Type (Symbol, String, or Instance Name Expected)
Unknown Data Type (Symbol or String Expected)
Long Integer

Multifield

Unknown Data Type (Integer or Float Expected)
Instance Name

String

Unknown Data Type (Any Type Expected)
Void—No Return Value

Symbol

Instance Address

¥ £ <2 »w 0B B —~RF— oo o

Boolean functions should return a value of type int (O for the symbol FALSE and any other value
for the symbol TRUE). String, symbol, instance name, external address, and instance address
functions should return a pointer of type void *. Character return values are converted by CLIPS
to a symbol of length one. Integer return values are converted by CLIPS to long integers for
internal storage. Single precision float values are converted by CLIPS to double precision float
values for internal storage. If a user function is not going to return a value to CLIPS, the function
should be defined as type void and this argument should be v for void. Return types o and x are
only available if the object system has been enabled (see section 2.2).

Function types j, k, m, n, and u are all passed a data object as an argument in which the return
value of function is stored. This allows a user defined function to return one of several possible
return types. Function type u is the most general and can return any data type. By convention,
function types j, k, m, and n return specific data types. CLIPS will signal an error if one of these
functions return a disallowed type. See section 3.3.4 for more details on returning unknown data

types.

The third argument is a pointer to the actual function, the compiled function name (an extern
declaration of the function may be appropriate). The CLIPS name (first argument) need not be
the same as the actual function name (third argument). The macro identifier PTIF can be placed
in front of a function name to cast it as a pointer to a function returning an integer (primarily to
prevent warnings from compilers which allow function prototypes).

22 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

The fourth argument is a string representation of the third argument (the pointer to the actual C
function). This name should be identical to the third argument, but enclosed in quotation marks.

DefineFunction returns zero if the function was unsuccessfully called (e.g. bad function type
parameter), otherwise a non-zero value is returned.

User-defined functions are searched before system functions. If the user defines a function which
is the same as one of the defined functions already provided, the user function will be executed

in its place. Appendix A of the Basic Programming Guide contains a list of function names used
by CLIPS.

In place of DefineFunction, the DefineFunction2 function can be used to provide additional
information to CLIPS about the number and types of arguments expected by a CLIPS function or
command.

int DefineFunction2(functionName, functionType,
functionPointer,actualFunctionName,
functionRestrictions);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();
char *functionRestrictions;

The first four arguments to DefineFunction2 are identical to the four arguments for
DefineFunction. The fifth argument is a restriction string which indicates the number and types
of arguments that the CLIPS function expects. The syntax format for the restriction string is

<min-args> <max-args> [<default-type> <types>*]

The values <min-args> and <max-args> must be specified in the string. Both values must either
be a character digit (0-9) or the character *. A digit specified for <min-args> indicates that the
function must have at least <min-args> arguments when called. The character * for this value
indicates that the function does not require a minimum number of arguments. A digit specified
for <max-args> indicates that the function must have no more than <max-args> arguments when
called. The character * for this value indicates that the function does not prohibit a maximum
number of arguments. The optional <default-type> is the assumed type for each argument for a
function call. Following the <default-type>, additional type values may be supplied to indicate
specific type values for each argument. The type codes for the arguments are as follows:

CLIPS Advanced Programming Guide 23

CLIPS Reference Manual

Type Code Allowed Types

External Address

Float

Instance Address, Instance Name, or Symbol
Float

Integer, Float, or Symbol
Instance Address, Instance Name, Fact Address, Integer, or Symbol
Integer

Symbol, String, or Instance Name
Symbol or String

Integer

Multifield

Integer or Float

Instance Name

Instance Name or Symbol
Symbol, String, or Multifield
String

Any Data Type

Symbol

Instance Address

Fact Address

Fact address, Integer, or Symbol

=2 =B R ¢ T @ TS

N< %X £ »w.0DT 0B85 &< —

Examples
The restriction string for a function requiring a minimum of three arguments is:

n 3 * "
The restriction string for a function requiring no more than five arguments is:
"k 5 "

The restriction string for a function requiring at least three and no more than five arguments
(each of which must be an integer or float) is:

ll35nll

The restriction string for a function requiring exactly six arguments (of which the first must be a
string, the third an integer, and the remaining arguments floats) is:

"66fsui”

24 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

3.2 PASSING ARGUMENTS FROM CLIPS TO EXTERNAL FUNCTIONS

Although arguments are listed directly following a function name within a function call, CLIPS
actually calls the function without any arguments. The arguments are stored internally by CLIPS
and can be accessed by calling the argument access functions. Access functions are provided to
determine both the number and types of arguments.

3.2.1 Determining the Number of Passed Arguments

User-defined functions should first determine that they have been passed the correct number of
arguments. Several functions are provided for this purpose.

int RtnArgCount();

int ArgCountCheck(functionName,restriction,count);
int ArgRangeCheck(functionName,min,max);

int restriction, count, min, max;

char *functionName;

A call to RtnArgCount will return an integer telling how many arguments with which the
function was called. The function ArgCountCheck can be used for error checking if a function
expects a minimum, maximum, or exact number of arguments (but not a combination of these
restrictions). It returns an integer telling how many arguments with which the function was
called (or -1 if the argument restriction for the function was unsatisfied). The first argument is
the name of the function to be printed within the error message if the restriction is unsatisfied.
The restriction argument should be one of the values NO_MORE_THAN, AT_LEAST, or
EXACTLY. The count argument should contain a value for the number of arguments to be used
in the restriction test. The function ArgRangeCheck can be used for error checking if a function
expects a range of arguments. It returns an integer telling how many arguments with which the
function was called (or -1 if the argument restriction for the function was unsatisfied). The first
argument is the name of the function to be printed within the error message if the restriction is
unsatisfied. The second argument is the minimum number of arguments and the third argument
is the maximum number of arguments.

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers

Several access functions are provided to retrieve arguments that are symbols, strings, instance
names, floats, and integers.

char *RtnLexeme(argumentPosition);
double RtnDouble(CargumentPosition);
long RtnLong(argumentPosition);
int argumentPosition;

CLIPS Advanced Programming Guide 25

CLIPS Reference Manual

A call to RtnLexeme returns a character pointer from either a symbol, string, or instance name
data type (NULL is returned if the type is not SYMBOL, STRING, or INSTANCE_NAME),
RtnDouble returns a floating-point number from either an INTEGER or FLOAT data type, and
RtnLong returns a long integer from either an INTEGER or FLOAT data type. The arguments
have to be requested one at a time by specifying each argument’s position number as the
argumentPosition to RtnLexeme, RtnDouble, or RtnLong. If the type of argument is unknown,
another function can be called to determine the type. See section 3.2.3 for a further discussion of
unknown argument types. Do not store the pointer returned by RtnLexeme as part of a
permanent data structure. When CLIPS performs garbage collection on symbols and strings, the
pointer reference to the string may be rendered invalid. To store a permanent reference to a
string, allocate storage for a copy of the string and then copy the string returned by RtnLexeme
to the copy’s storage area.

Example
The following code is for a function to be called from CLIPS called rta which will return the

area of a right triangle.

/* This include definition */
#include "clips.h" /* should start each file which */
/* has CLIPS functions in it */
/*
Use DefineFunction2("rta",'d',PTIF rta,"rta","22n");
*/

double rta()

double base, height;

/* */
/* Check for exactly two arguments. */

/* */

if (ArgCountCheck("rta",EXACTLY,2) == -1) return(-1.0);
/*= */
/* Get the values for the 1st and 2nd arguments. */
/*= */

base = RtnDouble(l);
height = RtnDouble(2);

/* */
/* Return the area of the triangle. */
/* */

return(@.5 * base * height);
ks

As previously shown, rta also should be defined in UserFunctions. If the value passed from
CLIPS is not the data type expected, an error occurs. Section 3.2.3 describes a method for testing
the data type of the passed arguments which would allow user-defined functions to do their own

26 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

error handling. Once compiled and linked with CLIPS, the function rta could be called as shown
following.

CLIPS> (rta 5.0 10.0)
25.0

CLIPS> (assert (right-triangle-area (rta 20.0 10.0)))
CLIPS> (facts)

-0 (right-triangle-area 100.0)
For a total of 1 fact.
CLIPS>

3.2.3 Passing Unknown Data Types

Section 3.2.2 described how to pass data to and from CLIPS when the type of data is explicitly
known. It also is possible to pass parameters of an unknown data type to and from external

functions. To pass an unknown parameter fo an external function, use the RtnUnknown
function.

#include "clips.h" /* or "evaluatn.h" */

DATA_OBJECT *RtnUnknown(argumentPosition, &argument);

int GetType(Cargument);
int GetpType(&argument);
int ArgTypeCheck(char *,argumentPosition,

expectedType,&argument);

char *DOToStringCargument);
char *DOPToString(&argument);
double DOToDouble(argument);
double DOPToDouble(&argument);
float DOToFloat(Cargument);
float DOPToFloat(&argument);

long DOToLong(Cargument);

long DOPToLong(&argument);
int DOToInteger(argument);
int DOPToInteger(&argument);

void *DOToPointer(argument);
void *DOPToPointer(&argument);

int argumentPosition, expectedType;
DATA_OBJECT argument;

Function RtnUnknown should be called first. It copies the elements of the internal CLIPS
structure that represent the unknown-type argument into the DATA_OBJECT structure pointed
to by the second argument. It also returns a pointer to that same structure, passed as the second
argument. After obtaining a pointer to the DATA_OBJECT structure, a number of macros can be
used to extract type information and the arguments value.

Macros GetType or GetpType can be used to determine the type of argument and will return an
integer (STRING, SYMBOL, FLOAT, INTEGER, MULTIFIELD, INSTANCE_ADDRESS,

CLIPS Advanced Programming Guide 27

CLIPS Reference Manual

INSTANCE_NAME, or EXTERNAL_ADDRESS) defined in the clips.h file. Once the data type
is known, the functions DOToDouble, DOPToDouble, DOToFloat, or DOPToFloat (for
FLOAT), DOToString, or DOPToString (for STRING, SYMBOL, or INSTANCE_NAME),
DOToLong, DOPToLong, DOTolnteger, or DOPTolInteger (for INTEGER), and
DOToPointer and DOPToPointer (for INSTANCE_ADDRESS and EXTERNAL_ADDRESS)
can be used to extract the actual value of the variable from the DATA_OBJECT structure.
Accessing multifield values is discussed in section 3.2.4. Do not store the pointer returned by
DOToString or DOPToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by DOToString or DOPToString to the copy’s storage area.

The function ArgTypeCheck can be used for error checking if a function expects a specific type
of argument for a particular parameter. It returns a non-zero integer value if the parameter was of
the specified type, otherwise it returns zero. The first argument is the name of the function to be
printed within the error message if the type restriction is unsatisfied. The second argument is the
index of the parameter to be tested. The third argument is the type restriction and must be one of
the following CLIPS defined constants: STRING, SYMBOL, SYMBOL_OR_STRING,
FLOAT, INTEGER, INTEGER_OR_FLOAT, MULTIFIELD, EXTERNAL_ADDRESS,
INSTANCE_ADDRESS, INSTANCE_NAME, or INSTANCE_OR_INSTANCE_NAME. If the
FLOAT type restriction is used, then integer values will be converted to floating-point numbers.
If the INTEGER type restriction is used, then floating-point values will be converted to integers.
The fourth argument is a pointer to a DATA_OBJECT structure in which the unknown
parameter will be stored.

Example
The following function mul takes two arguments from CLIPS. Each argument should be either

an integer or a float. Float arguments are rounded and converted to the nearest integer. Once
converted, the two arguments are multiplied together and this value is returned. If an error occurs
(wrong type or number of arguments), then the value 1 is returned.

#include <math.h> /* ANSI C library header file */
#include "clips.h"

/*

Use DefineFunction2("mul",'1l1',PTIF mul,"mul","22n");

*/

long mul()
{

DATA_OBJECT temp;
long firstNumber, secondNumber;

/* ==== ====%/
/* Check for exactly two arguments. */
/* * /
if (ArgCountCheck("mul",EXACTLY,2) == -1)

28 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

{ return(il); }

/* =================== ===*/
/* Get the first argument using the ArgTypeCheck function. */
/* Return if the correct type has not been passed. */

/* = ==%/
if (ArgTypeCheck("mul",1,INTEGER_OR_FLOAT,&temp) == @)

{ return(il); }

/¥ = = ==*/
/* Convert the first argument to a long integer. If it's not */
/* an integer, then it must be a float (so round it to the */
/* nedrest integer using the C library ceil function. */

. — e — e —————— ==%/

if (GetType(temp) == INTEGER)
{ firstNumber = DOToLong(temp); }
else /* the type must be FLOAT */
{ firstNumber = (long) ceil(DOToDouble(temp) - 0.5); }

/* Get the second argument using the RtnUnknown function. */
/* Note that no type error checking is performed. */
/*= = = ===%/

RtnUnknown(2,&temp);

/* = ==%/
/* Convert the second argument to a long integer. If it's */
/* not an integer or a float, then it's the wrong type. */

/* _________ = ==*/
if (GetType(temp) == INTEGER)

{ secondNumber = DOToLong(temp); }
else if (GetType(temp) == FLOAT)

{ secondNumber = (long) ceil(DOToDouble(temp) - 0.5); }
else

{ return(il); }

/* Multiply the two values together and return the result. */
/* =================== ===*/

return (firstNumber * secondNumber);

}

Once compiled and linked with CLIPS, the function mul could be called as shown following.

CLIPS> (mul 3 3)

9

CLIPS> (mul 3.1 3.1)
9

CLIPS> (mul 3.8 3.1)
12

CLIPS> (mul 3.8 4.2)
16

CLIPS>

CLIPS Advanced Programming Guide 29

CLIPS Reference Manual

3.2.4 Passing Multifield Values

Data passed from CLIPS to an external function may be stored in multifield values. To access a
multifield value, the user first must call RtnUnknown or ArgTypeCheck to get the pointer. If
the argument is of type MULTIFIELD, several macros can be used to access the values of the
multifield value.

#include "clips.h" /* or "evaluatn.h" */
int GetDOLength(argument);

int GetpDOLength(&argument);

int GetDOBegin(argument);

int GetpDOBegin(&argument);

int GetDOEndCargument);

int GetpDOEnd(&argument);

int GetMFType(multifieldPtr,fieldPosition);

void *GetMFValue(multifieldPtr,fieldPosition);

DATA_OBJECT argument;
void *multifieldPtr;
int fieldPosition;

Macros GetDOLength and GetpDOLength can be used to determine the length of a
DATA_OBJECT or DATA_OBIJECT_PTR respectively. The macros GetDOBegin,
GetpDOBegin, GetDOEnd, GetpDOEnd can be used to determine the beginning and ending
indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a multifield value. Since
multifield values are often extracted from arrays of other data structures (such as facts), these
indices are used to indicate the beginning and ending positions within the array. Thus it is very
important when traversing a multifield value to use indices that run from the begin index to the
end index and not from one to the length of the multifield value. The begin index points to the
first element in the multifield value and the end index points to the last element in the multifield
value. A multifield value of length one will have the same values for the begin and end indices.
A multifield value of length zero will have an end index that is one less than the begin index.

The macros GetMFType and GetMFValue can be used to examine the types and values of
fields within a multifield value. The first argument to these macros should be the value retrieved
from a DATA_OBJECT or DATA_OBJECT_PTR using the GetValue and GetpValue macros.
The second argument is the index of the field within the multifield value. Once again, this
argument should fall in the range between the begin index and the end index for the
DATA_OBIJECT from which the multifield value is stored. Macros ValueToString,
ValueToDouble, ValueToLong, and ValueTolnteger can be used to convert the retrieved value
from GetMFValue to a C object of type char *, double, and long respectively. Do not store the
pointer returned by ValueToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by ValueToString to the copy’s storage area.

30 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

The multifield macros should only be used on DATA_OBJECTs that have type MULTIFIELD
(e.g. the macro GetDOLength returns erroneous values if the type is not MULTIFIELD).

Examples
The following function returns the length of a multifield value. It returns -1 if an error occurs.

#include "clips.h"

/*

Use DefineFunction2("mfl",'l"',PTIF MFLength,"MFLength","11m");
*/

long int MFLength(Q)

DATA_OBJECT argument;

/* */
/* Check for exactly one argument. */

/* */
if (ArgCountCheck("mfl",EXACTLY,1) == -1) return(-1L);
/*== = ====%/
/* Check that the 1st argument is a multifield value. */
if (ArgTypeCheck("mfl",1,MULTIFIELD,&argument) == 0)

{ return(-1L); }
/* Return the length of the multifield value. */

[¥=== */

return ((long) GetDOLength(argument));
3

The following function counts the number of characters in the symbols and strings contained
within a multifield value.

#include "clips.h"

/*

Use DefineFunction2("cmfc",'l',PTIF CntMFChars,"CntMFChars",
llllmll);

*/

long int CntMFChars()
{
DATA_OBJECT argument;
void *multifieldPtr;
int end, 1i;
long count = 0;
char *tempPtr;

/* */
/* Check for exactly one argument. */

CLIPS Advanced Programming Guide 31

CLIPS Reference Manual

/* */

if (ArgCountCheck("cmfc",EXACTLY,1) == -1) return(@L);

/* Check that the first argument is a multifield value. */
/* = = ===*/
if (ArgTypeCheck("cmfc",1,MULTIFIELD,&argument) == 0)

{ return(oL); }
/* */

/* Count the characters in each field. */
/* */

end = GetDOEnd(argument);
multifieldPtr = GetValue(argument);
for (i = GetDOBegin(argument); i <= end; 1i++)

if ((GetMFType(multifieldPtr,i)
(GetMFType(multifieldPtr,i)
{

STRING) |1
SYMBOL))

tempPtr = ValueToString(GetMFValue(multifieldPtr,i));
count += strlen(tempPtr);

}
}
/* */
/* Return the character count. */
/* */
return(count);

}

3.3 RETURNING VALUES TO CLIPS FROM EXTERNAL FUNCTIONS

Functions which return doubles, floats, integers, long integers, characters, external addresses,
and instance addresses can directly return these values to CLIPS. Other data types including the

unknown (or unspecified) data type and multifield data type, must use functions provided by
CLIPS to construct return values.

3.3.1 Returning Symbols, Strings, and Instance Names

CLIPS uses symbol tables to store all symbols, strings, and instance names. Symbol tables
increase both performance and memory efficiency during execution. If a user-defined function
returns a symbol, string, or an instance name (type 's', 'w', or 'o' in DefineFunction), the symbol
must be stored in the CLIPS symbol table prior to use. Other types of returns (such as unknown
and multifield values) may also contain symbols which must be added to the symbol table. These
symbols can be added by calling the function AddSymbol and using the returned pointer value.

#include "clips.h" /* or "symbol.h" */

32 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

void *AddSymbol(string);
char *string;

Example
This function reverses the character ordering in a string and returns the reversed string. The null

string 1s returned if an error occurs.

#include <stdlib.h> /* ANSI C library header file */

#include <stddef.h> /* ANSI C library header file */

#include "clips.h"

/*

Use DefineFunction2("reverse-str",'s',PTIF Reverse,"Reverse",
"115");

*/

void *Reverse()
{
DATA_OBJECT temp;
char *lexeme, *tempString;
void *returnValue;
int i, length;

/* */
/* Check for exactly one argument. */

/* */

if (ArgCountCheck("reverse-str" EXACTLY,1) == -1)

{ return(AddSymbol("")); }

/* = ==%/
/* Get the first argument using the ArgTypeCheck function. */
Y4 P —— - ==%/
if (ArgTypeCheck("reverse-str",1,STRING,&temp) == 0)

{ returnCAddSymbol("")); }
lexeme = DOToString(temp);

4 P—— - e ——— ===%/
/* Allocate temporary space to store the reversed string. */

length = strlen(lexeme);
tempString = (char *) malloc(length + 1);

/* */
/* Reverse the string. */
/* */

for (i = 0; i < length; i++)
{ tempString[length - (i + 1)] = lexeme[i]; }

tempString[length] = '\0';

/* */
/* Return the reversed string. */
/* */

CLIPS Advanced Programming Guide 33

CLIPS Reference Manual

returnValue = AddSymbol(tempString);
free(tempString);
return(returnValue);

}

3.3.2 Returning Boolean Values

A user function may return a boolean value in one of two ways. The user may define an integer
function and use DefineFunction to declare it as a BOOLEAN type ('b'). The function should
then either return the value TRUE or FALSE. Alternatively, the function may be declare to
return a SYMBOL type ('w') or UNKNOWN type ('u') and return the value of FalseSymbol or
TrueSymbol macro.

#include "clips.h" /* or "symbol.h" */

#define FALSE 0
#define TRUE 1

void *FalseSymbol();
void *TrueSymbol();

Examples
This function returns true if its first argument is a number greater than zero. It uses a boolean

return value.

#include "clips.h"

/*
Use DefineFunction2("positivepl"”,'b',positivepl,"positivepl",
llllnll);
*/
int positivepl()
{
DATA_OBJECT temp;
/* */
/* Check for exactly one argument. */
/* */
if (ArgCountCheck("positivepl" ,EXACTLY,1) == -1)
{ return(FALSE); }
/* =================== ===%/
/* Get the first argument using the ArgTypeCheck function. */
/* =================== ===*/
if (ArgTypeCheck("positivepl",1,INTEGER_OR_FLOAT,&temp) == 0)
{ return(FALSE); }
/* */
/* Determine if the value 1is positive. */
/* */

34 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

if (GetType(temp) == INTEGER)

{ if (DOToLong(temp) <= OL) return(FALSE); }
else /* the type must be FLOAT */

{ if (DOToDouble(temp) <= 0.0) return(FALSE); }

return(TRUE);
}

This function also returns true if its first argument is a number greater than zero. It uses a
symbolic return value.

#include "clips.h"

/*
Use DefineFunction("positivep2",'w',PTIF positivep2,"positivep2",
llllnll);
*/
void *positivep2()
{
DATA_OBJECT temp;
/* */
/* Check for exactly one argument. */
/* */
if (ArgCountCheck("positivepl" ,EXACTLY,1) == -1)
{ return(FalseSymbol()); }
/* Get the first argument using the ArgTypeCheck function. */
/* =================== ===%/
if (ArgTypeCheck("positivepl",1,INTEGER_OR_FLOAT,&temp) == 0)
{ return(FalseSymbol()); }
/* */
/* Determine if the value is positive. */
/* */
if (GetType(temp) == INTEGER)

{ if (DOToLong(temp) <= OL) return(FalseSymbol()); }
else /* the type must be FLOAT */
{ if (DOToDouble(temp) <= 0.0) return(FalseSymbol()); 1}

return(TrueSymbol());
ks

3.3.3 Returning External Addresses and Instance Addresses

A user function may return an external address or an instance address. The user should use
DefineFunction to declare their function as returning an external address type (‘a') or an instance
address type ('x'). The function should then either return a pointer that has been typecast to (void
*). Within CLIPS, the printed representation of an external address is

CLIPS Advanced Programming Guide 35

CLIPS Reference Manual

<Pointer-XXXXXXXX>

where XXXXXXXX is the external address. Note that it is up to the user to make sure that
external addresses remain valid within CLIPS. The printed representation of an instance address
is

<Instance-XXX>
where XXX is the name of the instance.

Example
This function uses the memory allocation function malloc to dynamically allocated 100 bytes of

memory and then returns a pointer to the memory to CLIPS.

#include <stdlib.h>
#include "clips.h"

/*

Use DefineFunction2("malloc",'a',PTIF CLIPSmalloc,"CLIPSmalloc",
"00");

*/

void *CLIPSmalloc()
{ return((void *) malloc(100)); ?}

3.3.4 Returning Unknown Data Types

A user-defined function also may return values of an unknown type. The user must declare the
function as returning type unknown; i.e., place a 'u' for data type in the call to DefineFunction.
The user function will be passed a pointer to a structure of type DATA_OBIJECT
(DATA_OBIJECT_PTR) which should be modified to contain the return value. The user should
set both the type and the value of the DATA_OBJECT. Note that the value of a DATA_OBJECT
cannot be directly set to a double or long value (the functions AddLong and AddDouble should
be used in a manner similar to AddSymbol). The actual return value of the user function is
ignored.

#include "clips.h" /* or "evaluatn.h" */
int SetType(argument,type);
int SetpType(&argument, type);

void *SetValue(Cargument,value);
void *SetpValue(&argument,value);

void *AddLong(longValue);
void *AddDouble(doubleValue);

void *GetValue(Cargument);
void *GetpValue(&argument);

36 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

char *ValueToString(value);
double ValueToDouble(value);
long ValueToLong(value);
int ValueToInteger(value);

long longValue;
double doubleValue;
void *value;

int type;

DATA_OBJECT argument;

Macros SetType and SetpType can be used to set the type of a DATA_OBJECT or
DATA_OBIJECT_PTR respectively. The type parameter should be one of the following CLIPS
defined constants (note that these are not strings): SYMBOL, STRING, INTEGER, FLOAT,
EXTERNAL_ADDRESS, INSTANCE_NAME, or INSTANCE_ADDRESS. Macros SetValue
(for DATA_OBJECTSs) and SetpValue (for DATA_OBJECT_PTRs) can be used to set the value
of a DATA_OBIJECT. The functions AddSymbol (for symbols, strings and instance names),
AddLong (for integers) and AddDouble (for floats) can be used to produce values that can be
used with these macros (external addresses and instance addresses can be used directly). Macros
GetValue (for DATA_OBJECTsSs) and GetpValue (for DATA_OBJECT_PTRs) can be used to
retrieve the value of a DATA_OBJECT. Note that the value for an external address or an
instance address can be retrieved directly using one of these macros. For other data types, the
macros ValueToString (for symbols, strings, and instance names), ValueToLong (for integers),
ValueTolnteger (for integers), and ValueToDouble (for floats) can be used to convert the
retrieved value from a DATA_OBJECT to a C object of type char *, double, long, or integer
respectively.

Example
This function "cubes" its argument returning either an integer or float depending upon the type of

the original argument. It returns the symbol FALSE upon an error.

#include "clips.h"

/*
Use DefineFunction2("cube",'u',PTIF cube,"cube","11n");
*/

void cube(
DATA_OBJECT_PTR returnValuePtr)
{
void *value;
long longValue;
double doubleValue;

/* */
/* Check for exactly one argument. */
/* * /
if (ArgCountCheck("cube" ,EXACTLY,1) == -1)

SetpType(returnValuePtr,SYMBOL);

CLIPS Advanced Programming Guide 37

CLIPS Reference Manual

SetpValue(returnValuePtr,FalseSymbol());

return;
}
/* = =%/
/* Get the first argument using the ArgTypeCheck function. */
/* =================== ===*/

if (! ArgTypeCheck("cube",1,INTEGER_OR_FLOAT,returnValuePtr))

SetpType(returnValuePtr,SYMBOL);
SetpValue(returnValuePtr,FalseSymbol());

return;
}
/* Cube the argument. Note that the return value DATA_OBJECT */
/* 1s used to retrieve the function's argument and return */
/* the function's return value. */
/*= = = ——*/
if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);
longValue = ValueTolLong(value);
value = AddLong(longValue * longValue * longValue);

}
else /* the type must be FLOAT */
{
value = GetpValue(returnValuePtr);
doubleValue = ValueToDouble(value);
value = AddDouble(doubleValue * doubleValue * doubleValue);

}
/* Set the value of the return DATA_OBJECT. The return */
/* type does not have to be changed since it will be */
/* the same as the 1st argument to the function. */
/*= = ===%*/

SetpValue(returnValuePtr,value);
return;

}

3.3.5 Returning Multifield Values

Multifield values can also be returned from an external function. When defining such an external
function, the data type should be set to 'm' in the call to DefineFunction. Note that a multifield
value can also be returned from a 'u' function, whereas only a multifield value should be returned
from an 'm' function. As with returning unknown data types, the user function will be passed a
pointer of type DATA_OBJECT_PTR which can be modified to set up a multifield value. The

following macros and functions are useful for this purpose:

38 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

void *CreateMultifield(size);

int SetMFType(multifieldPtr,fieldPosition,type);
void *SetMFValue(multifieldPtr,fieldPosition,value);
int SetDOBegin(returnValue,fieldPosition);

int SetpDOBegin(&returnValue,fieldPosition);

int SetDOEnd(returnValue,fieldPosition);

int SetpDOEnd(&returnValue,fieldPosition);

void SetMultifieldErrorValue(&returnValue);

DATA_OBJECT returnValue;
Unsigned size;

int fieldPosition, type;
void *multifieldPtr;
void *value;

If a new multifield is to be created from an existing multifield, then the type and value of the
existing multifield can be copied and the begin and end indices can be modified to obtain the
appropriate subfields of the multifield value. If you wish to create a new multifield value that is
not part of an existing multifield value, then use the function CreateMultifield. Given an integer
argument, this function will create a multifield value of the specified size with valid indices
ranging from one to the given size (zero is a legitimate parameter to create a multifield value
with no fields). The macros SetMFType and SetMF Value can be used to set the types and
values of the fields of the newly created multifield value. Both macros accept as their first
argument the value returned by CreateMultifield. The second argument should be an integer
representing the position of the multifield value to be set. The third argument is the same as the
arguments used for SetType and SetValue macros.

Do not set the value or type of any field within a multifield value that has been returned to you
by CLIPS. Use these macros only on multifield values created using the CreateMultifield
function.

The macros SetDOBegin, SetpDOBegin, SetDOEnd, SetpDOEnd can be used to assign values
to the begin and end indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a
multifield value. These macros are useful for creating “new” multifield values by manipulating
the indices of a currently existing multifield value. For example, a function that returns the first
field of a multifield value could do so by setting the end index equal to the begin index (if the
length of the multifield value was greater than zero).

The function SetMultifieldErrorValue can be used to create a multifield value of length zero
(which is useful to return as an error value). Its only parameter is a DATA_OBJECT_PTR which
is appropriately modified to create a zero length multifield value.

Examples
The following example creates a multifield value with two fields, a word and a number:

#include "clips.h"

CLIPS Advanced Programming Guide 39

CLIPS Reference Manual

/*
Use DefineFunction2("sample4",'m',PTIF sample4,"sample4","00");
*/

void sample4(
DATA_OBJECT_PTR returnValuePtr)

{
void *multifieldPtr;

/* */
/* Check for exactly zero arguments. */
/* */
if (ArgCountCheck("sample4" ,EXACTLY,0) == -1)
SetMultifieldErrorValue(returnValuePtr);
return;
}
/* === */
/* Create a multi-field value of length 2 */

/* = */
multifieldPtr = CreateMultifield(2);

[F¥==== = * /
/* The first field in the multi-field value */
/* will be a SYMBOL. Its value will be */
/* "altitude". */

/F=== */

SetMFType(multifieldPtr,1,SYMBOL);
SetMFValue(multifieldPtr,1,AddSymbol("altitude"));

/* */
/* The second field in the multi-field value */
/* will be a FLOAT. Its value will be 900. */

/* */

SetMFType(multifieldPtr,2,FLOAT);
SetMFValue(multifieldPtr,2,AddDouble(900.0));

/% - ===%/
/* Assign the type and value to the return DATA_OBJECT. */
/% — ===%/

SetpType(returnValuePtr ,MULTIFIELD);
SetpValue(returnValuePtr,multifieldPtr);

/¥=== = ============ */
/* The length of our multi-field value will be 2. */
/* Since we will create our own multi-field value */
/* the begin and end indexes to our function will */

/* be 1 and the length of the multi-field value */
/* respectively. If we are examining a multi-field */
/* value, or using an existing multi-field value */
/* to create a new multi-field value, then the */
/* begin and end indexes may not correspond to 1 */

40 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

/* and the length of the multi-field value. */
/*=== = ============ */

SetpDOBegin(returnValuePtr,1);
SetpDOEnd(returnValuePtr,2);

return;

}

The following example returns all but the first field of a multifield value:
#include "clips.h"

/ *

Use DefineFunction2("rest",'m',PTIF rest,"rest","11m");

*/

void rest(
DATA_OBJECT_PTR returnValuePtr)

{
/* */
/* Check for exactly one argument. */
/* */
if (ArgCountCheck("rest",EXACTLY,1) == -1)
{
SetMultifieldErrorValue(returnValuePtr);
return;
}
/* */
/* Check for a MULTIFIELD. */
/* */
if (ArgTypeCheck("rest",1,MULTIFIELD,returnValuePtr) == 0)
{
SetMultifieldErrorValue(returnValuePtr);
return;
ks
/* = ____*/
/* Don't bother with a zero length multifield value. */
/* = %/

if (GetpDOBegin(returnValuePtr) > GetpDOEnd(returnValuePtr))
{ return; }

/¥=================================== */
/* Increment the begin index by one. */
/* */

SetpDOBegin(returnValuePtr,GetpDOBegin(returnValuePtr) + 1);
}

CLIPS Advanced Programming Guide 41

CLIPS Reference Manual

3.4 USER-DEFINED FUNCTION EXAMPLE

This section lists the steps needed to define and implement a user-defined function. The example
given is somewhat trivial, but it demonstrates the point. The user function merely triples a
number and returns the new value.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function in a new file.

#include "clips.h"

double TripleNumber()

{
return(3.0 * RtnDouble(1));

}

The preceding function does the job just fine. The following function, however, accomplishes the
same purpose while providing error handling on arguments and allowing either an integer or
double return value.

#include "clips.h"

void TripleNumber(
DATA_OBJECT_PTR returnValuePtr)
{
void *value;
long longValue;
double doubleValue;

/*= */
/* If illegal arguments are passed, return zero. */
/*= */

if (ArgCountCheck("triple" ,EXACTLY,1) == -1)

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@L));
return;

ks
if (! ArgTypeCheck("triple",1,INTEGER_OR_FLOAT,returnValuePtr))

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@L));
return;

}

/* */
/* Triple the number. */
/* */

if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);

42 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,AddLong(longValue));

}
else /* the type must be FLOAT */

{
value = GetpValue(returnValuePtr);

doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));
ks

return;

}

3) Define the constructs which use the new function in a new file (or in an existing constructs
file). For example:

(deffacts 1init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))

(defrule get-new-value
(new-value ?num)

=>
(printout t crlf "Now equal to " ?num crlf))

4) Modify the CLIPS main.c file to include the new UserFunctions definition.

void UserFunctions()

{
extern void TripleNumber(DATA_OBJECT_PTR);

DefineFunction2("triple",'u',PTIF TripleNumber, "TripleNumber",
llllnll);

5) Compile the CLIPS files along with any files which contain user-defined functions.
6) Link all object code files.

7) Execute new CLIPS executable. Load the constructs file and test the new function.

CLIPS Advanced Programming Guide 43

CLIPS Reference Manual

Section 4 - Embedding CLIPS

CLIPS was designed to be embedded within other programs. When CLIPS is used as an em-
bedded application, the user must provide a main program. Calls to CLIPS are made like any
other subroutine. To embed CLIPS, add the following include statements to the user's main
program file:

#include <stdio.h>
#include "clips.h"

(These statements may have to be tailored so the compiler on the user's system can find the
CLIPS include file.) The user’s main program must initialize CLIPS by calling the function
InitializeEnvironment at some time prior to loading constructs. UserFunctions also must be
defined, regardless of whether CLIPS calls any external functions. Compile and link all of the
user's code with all CLIPS files except the object version of main.c. When running CLIPS as an
embedded program, many of the capabilities available in the interactive interface (in addition to
others) are available through function calls. The functions are documented in the following sec-
tions. Prototypes for these functions can be included by using the clips.h header file.

4.1 ENVIRONMENT FUNCTIONS

The following function calls control the CLIPS environment:

4.1.1 AddClearFunction

int AddClearFunction(clearItemName,clearFunction,priority);
char *clearItemName;

void (*clearFunction)();

int priority;

void clearFunction();

Purpose: Adds a user defined function to the list of functions which are
called when the CLIPS clear command is executed.

Arguments: 1) The name of the new clear item.

2) A pointer to the function which is to be called whenever a clear
command is executed. This function must except an
environment pointer if the environment companion function is
used (see section 9.2).

3) The priority of the clear item which determines the order in
which clear items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined clear items and should not be used for user defined clear
items.

CLIPS Advanced Programming Guide 45

CLIPS Reference Manual

Returns: Returns a zero value if the clear item could not be added, otherwise
a non-zero value is returned.

4.1.2 AddPeriodicFunction

int AddPeriodicFunction(periodicItemName,periodicFunction,
priority);

char *periodicItemName;

void (*periodicFunction)();

int priority;

void periodicFunction();

Purpose: Adds a user defined function to the list of functions which are
called periodically while CLIPS is executing. This ability was
primarily included to allow interfaces to process events and update
displays during CLIPS execution. Care should be taken not to use
any operations in a periodic function which would affect CLIPS
data structures constructively or destructively, i.e. CLIPS internals
may be examined but not modified during a periodic function.

Arguments: 1) The name of the new periodic item.

2) A pointer to a function which is to be called periodically while
CLIPS is executing. This function must except an environment
pointer if the environment companion function is used (see
section 9.2).

3) The priority of the periodic item which determines the order in
which periodic items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined periodic items and should not be used for user defined
periodic items.

Returns: Returns a zero value if the periodic item could not be added,
otherwise a non-zero value is returned.

4.1.3 AddResetFunction

int AddResetFunction(resetItemName,resetFunction,priority);
char *resetItemName;

void (*resetFunction)();

int priority;

void resetFunction();

46 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.1.4 BatchStar

int BatchStar(fil
char *fileName;

Purpose:

Arguments:

Returns:

Other:

4.1.5 Bload

CLIPS Reference Manual

Adds a user defined function to the list of functions which are
called when the CLIPS reset command is executed.

1) The name of the new reset item.

2) A pointer to the function which is to be called whenever a reset
command is executed. This function must except an
environment pointer if the environment companion function is
used (see section 9.2).

3) The priority of the reset item which determines the order in
which reset items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined reset items and should not be used for user defined reset
items.

Returns a zero value if the reset item could not be added, otherwise
a non-zero value is returned.

eName) ;

Evaluates the series of commands stored in the specified file
without replacing standard input (the C equivalent of the CLIPS
batch* command).

A string representing the name of the file.

Returns an integer; Zero if the file couldn’t be opened or 1 if the file
was opened.

The BatchStar function is not available for use in run-time
programs.

int Bload(fileName);

char *fileName;

Purpose:

Arguments:

CLIPS Advanced Programming Guide

Loads a binary image of constructs into the CLIPS data base (the C
equivalent of the CLIPS bload command).

A string representing the name of the file.

47

CLIPS Reference Manual

Returns: Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

4.1.6 Bsave

int Bsave(fileName);
char *fileName;

Purpose: Saves a binary image of constructs from the CLIPS data base (the C
equivalent of the CLIPS bsave command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

4.1.7 Build

int Build(constructString);
char *constructString;

Purpose: Allows a construct to be defined (the C equivalent of the CLIPS
build command).

Arguments: 1) A string containing the construct to be added.

Returns: Returns an integer. 1 if the construct was successfully parsed,
otherwise 0.

Other: The Build function is not available for use in run-time programs
(since individual constructs can’t be added or deleted).

4.1.8 Clear

void Clear();

Purpose: Clears the CLIPS environment (the C equivalent of the CLIPS clear
command).

Arguments: None.

Returns: No meaningful return value.

Other: This function can trigger garbage collection.

a3 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.1.9 Eval

int Eval(expressionString,&result);
char *expressionString;
DATA_OBJECT result;

Purpose: Allows an expression to be evaluated (the C equivalent of the
CLIPS eval command).

Arguments: 1) A string containing the expression to be evaluated.
2) Caller’s buffer for storing the result of the evaluation. See

sections 3.2.3 and 3.2.4 for information on getting the value
stored in a DATA_OBJECT.

Returns: Returns an integer. 1 if the expression was successfully evaluated,
otherwise 0.

Other: The Eval function is not available for use in run-time programs.

4.1.10 FunctionCall

int FunctionCall(functionName,arguments,&result);
char *functionName, *arguments;
DATA_OBJECT result;

Purpose: Allows CLIPS system functions, deffunctions and generic functions
to be called from C.

Arguments: 1) The name of the system function, deffunction or generic
function to be called.
2) A string containing any constant arguments separated by blanks
(this argument can be NULL).
3) Caller’s buffer for storing the result of the function call. See
sections 3.2.3 and 3.2.4 for information on getting the value
stored in a DATA_OBIJECT.

Returns: An integer; TRUE (1) if an error occurred while evaluating the
function, otherwise FALSE (0).

Other: This function can trigger garbage collection.

Example

DATA_OBJECT rtn;
FunctionCall("+","1 2",&rtn);

CLIPS Advanced Programming Guide 49

CLIPS Reference Manual

4.1.11 GetAutoFloatDividend
int GetAutoFloatDividend();

Purpose: Returns the current value of the auto-float dividend behavior (the C
equivalent of the CLIPS get-auto-float-dividend command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.12 GetDynamicConstraintChecking
int GetDynamicConstraintChecking();

Purpose: Returns the current value of the dynamic constraint checking
behavior (the C equivalent of the CLIPS
get-dynamic-constraint-checking command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.13 GetSequenceOperatorRecognition
int GetSequenceOperatorRecognition();

Purpose: Returns the current value of the sequence operator recognition
behavior (the C equivalent of the CLIPS get-sequence-operator-
recognition command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.14 GetStaticConstraintChecking

int GetStaticConstraintChecking();

50 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

CLIPS Reference Manual

Returns the current value of the static constraint checking behavior
(the C equivalent of the CLIPS get-static-constraint-checking
command).

None.

An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.15 InitializeEnvironment

void InitializeEnvi

Purpose:

Arguments:

Returns:

4.1.16 Load

ronment();

Initializes the CLIPS system. Must be called prior to any other
CLIPS function call. NOTE: This function should be called only
once.

None.

No meaningful return value.

int Load(fileName);

char *fileName;

Purpose:

Arguments:

Returns:

Other:

CLIPS Advanced Programming Guide

Loads a set of constructs into the CLIPS data base (the C equivalent
of the CLIPS load command).

A string representing the name of the file.

Returns an integer; Zero if the file couldn’t be opened, -1 if the file
was opened but an error occurred while loading, and 1 if the file
was opened an no errors occurred while loading. If syntactic errors
are in the constructs, Load still will attempt to read the entire file
and error notices will be sent to werror.

The load function is not available for use in run-time programs
(since individual constructs can’t be added or deleted). To execute
different sets of constructs, the switching feature must be used in a
run-time program (see section 5 for more details).

51

CLIPS Reference Manual

4.1.17 RemoveClearFunction

int RemoveClearFunction(clearItemName);
char *clearItemName;

Purpose: Removes a named function from the list of functions to be called
during a clear command.

Arguments: The name associated with the user-defined clear function. This is
the same name that was used when the clear function was added
with the function AddClearFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise 0 is returned.

4.1.18 RemovePeriodicFunction

int RemovePeriodicFunction(periodicItemName);
char *periodicItemName;

Purpose: Removes a named function from the list of functions which are
called periodically while CLIPS is executing.

Arguments: The name associated with the user-defined periodic function. This
is the same name that was used when the periodic function was
added with the function AddPeriodicFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.19 RemoveResetFunction

int RemoveResetFunction(resetItemName);
char *resetItemName;

Purpose: Removes a named function from the list of functions to be called
during a reset command.

Arguments: The name associated with the user-defined reset function. This is
the same name that was used when the reset function was added

with the function AddResetFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

52 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.1.20 Reset

void Reset();

Purpose: Resets the CLIPS environment (the C equivalent of the CLIPS reset
command).
Arguments: None.
Returns: No meaningful return value.
Other: This function can trigger garbage collection.
4.1.21 Save

int Save(fileName);
char *fileName;

Purpose: Saves a set of constructs to the specified file (the C equivalent of
the CLIPS save command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

4.1.22 SetAutoFloatDividend

int SetAutoFloatDividend(value);
int value;
Purpose: Sets the autofloat dividend behavior (the C equivalent of the

CLIPS set-auto-float-dividend command). When this behavior is
enabled (by default) the dividend of the division function is
automatically converted to a floating point number.

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.1.23 SetDynamicConstraintChecking

int SetDynamicConstraintChecking(value);
int value;

CLIPS Advanced Programming Guide 53

CLIPS Reference Manual

Purpose:

Arguments:

Returns:

Sets the value of the dynamic constraint checking behavior (the C
equivalent of the CLIPS command set-dynamic-constraint-
checking). When this behavior is disabled (FALSE by default),
newly created data objects (such as deftemplate facts and instances)
do not have their slot values checked for constraint violations.
When this behavior is enabled (TRUE), the slot values are checked
for constraint violations. The return value for this function is the old
value for the behavior.

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.24 SetSequenceOperator Recognition

int SetSequenceOperatorRecognition(value);
int value;
Purpose: Sets the sequence operator recognition behavior (the C equivalent
of the CLIPS set-sequence-operator-recognition command).
When this behavior is disabled (by default) multifield variables
found in function calls are treated as a single argument. When this
behaviour is enabled, multifield variables are expanded and passed
as separate arguments in the function call.
Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.
Returns: Returns the old value for the behavior.

4.1.25 SetStaticConstraintChecking

int SetStaticConstraintChecking(value);

int value;

Purpose:

54

Sets the value of the static constraint checking behavior (the C
equivalent of the CLIPS command set-static-constraint-checking).
When this behavior is disabled (FALSE), constraint violations are
not checked when function calls and constructs are parsed. When
this behavior is enabled (TRUE by default), constraint violations
are checked when function calls and constructs are parsed. The
return value for this function is the old value for the behavior.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.2 DEBUGGING FUNCTIONS

The following function call controls the CLIPS debugging aids:

4.2.1 DribbleActive

int DribbleActive();

Purpose: Determines if the storing of dribble information is active.
Arguments: None.
Returns: Zero if dribbling is not active, non-zero otherwise.

4.2.2 DribbleOff

int DribbleOff();

Purpose: Turns off the storing of dribble information (the C equivalent of the
CLIPS dribble-off command).

Arguments: None.
Returns: A zero if an error occurred closing the file; otherwise a one.
4.2.3 DribbleOn

int DribbleOn(fileName);
char *fileName;

Purpose: Allows the dribble function of CLIPS to be turned on (the C
equivalent of the CLIPS dribble-on command).

Arguments: The name of the file in which to store dribble information. Only one
dribble file may be opened at a time.

Returns: A zero if an error occurred opening the file; otherwise a one.

CLIPS Advanced Programming Guide 55

CLIPS Reference Manual

4.2.4 GetWatchltem
int GetWatchItem(item);
char *item;

Purpose: Returns the current value of a watch item.

Arguments: The item to be activated or deactivated which should be one of the
following strings: facts, rules, activations, focus, compilations,
statistics, globals, instances, slots, messages, message-handlers,
genericfunctions, method, or deffunctions.

Returns: Returns 1 if the watch item is enabled, O if the watch item is
disabled, and -1 if the watch item does not exist.

4.2.5 Unwatch
int Unwatch(item);
char *item;

Purpose: Allows the tracing facilities of CLIPS to be deactivated (the C
equivalent of the CLIPS unwatch command).

Arguments: The item to be deactivated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or all. If all is selected, all possible
watch items will not be traced.

Returns: A one if the watch item was successfully set; otherwise a zero.

4.2.6 Watch
int Watch(item);
char *item;

Purpose: Allows the tracing facilities of CLIPS to be activated (the C
equivalent of the CLIPS watch command).

Arguments: The item to be activated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or all. If all is selected, all possible
watch items will be traced.

56 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A one if the watch item was successfully set; otherwise a zero.

4.3 DEFTEMPLATE FUNCTIONS

The following function calls are used for manipulating deftemplates.

4.3.1 DeftemplateModule

char *DeftemplateModule(deftemplatePtr);
void *deftemplatePtr;

Purpose: Returns the module in which a deftemplate is defined (the C
equivalent of the CLIPS deftemplate-module command).

Arguments: A generic pointer to a deftemplate.

Returns: A string containing the name of the module in which the
deftemplate is defined.

4.3.2 FindDeftemplate

void *FindDeftemplate(deftemplateName);
char *deftemplateName;

Purpose: Returns a generic pointer to a named deftemplate.

Arguments: The name of the deftemplate to be found.

Returns: A generic pointer to the named deftemplate if it exists, otherwise
NULL.

4.3.3 GetDeftemplateList

void GetDeftemplatelist(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of deftemplates in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deftemplate-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in

CLIPS Advanced Programming Guide 57

CLIPS Reference Manual

section 3.2.4 can be used to retrieve the deftemplate names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.3.4 GetDeftemplateName

char *GetDeftemplateName(deftemplatePtr);
void *deftemplatePtr;

Purpose: Returns the name of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the name of the deftemplate.

4.3.5 GetDeftemplatePPForm

char *GetDeftemplatePPForm(deftemplatePtr);
void *deftemplatePtr;

Purpose: Returns the pretty print representation of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the pretty print representation of the deftemplate

(or the NULL pointer if no pretty print representation exists).

4.3.6 GetDeftemplateWatch

unsigned GetDeftemplateWatch(deftemplatePtr);
void *deftemplatePtr;

Purpose: Indicates whether or not a particular deftemplate is being watched.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; one (1) if the deftemplate is being watched, otherwise a
zero (0).

58 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.3.7 GetNextDeftemplate

void *GetNextDeftemplate(deftemplatePtr);
void *deftemplatePtr;

Purpose: Provides access to the list of deftemplates.

Arguments: A generic pointer to a deftemplate data structure (or NULL to get
the first deftemplate).

Returns: A generic pointer to the first deftemplate in the list of deftemplates
if deftemplatePtr is NULL, otherwise a generic pointer to the
deftemplate immediately following deftemplatePtr in the list of
deftemplates. If deftemplatePtr is the last deftemplate in the list of
deftemplates, then NULL is returned.

4.3.8 IsDeftemplateDeletable

int IsDeftemplateDeletable(deftemplatePtr);
void *deftemplatePtr;
Purpose: Indicates whether or not a particular deftemplate can be deleted.
Arguments: A generic pointer to a deftemplate data structure.
Returns: An integer; zero (0) if the deftemplate cannot be deleted, otherwise
aone (1).

4.3.9 ListDeftemplates

void ListDeftemplates(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of deftemplates (the C equivalent of the CLIPS
list-deftemplates command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deftemplates to
be listed. A NULL pointer indicates that deftemplate in all

modules should be listed.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 59

CLIPS Reference Manual

4.3.10 SetDeftemplateWatch

void SetDeftemplateWatch(newState,deftemplatePtr);
unsigned newState;
void *deftemplatePtr;

Purpose: Sets the facts watch item for a specific deftemplate.

Arguments: The new facts watch state and a generic pointer to a deftemplate
data structure.

4.3.11 Undeftemplate

int Undeftemplate(deftemplatePtr);
void *deftemplatePtr;

Purpose: Removes a deftemplate from CLIPS (the C equivalent of the CLIPS
undeftemplate command).

Arguments: A generic pointer to a deftemplate data structure. If the NULL
pointer is used, then all deftemplates will be deleted.

Returns: An integer; zero (0) if the deftemplate could not be deleted,
otherwise a one (1).

Other: This function can trigger garbage collection.

4.4 FACT FUNCTIONS

The following function calls manipulate and display information about facts.

4.4.1 Assert

void *Assert(factPtr);
void *factPtr;

Purpose: Adds a fact created using the function CreateFact to the fact-list. If
the fact was asserted successfully, Assert will return a pointer to the
fact. Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

Arguments: A generic pointer to the fact created using CreateFact. The values
of the fact should be initialized before calling Assert.

60 Section 4 - Embedding CLIPS

Returns:

Other:

WARNING:

4.4.2 AssertString

CLIPS Reference Manual

A generic pointer to a fact structure. If the fact was asserted
successfully, Assert will return a generic pointer to the fact.
Otherwise, it will return NULL (i.e., the fact was already in the
fact-ist).

This function can trigger garbage collection.

If the return value from Assert is stored as part of a persistent data
structure or in a static data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

void *AssertString(string);

char *string;

Purpose:

Arguments:

Returns:

Other:

WARNING:

Examples

Asserts a fact into the CLIPS fact-list (the C equivalent of the
CLIPS assert-string command).

One argument; a pointer to a string containing a list of primitive
data types (symbols, strings, integers, floats, and/or instance
names).

A generic pointer to a fact structure.

This function can trigger garbage collection.

If the return value from AssertString is stored as part of a
persistent data structure or in a static data area, then the function

IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)

(slot w (default 9))

(slot x)

(slot y)
(multislot z))

then the following fact

CLIPS Advanced Programming Guide

61

CLIPS Reference Manual

(example (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.

void AddExampleFactl()

AssertString("(example (x 3) (y red) (z 1.5 b))");
}

To construct a string based on variable data, use the C library function sprintf as shown
following.

void VariableFactAssert(
int number,
char *status)

{
char tempBuffer[50];

sprintf(tempBuffer,"(example (x %d) (y %s))",number,status);

AssertString(tempBuffer);
}

4.4.3 AssignFactSlotDefaults

int AssignFactSlotDefaults(theFact);
void *theFact;

Purpose: Assigns default values to a fact.
Arguments: A generic pointer to a fact data structure.
Returns: Boolean value. TRUE if the default values were successfully set,
otherwise FALSE.
4.4.4 CreateFact

void *CreateFact(deftemplatePtr);
void *deftemplatePtr;

Purpose: Function CreateFact returns a pointer to a fact structure with
factSize fields. Once this fact structure is obtained, the fields of the
fact can be given values by using PutFactSlot and
AssignFactSlotDefaults. Function Assert should be called when
the fact is ready to be asserted.

Arguments: A generic pointer to a deftemplate data structure (which indicates
the type of fact being created).

62 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A generic pointer to a fact data structure.

Other: Use the CreateFact function to create a new fact and then the
PutFactSlot function to set one or more slot values. The
AssignFactSlotDefaults function is then used to assign default
values for slots not set with the PutFactSlot function. Finally, the
Assert function is called with the new fact.

Since CreateFact requires a generic deftemplate pointer, it is not
possible to use it to create ordered facts unless the associated
implied deftemplate has already been created. In cases where the
implied deftemplate has not been created, the function AssertString
can be used to create ordered facts.

This function allows individual fields of a fact to be assigned under
programmer control. This is useful, for example, if a fact asserted
from an external function needs to contain an external address or an
instance address (since the function AssertString does not permit
these data types). For most situations in which a fact needs to be
asserted, however, the AssertString function should be preferred (it
is slighter slower than using the CreateFact and Assert functions,
but it is much easier to use and less prone to being used
incorrectly).

Examples
If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)
(slot w (default 9))
(slot x)

(slot y)
(multislot z))

then the following fact
(example (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.

void AddExampleFact2()
{
void *newFact;
void *templatePtr;
void *theMultifield;
DATA_OBJECT theValue;

CLIPS Advanced Programming Guide 63

CLIPS Reference Manual

/* = = ==%/
/* Disable garbage collection. It's only necessary to disable */
/* garbage collection when calls are made into CLIPS from an */
/* embedding program. It's not necessary to do this when the */
/* the calls to user code are made by CLIPS (such as for */
/* user-defined functions) or in the case of this example, */
/* there are no calls to functions which can trigger garbage */

*

/* collection (such as Send or FunctionCall. /
/* = = ==*/
IncrementGCLocks();
/* */
/* Create the fact. */
/* */

templatePtr = FindDeftemplate("example");
newFact = CreateFact(templatePtr);

if (newFact == NULL) return;

/* */
/* Set the value of the x slot. */
/* */

theValue.type = INTEGER;
theValue.value = AddLong(3);
PutFactSlot(newFact, "x",&theValue);

/* */
/* Set the value of the y slot. */
/* */

theValue.type = SYMBOL;
theValue.value = AddSymbol("red");
PutFactSlot(newFact,"y",&theValue);

/* */
/* Set the value of the z slot. */
/* */

theMultifield = CreateMultifield(2);
SetMFType(theMultifield,1,FLOAT);
SetMFValue(theMultifield,1,AddDouble(1.5));
SetMFType(theMultifield,2,SYMBOL);
SetMFValue(theMultifield,2,AddSymbol("b"));
SetDOBegin(theValue,1);
SetDOEnd(theValue,2);

theValue.type = MULTIFIELD;
theValue.value = theMultifield;
PutFactSlot(newFact,"z",&theValue);

/* */
/* Assign default values since all */
/* slots were not initialized. */

/* */

AssignFactSlotDefaults(newFact);

Section 4 - Embedding CLIPS

CLIPS Reference Manual

[/ ¥=== = = ==*/
/* Enable garbage collection. Each call to IncrementGCLocks */
/* should have a corresponding call to DecrementGCLocks. */
DecrementGCLocks();

/* */

/* Assert the fact. */

/* */

Assert(newFact);

}

4.4.5 DecrementFactCount

void DecrementFactCount(factPtr);
void *factPtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementFactCount. As long as an fact's count is
greater than zero, the memory allocated to it cannot be released for

other use.
Arguments: A generic pointer to a fact.
Returns: No meaningful return value.

4.4.6 FactDeftemplate

void *FactDeftemplate(factPtr);
void *factPtr;

Purpose: Returns the deftemplate associated with a fact.
Arguments: A generic pointer to a fact data structure.
Returns: Returns a generic pointer to the deftemplate data structure

associated with the fact.

4.4.7 FactExistp

long FactExistp(factPtr);
void *factPtr;

Purpose: Indicates whether a fact is still in the fact-list or has been retracted
(the C equivalent of the CLIPS fact-existp function).

CLIPS Advanced Programming Guide 65

CLIPS Reference Manual

Arguments: 1) A generic pointer to a fact data structure.
Returns: An integer; zero (0) if the fact is not in the fact-list, otherwise a one
(1).
4.4.8 FactIndex

long int FactIndex(factPtr);
void *factPtr;

Purpose: Returns the fact index of a fact (the C equivalent of the CLIPS fact-
index command).

Arguments: A generic pointer to a fact data structure.
Returns: A long integer (the fact-index of the fact).
4.4.9 Facts

void Facts(logicalName,theModule,start,end,max);
char *logicalName;

void *theModule;

long start, end, max;

Purpose: Prints the list of all facts currently in the factlist (the C equivalent
of the CLIPS facts command). Output is sent to the logical name
wdisplay.

Arguments: 1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the facts to be listed
(all facts visible to that module). A NULL pointer indicates that
all facts in all modules should be listed.

3) The start index of the facts to be listed. Facts with indices less
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.

4) The end index of the facts to be listed. Facts with indices greater
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.

5) The maximum number of facts to be listed. Facts in excess of
this limit are not listed. A value of -1 indicates that the argument
is unspecified and should not restrict the facts printed.

Returns: No meaningful return value.

66 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.4.10 FactSlotNames

void FactSlotNames(factPtr,&theValue);
DATA_OBJECT slotNames;

Purpose: Retrieves the list of slot names associated with a fact (the C
equivalent of the CLIPS fact-slot-names function).

Arguments: 1) A generic pointer to a fact data structure.
2) A pointer to a DATA_OBJECT in which to place a multifield
value containing the fact’s slot name symbols. For ordered facts,
a multifield value containing the single symbol implied is
returned. See sections 3.2.3 and 3.2.4 for information on getting
the value stored in a DATA_OBIJECT.

Returns: No meaningful value.

4.4.11 GetFactDuplication
int GetFactDuplication();

Purpose: Returns the current value of the fact duplication behavior (the C
equivalent of the CLIPS get-fact-duplication command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.4.12 GetFactList

void GetFactList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of facts visible to the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-fact-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffacts names from the
list.

CLIPS Advanced Programming Guide 67

CLIPS Reference Manual

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.4.13 GetFactListChanged
int GetFactlListChanged();

Purpose: Determines if any changes to the fact list have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetFactListChanged(0) to reset the internal flag. Otherwise, this
function will continue to return non-zero even when no changes
have occurred. This function is primarily used to determine when to
update a display tracking the fact list.

Arguments: None.
Returns: 0 if no changes to the fact list have occurred, non-zero otherwise.
4.4.14 GetFactPPForm

void GetFactPPForm(buffer,bufferLength,factPtr);
char *buffer;

unsigned bufferlLength;

void *factPtr;

Purpose: Returns the pretty print representation of a fact in the caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a fact data structure.

Returns: No meaningful return value. The fact pretty print form is stored in
the caller's buffer.

4.4.15 GetFactSlot

int GetFactSlot(factPtr,slotName,&theValue);
void *factPtr;

char *slotName;

DATA_OBJECT theValue;

68 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.4.16 GetNextFact

void
void

Purpose:

CLIPS Reference Manual

Retrieves a slot value from a fact.

1) A generic pointer to a fact data structure.

2) The name of the slot to be retrieved (NULL should be used for
the implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT in which to place the slot’s
value. See sections 3.2.3 and 3.2.4 for information on getting the
value stored in a DATA_OBIJECT.

Boolean value. TRUE if the slot value was successfully retrieved,
otherwise FALSE.

*GetNextFact(factPtr);

*factPtr;

Arguments:

Returns:

Other:

WARNING:

Provides access to the fact-list.

A generic pointer to a fact data structure (or NULL to get the first
fact in the fact-list).

A generic pointer to the first fact in the fact-list if factPtr is NULL,
otherwise a generic pointer to the fact immediately following
factPtr in the fact-list. If factPtr is the last fact in the fact-list, then
NULL is returned.

Once this generic pointer to the fact structure is obtained, the fields
of the fact can be examined by using the macros GetMFType and
GetMFValue. The values of a fact obtained using this function
should never be changed. See CreateFact for details on accessing
deftemplate facts.

Do not call this function with a pointer to a fact that has been
retracted. If the return value from GetNextFact is stored as part of a
persistent data structure or in a static data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

4.4.17 GetNextFactInTemplate

void
void

*GetNextFactInTemplate(templatePtr,factPtr);

*templatePtr;

CLIPS Advanced Programming Guide 69

CLIPS Reference Manual

void *factPtr;

Purpose:

Arguments:

Returns:

Other:

WARNING:

Provides access to the list of facts for a particular deftemplate.

1) A generic pointer to a deftemplate.
2) A generic pointer to a fact data structure (or NULL to get the
first fact from the deftemplate’s fact-list).

A generic pointer to the first fact of the specified deftemplate if
factPtr is NULL, otherwise a generic pointer to the next fact of the
specified deftemplate immediately following factPtr. If factPtr is
the last fact belonging to the deftemplate, then NULL is returned.

Once this generic pointer to the fact structure is obtained, the fields
of the fact can be examined by using the macros GetMFType and
GetMFValue. The values of a fact obtained using this function
should never be changed. See CreateFact for details on accessing
deftemplate facts.

Do not call this function with a pointer to a fact that has been
retracted. If the return value from GetNextFactInTemplate is
stored as part of a persistent data structure or in a static data area,
then the function IncrementFactCount should be called to insure
that the fact cannot be disposed while external references to the fact
still exist.

4.4.18 IncrementFactCount

void IncrementFactCount(factPtr);

void *factPtr;

Purpose:

70

This function should be called for each external copy of pointer to
a fact to let CLIPS know that such an outstanding external reference
exists. As long as an fact's count is greater than zero, CLIPS will
not release its memory because there may be outstanding pointers to
the fact. However, the fact can still be functionally retracted, i.e. the
fact will appear to no longer be in the fact-list. The fact address
always can be safely examined using the fact access functions as
long as the count for the fact is greater than zero. Retracting an
already retracted fact will have no effect, however, the function
AddFact should not be called twice for the same pointer created
using CreateFact. Note that this function only needs to be called if
you are storing pointers to facts that may later be referenced by
external code after the fact has been retracted.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: A generic pointer to a fact.
Returns: No meaningful return value.
4.4.19 LoadFacts
int LoadFacts(fileName);

char *fileName;

Purpose: Loads a set of facts into the CLIPS data base (the C equivalent of
the CLIPS load-facts command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the load.

4.4.20 LoadFactsFromString

int LoadFactsFromString(inputString,maximumPosition);
char *inputString;
int maximumPosition;

Purpose: Loads a set of facts into the CLIPS data base using a string as the
input source (in a manner similar to the CLIPS load-facts
command).

Arguments: 1) A string containing the fact definitions to be loaded.

2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns: Returns an integer; if zero, an error occurred while processing the
string.

4.4.21 PutFactSlot

int PutFactSlot(factPtr,slotName,&theValue);
void *factPtr;

char *slotName;

DATA_OBJECT theValue;

Purpose: Sets the slot value of a fact.

Arguments: 1) A generic pointer to a fact data structure.

CLIPS Advanced Programming Guide 71

CLIPS Reference Manual

Returns:

Warning:

4.4.22 Retract

2) The name of the slot to be set (NULL should be used for the
implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT that contains the slot’s new
value. A multifield or implied multifield slot should only be
passed a multifield value. A single field slot should only be
passed a single field value. See sections 3.3.3 and 3.3.4 for
information on setting the value stored in a DATA_OBJECT.

Boolean value. TRUE if the slot value was successfully set,
otherwise FALSE.

Do not use this function to change the slot value of a fact that has
already been asserted. This function should only be used on facts
created using CreateFact.

int Retract(factPtr);

void *factPtr;

Purpose: Retracts a fact from the CLIPS fact-ist (the C equivalent of the
CLIPS retract command).

Arguments: A generic pointer to a fact structure (usually captured as the return
value from a call to AssertString or Assert). If the NULL pointer is
used, then all facts will be retracted.

Returns: An integer; zero (0) if fact already has been retracted, otherwise a
one (1).

Other: The caller of RetractFact is responsible for insuring that the fact
passed as an argument is still valid. The functions
IncrementFactCount and DecrementFactCount can be used to
inform CLIPS whether a fact is still in use.

This function can trigger garbage collection.
4.4.23 SaveFacts
int SaveFacts(fileName,saveScope,NULL);

char *fileName;
int saveScope;

72

Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.4.24 SetFactDuplication

CLIPS Reference Manual

Saves the facts in the fact-list to the specified file (the C equivalent
of the CLIPS save-facts command).

A string representing the name of the file and an integer constant
representing the scope for the facts being saved which should be
either LOCAL_SAVE or VISIBLE_SAVE. The third argument is
used internally by the CLIPS save-facts command and should be set
to NULL when called from user code.

Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

int SetFactDuplication(value);
int value;
Purpose: Sets the fact duplication behavior (the C equivalent of the CLIPS

Arguments:

Returns:

4.4.25 SetFactListChanged

void SetFactlListCha
int changedFlag;

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

set-fact-duplication command). When this behavior is disabled (by
default), asserting a duplicate of a fact already in the fact-list
produces no effect. When enabled, the duplicate fact is asserted
with a new fact-index.

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

nged(changedFlag);

Sets the internal boolean flag which indicates when changes to the
fact list have occurred. This function is normally used to reset the
flag to zero after GetFactListChanged() returns non-zero.

An integer indicating whether changes in the fact list have occurred

(non-zero) or not (0).

Nothing useful.

3

CLIPS Reference Manual

4.5 DEFFACTS FUNCTIONS

The following function calls are used for manipulating deffacts.

4.5.1 DeffactsModule

char *DeffactsModule(theDeffacts);

void *theDeffacts;

Purpose:

Arguments:

Returns:

4.5.2 FindDeffacts

Returns the module in which a deffacts is defined (the C equivalent
of the CLIPS deffacts-module command).

A generic pointer to a deffacts.

A string containing the name of the module in which the deffacts is
defined.

void *FindDeffacts(deffactsName);

char *deffactsName;

Purpose:
Arguments:

Returns:

4.5.3 GetDeffactsList

Returns a generic pointer to a named deffacts.
The name of the deffacts to be found.

A generic pointer to the named deffacts if it exists, otherwise
NULL.

void GetDeffactsList(&returnValue,theModule);
DATA_OBJECT returnValue;

void *theModule;

Purpose:

Arguments:

74

Returns the list of deffacts in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-deffacts-list function).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffacts names from the
list.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.5.4 GetDeffactsName

char *GetDeffactsName(deffactsPtr);
void *deffactsPtr;

Purpose: Returns the name of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the name of the deffacts.

4.5.5 GetDeffactsPPForm

char *GetDeffactsPPForm(deffactsPtr);
void *deffactsPtr;

Purpose: Returns the pretty print representation of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the pretty print representation of the deffacts (or

the NULL pointer if no pretty print representation exists).

4.5.6 GetNextDeffacts

void *GetNextDeffacts(deffactsPtr);
void *deffactsPtr;

Purpose: Provides access to the list of deffacts.

Arguments: A generic pointer to a deffacts data structure (or NULL to get the
first deffacts).

Returns: A generic pointer to the first deffacts in the list of deffacts if

deffactsPtr is NULL, otherwise a generic pointer to the deffacts
immediately following deffactsPtr in the list of deffacts. If
deffactsPtr is the last deffacts in the list of deffacts, then NULL is
returned.

CLIPS Advanced Programming Guide 75

CLIPS Reference Manual

4.5.7 IsDeffactsDeletable

int IsDeffactsDeletable(deffactsPtr);

void *deffactsPtr;

Purpose:
Arguments:

Returns:

4.5.8 ListDeffacts

Indicates whether or not a particular deffacts can be deleted.
A generic pointer to a deffacts data structure.

An integer; zero (0) if the deffacts cannot be deleted, otherwise a
one (1).

void ListDeffacts(logicalName,theModule);

char *logicalName;

void *theModule;

Purpose: Prints the list of deffacts (the C equivalent of the CLIPS
list-deffacts command).
Arguments: 1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the deffacts to be
listed. A NULL pointer indicates that deffacts in all modules
should be listed.

Returns: No meaningful return value.
4.5.9 Undeffacts
int Undeffacts(deffactsPtr);
void *deffactsPtr;
Purpose: Removes a deffacts construct from CLIPS (the C equivalent of the

CLIPS undeffacts command).

Arguments: A generic pointer to a deffacts data structure. If the NULL pointer is
used, then all deffacts will be deleted.
Returns: An integer; zero (0) if the deffacts could not be deleted, otherwise a

one (1).

Other: This function can trigger garbage collection.
76 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.6 DEFRULE FUNCTIONS

The following function calls are used for manipulating defrules.

4.6.1 DefruleHasBreakpoint

int DefruleHasBreakpoint(defrulePtr);
void *defrulePtr;

Purpose: Indicates whether or not a particular defrule has a breakpoint set.
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; one (1) if a breakpoint exists for the rule, otherwise a
zero (0).
4.6.2 DefruleModule

char *DefruleModule(theDefrule);
void *theDefrule;

Purpose: Returns the module in which a defrule is defined (the C equivalent
of the CLIPS defrule-module command).

Arguments: A generic pointer to a defrule.
Returns: A string containing the name of the module in which the defrule is
defined.
4.6.3 FindDefrule

void *FindDefrule(defruleName);
char *defruleName;

Purpose: Returns a generic pointer to a named defrule.

Arguments: The name of the defrule to be found.

Returns: A generic pointer to the named defrule if it exists, otherwise NULL.
4.6.4 GetDefruleList

void GetDefrulelist(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

CLIPS Advanced Programming Guide 77

CLIPS Reference Manual

Purpose: Returns the list of defrules in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defrule-list function)..

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defrule names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.6.5 GetDefruleName

char *GetDefruleName(defrulePtr);
void *defrulePtr;

Purpose: Returns the name of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the name of the defrule.

4.6.6 GetDefrulePPForm

char *GetDefrulePPForm(defrulePtr);
void *defrulePtr;

Purpose: Returns the pretty print representation of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the pretty print representation of the defrule (or

the NULL pointer if no pretty print representation exists).

4.6.7 GetDefruleWatchActivations

unsigned GetDefruleWatchActivations(defrulePtr);
void *defrulePtr;

78 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Indicates whether or not a particular defrule is being watched for
activations.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for activations,

otherwise a zero (0).

4.6.8 GetDefruleWatchFirings

unsigned GetDefruleWatchFirings(defrulePtr);
void *defrulePtr;

Purpose: Indicates whether or not a particular defrule is being watched for
rule firings.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for rule firings,
otherwise a zero (0).

4.6.9 GetIncrementalReset
int GetIncrementalReset();

Purpose: Returns the current value of the incremental reset behavior (the C
equivalent of the CLIPS get-incremental-reset command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.6.10 GetNextDefrule

void *GetNextDefrule(defrulePtr);
void *defrulePtr;

Purpose: Provides access to the list of defrules.
Arguments: A generic pointer to a defrule data structure (or NULL to get the
first defrule).

CLIPS Advanced Programming Guide 79

CLIPS Reference Manual

Returns: A generic pointer to the first defrule in the list of defrules if
defrulePtr is NULL, otherwise a generic pointer to the defrule
immediately following defrulePtr in the list of defrules. If
defrulePtr is the last defrule in the list of defrules, then NULL is

returned.
4.6.11 IsDefruleDeletable
int IsDefruleDeletable(defrulePtr);
void *defrulePtr;
Purpose: Indicates whether or not a particular defrule can be deleted.
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the defrule cannot be deleted, otherwise a one
(D).

4.6.12 ListDefrules

void ListDefrules(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defrules (the C equivalent of the CLIPS
list-defrules command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defrules to be
listed. A NULL pointer indicates that defrules in all modules
should be listed.

Returns: No meaningful return value.

4.6.13 Matches

int Matches(defrulePtr);
void *defrulePtr;

Purpose: Prints the partial matches and activations of a defrule (the C
equivalent of the CLIPS matches command).

Arguments: A generic pointer to a defrule data structure.

80 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).
4.6.14 Refresh
int Refresh(defrulePtr);
void *defrulePtr;
Purpose: Refreshes a rule (the C equivalent of the CLIPS refresh command).
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).
4.6.15 RemoveBreak

int RemoveBreak(defrulePtr);
void *defrulePtr;

Purpose: Removes a breakpoint for the specified defrule (the C equivalent of
the CLIPS remove-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if a breakpoint did not exist for the rule,
otherwise a one (1).

4.6.16 SetBreak

void SetBreak(defrulePtr);
void *defrulePtr;

Purpose: Adds a breakpoint for the specified defrule (the C equivalent of the
CLIPS set-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: No meaningful return value.

4.6.17 SetDefruleWatchActivations

void SetDefruleWatchActivations(newState,defrulePtr);
unsigned newState;
void *defrulePtr;

Purpose: Sets the activations watch item for a specific defrule.

CLIPS Advanced Programming Guide 81

CLIPS Reference Manual

Arguments: The new activations watch state and a generic pointer to a defrule
data structure.

4.6.18 SetDefruleWatchFirings

void SetDefruleWatchFirings(newState,defrulePtr);
unsigned newState;
void *defrulePtr;

Purpose: Sets the rule firing watch item for a specific defrule.

Arguments: The new rule firing watch state and a generic pointer to a defrule
data structure.

4.6.19 SetIncrementalReset

int SetIncrementalReset(value);
int value;
Purpose: Sets the incremental reset behavior. When this behavior is enabled

(by default), newly defined rules are update based upon the current
state of the fact-list. When disabled, newly defined rules are only
updated by facts added after the rule is defined (the C equivalent of
the CLIPS set-incremental-reset command).

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.6.20 ShowBreaks

void ShowBreaks(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of all rule breakpoints (the C equivalent of the CLIPS
show-breaks command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module for which the breakpoints are to
be listed. A NULL pointer indicates that the the breakpoints in
all modules should be listed.

82 Section 4 - Embedding CLIPS

Returns:

4.6.21 Undefrule

int Undefrule(def
void *defrulePtr;

CLIPS Reference Manual

No meaningful return value.

rulePtr);

Purpose: Removes a defrule from CLIPS (the C equivalent of the CLIPS
undefrule command).
Arguments: A generic pointer to a defrule data structure. If the NULL pointer is
used, then all defrules will be deleted.
Returns: An integer; zero (0) if the defrule could not be deleted, otherwise a
one (1).
Other: This function can trigger garbage collection.
4.7 AGENDA FUNCTIONS

The following function calls are used for manipulating the agenda.

4.7.1 AddRunFunction

int AddRunFunction(runItemName,runFunction,priority);

char *runItemName;

void (*runFunction)();

int priority;
void runFunction();

Purpose:

Arguments:

CLIPS Advanced Programming Guide

Allows a user-defined function to be called after each rule firing.
Such a feature is useful, for example, when bringing data in from
some type of external device which does not operate in a
synchronous manner. A user may define an external function which
will be called by CLIPS after every rule is fired to check for the
existence of new data.

1) The name associated with the user-defined run function. This
name is used by the function RemoveRunFunction.

2) A pointer to the user-defined function which is to be called after
every rule firing. This function must except an environment
pointer if the environment companion function is used (see
section 9.2).

83

CLIPS Reference Manual

3) The priority of the run item which determines the order in which
run items are called (higher priority items are called first). The
values -2000 to 2000 are reserved for CLIPS system defined run
items and should not be used for user defined run items.

Returns: Returns a zero value if the run item could not be added, otherwise a
non-zero value is returned.

Example
This following function checks to see if a key on the keyboard has been hit. If a key has been hit,

then the fact (stop-processing) is asserted into the fact-list.

void CheckKB()

if (CheckKeyboardStatus() == KB_HIT)
{ AssertString("stop-processing"); }
}

This function can now be added to the list of functions called after every rule firing by making
the following function call.

AddRunFunction("check-kb",checkKB,3000);

4.7.2 Agenda

void Agenda(logicalName,theModule)
char *logicalName;
void *theModule;

Purpose: Prints the list of rules currently on the agenda (the C equivalent of
the CLIPS agenda command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the agenda to be
listed. A NULL pointer indicates that the agendas of all modules
should be listed.

Returns: No meaningful return value.
4.7.3 ClearFocusStack

void ClearFocusStack();

Purpose: Removes all modules from the focus stack (the C equivalent of the
CLIPS clear-focus-stack command).

84 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: None.

Returns: No meaningful return value.

4.7.4 DeleteActivation

int DeleteActivation(activationPtr);
void *activationPtr;

Purpose: Removes an activation from the agenda.

Arguments: A generic pointer to an activation data structure. If the NULL
pointer is used, then all activations will be deleted.

Returns: An integer; zero (0) if the activation could not be deleted, otherwise
aone (1).

4.7.5 Focus

void Focus(defmodulePtr);
void *defmodulePtr;

Purpose: Sets the current focus (the C equivalent of the CLIPS focus
command).

Arguments: A generic pointer to a defmodule data structure.

Returns: No meaningful value.

4.7.6 GetActivationName

char *GetActivationName(activationPtr);
void *activationPtr;

Purpose: Returns the name of the defrule from which the activation was
generated.

Arguments: A generic pointer to an activation data structure.

Returns: A string containing a defrule name.

CLIPS Advanced Programming Guide 85

CLIPS Reference Manual

4.7.7 GetActivationPPForm

void GetActivationPPForm(buffer,bufferlLength,activationPtr);
char *buffer;

unsigned bufferLength;

void *activationPtr;

Purpose: Returns the pretty print representation of an agenda activation in the
caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to an activation data structure.

4.7.8 GetActivationSalience

int GetActivationSalience(activationPtr);
void *activationPtr;

Purpose: Returns the salience value associated with an activation. This
salience value may be different from the the salience value of the
defrule which generated the activation (due to dynamic salience).

Arguments: A generic pointer to an activation data structure.

Returns: The integer salience value of an activation.

4.7.9 GetAgendaChanged
int GetAgendaChanged();

Purpose: Determines if any changes to the agenda of rule activations have
occurred. If this function returns a non-zero integer, it is the user's
responsibility to call SetAgendaChanged(0) to reset the internal
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking rule activations.

Arguments: None.

Returns: 0 if no changes to the agenda have occurred, non-zero otherwise.

86 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.7.10 GetFocus
void *GetFocus();

Purpose: Returns the module associated with the current focus (the C
equivalent of the CLIPS get-focus function).

Arguments: None.

Returns: A generic pointer to a defmodule data structure (or NULL if the
focus stack is empty).

4.7.11 GetFocusStack

void GetFocusStack(&returnValue);
DATA_OBJECT returnValue;

Purpose: Returns the module names in the focus stack as a multifield value in
the returnValue DATA_OBJECT (the C equivalent of the CLIPS
get-focus-stack function).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defrule names from the list.

4.7.12 GetNextActivation

void *GetNextActivation(activationPtr);
void *activationPtr;

Purpose: Provides access to the list of activations on the agenda.

Arguments: A generic pointer to an activation data structure (or NULL to get
the first activation on the agenda).

Returns: A generic pointer to the first activation on the agenda if
activationPtr is NULL, otherwise a generic pointer to the activation
immediately following activationPtr on the agenda. If activationPtr
is the last activation on the agenda, then NULL is returned.

4.7.13 GetSalienceEvaluation

int GetSalienceEvaluation();

CLIPS Advanced Programming Guide 87

CLIPS Reference Manual

Purpose:

Arguments:

Returns:

4.7.14 GetStrategy

Returns the current salience evaluation behavior (the C equivalent
of the CLIPS get-salience-evaluation command).

None.

An integer (see SetSalienceEvaluation for the list of defined
constants).

int GetStrategy(Q);

Purpose:

Arguments:

Returns:

4.7.15 ListFocusStack

Returns the current conflict resolution strategy (the C equivalent of
the CLIPS get-strategy command).

None.

An integer (see SetStrategy for the list of defined strategy
constants).

void ListFocusStack(logicalName);

char *logicalName;

Purpose:

Arguments:

Returns:

4.7.16 PopFocus
void *PopFocus();

Purpose:

Arguments:

Returns:

88

Prints the current focus stack (the C equivalent of the CLIPS list-
focus-stack command).

The logical name to which the listing output is sent.

No meaningful return value.

Removes the current focus from the focus stack and returns the
module associated with that focus (the C equivalent of the CLIPS
pop-focus function).

None.

A generic pointer to a defmodule data structure.

Section 4 - Embedding CLIPS

4.7.17 RefreshAgenda

void RefreshAgenda(
void *theModule;

Purpose:

Arguments:

Returns:

CLIPS Reference Manual

theModule);

Recomputes the salience values for all activations on the agenda
and then reorders the agenda (the C equivalent of the CLIPS
refresh-agenda command).

A generic pointer to the module containing the agenda to be
refreshed. A NULL pointer indicates that the agendas of all

modules should be refreshed.

No meaningful return value.run

4.7.18 RemoveRunFunction

int RemoveRunFunction(runItemName);

char *runItemName;

Purpose:

Arguments:

Returns:

4.7.19 ReorderAgenda

Removes a named function from the list of functions to be called
after every rule firing.

The name associated with the user-defined run function. This is the
same name that was used when the run function was added with the
function AddRunFunction.

Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

void ReorderAgenda(theModule);

void *theModule;

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

Reorders the agenda based on the current conflict resolution
strategy and current activation saliences.

A generic pointer to the module containing the agenda to be
reordered. A NULL pointer indicates that the agendas of all

modules should be reordered.

No meaningful return value.

89

CLIPS Reference Manual

4.7.20 Run

long int RunCrunLimit);

long int runLimit;

Purpose:

Arguments:

Returns:

Allows rules to execute (the C equivalent of the CLIPS run
command).

An integer which defines how many rules should fire before
returning. If runLimit is a negative integer, rules will fire until the

agenda is empty.

Returns an integer value; the number of rules that were fired.

4.7.21 SetActivationSalience

int SetActivationSalience(activationPtr,newSalience);

Sets the salience value of an activation. The salience value of the
defrule which generated the activation is unchanged.

1) A generic pointer to an activation data structure.
2) The new salience value (which is not restricted to the -10000 to

+10000 range).

The old salience value of the activation.

void *activationPtr;
int newSalience;
Purpose:
Arguments:
Returns:
Other:

4.7.22 SetAgendaChanged

The function ReorderAgenda should be called after salience values
have been changed to update the agenda.

void SetAgendaChanged(changedFlag);

int changedFlag;

Purpose:

Arguments:

Sets the internal boolean flag which indicates when changes to the
agenda of rule activations have occurred. This function is normally
used to reset the flag to zero after GetAgendaChanged() returns
non-zero.

An integer indicating whether changes in the agenda have occurred
(non-zero) or not (0).

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: Nothing useful.

4.7.23 SetSalienceEvaluation

int SetSalienceEvaluation(value);
int value;
Purpose: Sets the salience evaluation behavior (the C equivalent of the

CLIPS set-salience-evaluation command).

Arguments: The new value for the behavior — one of the following defined
integer constants:

WHEN_DEFINED
WHEN_ACTIVATED
EVERY_CYCLE

Returns: Returns the old value for the behavior.
4.7.24 SetStrategy
int SetStrategy(value);
int value;
Purpose: Sets the conflict resolution strategy (the C equivalent of the CLIPS
set-strategy command).
Arguments: The new value for the behavior — one of the following defined
integer constants:
DEPTH_STRATEGY
BREADTH_STRATEGY
LEX_STRATEGY
MEA_STRATEGY
COMPLEXITY_STRATEGY
SIMPLICITY_STRATEGY
RANDOM_STRATEGY
Returns: Returns the old value for the strategy.
4.8 DEFGLOBAL FUNCTIONS

The following function calls are used for manipulating defglobals.

CLIPS Advanced Programming Guide 91

CLIPS Reference Manual

4.8.1 DefglobalModule

char *DefglobalModule(theDefglobal);
void *theDefglobal;

Purpose: Returns the module in which a defglobal is defined (the C
equivalent of the CLIPS defglobal-module command).

Arguments: A generic pointer to a defglobal.
Returns: A string containing the name of the module in which the defglobal
is defined.
4.8.2 FindDefglobal

void *FindDefglobal(globalName);
char *globalName;

Purpose: Returns a generic pointer to a named defglobal.

Arguments: The name of the defglobal to be found (e.g. x for 7#x*).

Returns: A generic pointer to the named defglobal if it exists, otherwise
NULL.

4.8.3 GetDefglobalList

void GetDefgloballist(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of defglobals in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defglobal-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defglobal names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

92 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.8.4 GetDefglobalName

char *GetDefglobalName(defglobalPtr);
void *defglobalPtr;

Purpose: Returns the name of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the name of the defglobal (e.g. x for 7¥x*).

4.8.5 GetDefglobalPPForm

char *GetDefglobalPPForm(defglobalPtr);
void *defglobalPtr;

Purpose: Returns the pretty print representation of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the pretty print representation of the defglobal

(or the NULL pointer if no pretty print representation exists).

4.8.6 GetDefglobalValue

int GetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA_OBJECT vPtr;

Purpose: Returns the value of a defglobal.

Arguments: 1) The name of the global variable to be retrieved (e.g. y for 7*y*).
2) A pointer to a DATA_OBJECT in which the value is stored (see
sections 3.2.3 and 3.3.4 for details on this data structure).

Returns: An integer; zero (0) if the defglobal was not found, otherwise a one
(1). The DATA_OBIJECT vPtr is assigned the current value of the
defglobal.

4.8.7 GetDefglobalValueForm

void GetDefglobalValueForm(buffer,bufferLength,defglobalPtr);
char *buffer;

unsigned bufferLength;

void *defglobalPtr;

CLIPS Advanced Programming Guide 93

CLIPS Reference Manual

Purpose: Returns a printed representation of a defglobal and its current value
in the caller's buffer. For example,

?*x* = §

Arguments: 1) A pointer to the caller’s character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a defglobal data structure.

4.8.8 GetDefglobalWatch

unsigned GetDefglobalWatch(defglobalPtr);
void *defglobalPtr;

Purpose: Indicates whether or not a particular defglobal is being watched.

Arguments: A generic pointer to a defglobal data structure.

Returns: An integer; one (1) if the defglobal is being watched, otherwise a
zero (0).

4.8.9 GetGlobalsChanged
int GetGlobalsChanged();

Purpose: Determines if any changes to global variables have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetGlobalsChanged(0) to reset the internal flag. Otherwise, this
function will continue to return non-zero even when no changes
have occurred. This function is primarily used to determine when to
update a display tracking global variables.

Arguments: None.
Returns: 0 if no changes to global variables have occurred, non-zero
otherwise.

4.8.10 GetNextDefglobal

void *GetNextDefglobal(defglobalPtr);
void *defglobalPtr;

94 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.8.11 GetResetGlobals

CLIPS Reference Manual
Provides access to the list of defglobals.

A generic pointer to a defglobal data structure (or NULL to get the
first defglobal).

A generic pointer to the first defglobal in the list of defglobals if
defglobalPtr is NULL, otherwise a generic pointer to the defglobal
immediately following defglobalPtr in the list of defglobals. If
defglobalPtr is the last defglobal in the list of defglobals, then
NULL is returned.

int GetResetGlobals();

Purpose:

Arguments:

Returns:

4.8.12 IsDefglobalDeletable

Returns the current value of the reset global variables behavior (the
C equivalent of the CLIPS getreset-globals command).

None.

An integer; FALSE (0) if globals are not reset and TRUE (1) if
globals are reset.

int IsDefglobalDeletable(defglobalPtr);

void *defglobalPtr;

Purpose:
Arguments:

Returns:

4.8.13 ListDefglobals

void ListDefglobals
char *logicalName;
void *theModule;

Indicates whether or not a particular defglobal can be deleted.

A generic pointer to a defglobal data structure.

An integer; zero (0) if the defglobal cannot be deleted, otherwise a

one (1).

(logicalName,theModule);

Purpose: Prints the list of defglobals (the C equivalent of the CLIPS
list-defglobals command).

CLIPS Advanced Programming Guide

95

CLIPS Reference Manual

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals to be
listed. A NULL pointer indicates that defglobals in all modules

should be listed.
Returns: No meaningful return value.
4.8.14 SetDefglobal Value
int SetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA_OBJECT vPtr;
Purpose: Sets the value of a defglobal.
Arguments: 1) The name of the global variable to be set (e.g. y for 7*y*).

2) A pointer to a DATA_OBJECT in which the new value is
contained (see sections 3.2.3 and 3.3.4 for details on this data

structure).
Returns: An integer; zero (0) if the defglobal was not found, otherwise a one
(D).
Other: This function can trigger garbage collection.

4.8.15 SetDefglobalWatch

void SetDefglobalWatch(newState,defglobalPtr);
unsigned newState;
void *defglobalPtr;

Purpose: Sets the globals watch item for a specific defglobal.

Arguments: The new globals watch state and a generic pointer to a defglobal
data structure.

4.8.16 SetGlobalsChanged

void SetGlobalsChanged(changedFlag);
int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to
global variables have occurred. This function is normally used to
reset the flag to zero after GetGlobalsChanged() returns non-zero.

96 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: An integer indicating whether changes in global variables have
occurred (non-zero) or not (0).

Returns: Nothing useful.
4.8.17 SetResetGlobals
int SetResetGlobals(value);
int value;
Purpose: Sets the reset-globals behavior (the C equivalent of the CLIPS

set-reset-globals command). When this behavior is enabled (by
default) global variables are reset to their original values when the
reset command is performed.

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.8.18 ShowDefglobals

void ShowDefglobals(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defglobals and their current values (the C
equivalent of the CLIPS show-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals to be
displayed. A NULL pointer indicates that defglobals in all
modules should be displayed.

Returns: No meaningful return value.
4.8.19 Undefglobal
int Undefglobal(defglobalPtr);

void *defglobalPtr;

Purpose: Removes a defglobal from CLIPS (the C equivalent of the CLIPS
undefglobal command).

CLIPS Advanced Programming Guide 97

CLIPS Reference Manual

Arguments: A generic pointer to a defglobal data structure. If the NULL pointer
is used, then all defglobals will be deleted.

Returns: An integer; zero (0) if the defglobal could not be deleted, otherwise
aone (1).
Other: This function can trigger garbage collection.

4.9 DEFFUNCTION FUNCTIONS

The following function calls are used for manipulating deffunctions.

4.9.1 DeffunctionModule

char *DeffunctionModule(theDeffunction);
void *theDeffunction;

Purpose: Returns the module in which a deffunction is defined (the C
equivalent of the CLIPS deffunction-module command).

Arguments: A generic pointer to a deffunction.

Returns: A string containing the name of the module in which the
deffunction is defined.

4.9.2 FindDeffunction

void *FindDeffunction(deffunctionName);
char *deffunctionName;

Purpose: Returns a generic pointer to a named deffunction.

Arguments: The name of the deffunction to be found.

Returns: A generic pointer to the named deffunction if it exists, otherwise
NULL.

4.9.3 GetDeffunctionList

void GetDeffunctionList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

98 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.9.4 GetDeffunctionName

char *GetDeffunctio

CLIPS Reference Manual

Returns the list of deffunctions in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deffunction-list function).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffunction names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

No meaningful return value.

nName(deffunctionPtr);

void *deffunctionPtr;

Purpose:
Arguments:

Returns:

4.9.5 GetDeffunctionPPFor

char *GetDeffunctio

Returns the name of a deffunction.
A generic pointer to a deffunction data structure.

A string containing the name of the deffunction.

m

nPPForm(deffunctionPtr);

void *deffunctionPtr;

Purpose:
Arguments:

Returns:

4.9.6 GetDeffunctionWatch

unsigned GetDeffunc

Returns the pretty print representation of a deffunction.
A generic pointer to a deffunction data structure.

A string containing the pretty print representation of the deffunction
(or the NULL pointer if no pretty print representation exists).

tionWatch(deffunctionPtr);

void *deffunctionPtr;

Purpose:

CLIPS Advanced Programming Guide

Indicates whether or not a particular deffunction is being watched.

CLIPS Reference Manual

Arguments: A generic pointer to a deffunction data structure.
Returns: An integer; one (1) if the deffunction is being watched, otherwise a
zero (0).

4.9.7 GetNextDeffunction

void *GetNextDeffunction(deffunctionPtr);
void *deffunctionPtr;

Purpose: Provides access to the list of deffunctions.

Arguments: A generic pointer to a deffunction data structure (or NULL to get
the first deffunction).

Returns: A generic pointer to the first deffunction in the list of deffunctions
if deffunctionPtr is NULL, otherwise a generic pointer to the
deffunction immediately following deffunctionPtr in the list of
deffunctions. If deffunctionPtr is the last deffunction in the list of
deffunctions, then NULL is returned.

4.9.8 IsDeffunctionDeletable

int IsDeffunctionDeletable(deffunctionPtr);
void *deffunctionPtr;
Purpose: Indicates whether or not a particular deffunction can be deleted.
Arguments: A generic pointer to a deffunction data structure.
Returns: An integer; zero (0) if the deffunction cannot be deleted, otherwise
aone (1).

4.9.9 ListDeffunctions

void ListDeffunctions(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of deffunction (the C equivalent of the CLIPS
list-deffunctions command).

Arguments: 1) The logical name to which the listing output is sent.

100 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) A generic pointer to the module containing the deffunctions to
be listed. A NULL pointer indicates that deffunctions in all
modules should be listed.

Returns: No meaningful return value.

4.9.10 SetDeffunctionWatch

void SetDeffunctionWatch(newState,deffunctionPtr);
unsigned newState;
void *deffunctionPtr;

Purpose: Sets the deffunctions watch item for a specific deffunction.

Arguments: The new deffunctions watch state and a generic pointer to a
deffunction data structure.

4.9.11 Undeffunction

int Undeffunction(deffunctionPtr);
void *deffunctionPtr;

Purpose: Removes a deffunction from CLIPS (the C equivalent of the CLIPS
undeffunction command).

Arguments: A generic pointer to the deffunction (NULL means to delete all
deffunctions).
Returns: An integer; zero (0) if the deffunction could not be deleted,

otherwise a one (1).

Other: This function can trigger garbage collection.

4.10 DEFGENERIC FUNCTIONS

The following function calls are used for manipulating generic functions.

4.10.1 DefgenericModule

char *DefgenericModule(theDefgeneric);
void *theDefgeneric;

Purpose: Returns the module in which a defgeneric is defined (the C
equivalent of the CLIPS defgeneric-module command).

CLIPS Advanced Programming Guide 101

CLIPS Reference Manual

Arguments:

Returns:

4.10.2 FindDefgeneric

A generic pointer to a defgeneric.

A string containing the name of the module in which the defgeneric
is defined.

void *FindDefgeneric(defgenericName);
char *defgenericName;

Purpose:
Arguments:

Returns:

4.10.3 GetDefgenericList

Returns a generic pointer to a named generic function.
The name of the generic to be found.

A generic pointer to the named generic function if it exists,
otherwise NULL.

void GetDefgenericlList(&returnValue,theModule);
DATA_OBJECT returnValue;

void *theModule;

Purpose:

Arguments:

Returns:

4.10.4 GetDefgenericName

Returns the list of defgenerics in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defgeneric-list function).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defgeneric names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al I modules.

No meaningful return value.

char *GetDefgenericName(defgenericPtr);
void *defgenericPtr;

Purpose:

102

Returns the name of a generic function.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: A generic pointer to a defgeneric data structure.

Returns: A string containing the name of the generic function.

4.10.5 GetDefgenericPPForm

char *GetDefgenericPPForm(defgenericPtr);
void *defgenericPtr;

Purpose: Returns the pretty print representation of a generic function.

Arguments: A generic pointer to a defgeneric data structure.

Returns: A string containing the pretty print representation of the generic
function (or the NULL pointer if no pretty print representation
exists).

4.10.6 GetDefgenericWatch

unsigned GetDefgenericWatch(defgenericPtr);
void *defgenericPtr;

Purpose: Indicates whether or not a particular defgeneric is being watched.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer; one (1) if the defgeneric is being watched, otherwise a
zero (0).

4.10.7 GetNextDefgeneric

void *GetNextDefgeneric(defgenericPtr);
void *defgenericPtr;

Purpose: Provides access to the list of generic functions.

Arguments: A generic pointer to a defgeneric data structure (or NULL to get the
first generic function).

Returns: A generic pointer to the first generic function in the list of generic

functions if defgenericPtr is NULL, otherwise a generic pointer to
the generic function immediately following defgenericPtr in the list

CLIPS Advanced Programming Guide 103

CLIPS Reference Manual

of generic functions. If defgenericPtr is the last generic function in
the list of generic functions, then NULL is returned.

4.10.8 IsDefgenericDeletable

int IsDefgenericDeletable(defgenericPtr);
void *defgenericPtr;

Purpose: Indicates whether or not a particular generic function and all its
methods can be deleted.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer: zero (0) if the generic function and all its methods
cannot be deleted, otherwise a one (1).

4.10.9 ListDefgenerics

void ListDefgenerics(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defgenerics (the C equivalent of the CLIPS
list-defgenerics command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defgenerics to be
listed. A NULL pointer indicates that defgenerics in all modules
should be listed.

Returns: No meaningful return value.

4.10.10 SetDefgenericWatch

void SetDefgenericWatch(newState,defgenericPtr);
unsigned newState;
void *defgenericPtr;

Purpose: Sets the defgenerics watch item for a specific defgeneric.

Arguments: The new generic-functions watch state and a generic pointer to a
defgeneric data structure.

104 Section 4 - Embedding CLIPS

4.10.11 Undefgeneric

int

CLIPS Reference Manual

Undefgeneric(defgenericPtr);

void *defgenericPtr;

Purpose:

Arguments:

Returns:

Other:

Removes a generic function and all its methods from CLIPS (the C
equivalent of the CLIPS undefgeneric command).

A generic pointer to the generic function (NULL means to delete all
generic functions).

An integer: zero (0) if the generic function and all its methods could
not be deleted, otherwise a one (1).

This function can trigger garbage collection.

4.11 DEFMETHOD FUNCTIONS

The following function calls are used for manipulating generic function methods.

4.11.1 GetDefmethodDescription

void GetDefmethodDescription(buffer,bufferlLength,

char *buf;
int buflLength;

defgenericPtr,methodIndex);

void *defgenericPtr;
unsigned methodIndex;

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

Stores a synopsis of the method parameter restrictions in the caller's
buffer.

1) A pointer to the caller's buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a defgeneric data structure.

4) The index of the generic function method.

No meaningful return value.

105

CLIPS Reference Manual

4.11.2 GetDefmethodList

void GetDefmethodList(defgenericPtr,&returnValue);
void *defgenericPtr;
DATA_OBJECT returnValue;

Purpose: Returns the list of currently defined defmethods for the specified
defgeneric. This function is the C equivalent of the CLIPS
get-defmethod-list command).

Arguments: 1) A generic pointer to the defgeneric (NULL for all defgenerics).
2) A pointer to the DATA_OBJECT in which the list of defmethod
constructs is to be stored.

Returns: A multifield value containing the list of defmethods constructs for
the specified defgeneric. The multifield functions described in
section 3.2.4 can be used to retrieve the defmethod names and
indices from the list. Note that the name and index for each
defmethod are stored as pairs in the return multifield value.

4.11.3 GetDefmethodPPForm

char *GetDefmethodPPForm(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Returns the pretty print representation of a generic function method.

Arguments: 1) A generic pointer to a defgeneric data structure.
2) The index of the generic function method.

Returns: A string containing the pretty print representation of the generic
function method (or the NULL pointer if no pretty print
representation exists).

4.11.4 GetDefmethodWatch

unsigned GetDefmethodWatch(defgenericPtr ,methodIndex);
void *defgenericPtr;
unsigned methodIndex

Purpose: Indicates whether or not a particular defmethod is being watched.

Arguments: A generic pointer to a defgeneric data structure and the index of the
generic function method.

106 Section 4 - Embedding CLIPS

Returns:

CLIPS Reference Manual

An integer; one (1) if the defmethod is being watched, otherwise a
zero (0).

4.11.5 GetMethodRestrictions

void GetMethodRestrictions(defgenericPtr,methodIndex,

&returnValue);

void *defgenericPtr;
unsigned methodIndex;

DATA_OBJECT

Purpose:

Arguments:

Returns:

4.11.6 GetNextDefmethod

returnValue;

Returns the restrictions for the specified method. This function is
the C equivalent of the CLIPS get-amethod-restrictions function.

1) A generic pointer to the defgeneric (NULL for all defgenerics).

2) The index of the generic function method.

3) A pointer to the DATA_OBJECT in which the method
restrictions are stored.

A multifield value containing the restrictions for the specified
method (the description of the get-method-restrictions function in
the Basic Programming Guide explains the meaning of the fields in
the multifield value). The multifield functions described in section
3.2.4 can be used to retrieve the method restrictions from the list.

unsigned GetNextDefmethod(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

Provides access to the list of methods for a particular generic
function.

1) A generic pointer to a defgeneric data structure.
2) The index of a generic function method (0 to get the first
method of the generic function).

The index of the first method in the list of methods for the generic
function if methodIndex is 0, otherwise the index of the method
immediately following methodIndex in the list of methods for the
generic function. If methodIndex is the last method in the list of
methods for the generic function, then O is returned.

107

CLIPS Reference Manual

4.11.7 IsDefmethodDeletable

int IsDefmethodDeletable(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Indicates whether or not a particular generic function method can be
deleted.
Arguments: 1) A generic pointer to a defgeneric data structure.

2) The index of the generic function method.

Returns: An integer: zero (0) if the method cannot be deleted, otherwise a
one (1).

4.11.8 ListDefmethods

void ListDefmethods(logicalName,defgenericPtr);
char *logicalName;
void *defgenericPtr;

Purpose: Prints the list of methods for a particular generic function (the C
equivalent of the CLIPS list-defmethods command).

Arguments: 1) The logical name of the output destination to which tosend the
method listing
2) A generic pointer to the generic function (NULL to list methods
for all generic functions).

Returns: No meaningful return value.

4.11.9 SetDefmethodWatch

void SetDefmethodWatch(newState,defgenericPtr,methodIndex);
unsigned newState;

void *defgenericPtr;

unsigned methodIndex

Purpose: Sets the methods watch item for a specific defmethod.

Arguments: The new methods watch state, a generic pointer to a defgeneric data
structure, and the index of the generic function method.

108 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.11.10 Undefmethod

int Undefmethod(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Removes a generic function method from CLIPS (the C equivalent
of the CLIPS undefmethod command).

Arguments: 1) A generic pointer to a defgeneric data structure (NULL to delete
all methods for all generic functions).

2) The index of the generic function method (0 to delete all

methods of the generic function - must be 0 if defgenericPtr is

NULL).
Returns: An integer: zero (0) if the method could not be deleted, otherwise a
one (1).
Other: This function can trigger garbage collection.

4.12 DEFCLASS FUNCTIONS

The following function calls are used for manipulating defclasses.

4.12.1 BrowseClasses

void BrowseClasses(logicalName,defclassPtr);
char *logicalName;
void *defclassPtr;

Purpose: Prints a “graph” of all classes which inherit from the specified class.
This function is the C equivalent of the CLIPS browse-classes
command.

Arguments: 1) The logical name of the output destination to which to send the

browse display.
2) A generic pointer to the class which is to be browsed.

Returns: No meaningful return value.

4.12.2 ClassAbstractP

int ClassAbstractP(defclassPtr);
void *defclassPtr;

CLIPS Advanced Programming Guide 109

CLIPS Reference Manual

Purpose: Determines if a class is concrete or abstract, i.e. if a class can have
direct instances or not. This function is the C equivalent of the
CLIPS class-abstractp command.

Arguments: A generic pointer to the class.
Returns: The integer 1 if the class is abstract, or O if the class is concrete.
4.12.3 ClassReactiveP

int ClassReactiveP(defclassPtr);
void *defclassPtr;

Purpose: Determines if a class is reactive or non-reactive, i.e. if objects of the
class can match object patterns. This function is the C equivalent of
the CLIPS class-reactivep command.

Arguments: A generic pointer to the class.
Returns: The integer 1 if the class is reactive, or O if the class is non-reactive.
4.12.4 ClassSlots

void C(lassSlots(defclassPtr,&result,inheritFlag);
void *defclassPtr;

DATA_OBJECT result;

int 1inheritFlag;

Purpose: Groups the names of slots of a class into a multifield data object.
This function is the C equivalent of the CLIPS class-slots
command.

Arguments: 1) A generic pointer to the class.

2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on getting the value stored
ina DATA_OBIJECT.

3) The integer 1 to include inherited slots or O to only include
explicitly defined slots.

Returns: No meaningful return value.

4.12.5 ClassSubclasses

void C(lassSubclasses(defclassPtr,&result,inheritFlag);

110 Section 4 - Embedding CLIPS

CLIPS Reference Manual

void *defclassPtr;
DATA_OBJECT result;
int 1inheritFlag;

Purpose: Groups the names of subclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
subclasses command.

Arguments: 1) A generic pointer to the class.
2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on setting the value stored
in a DATA_OBJECT.
3) The integer 1 to include inherited subclasses or O to only include
direct subclasses.

Returns: No meaningful return value.

4.12.6 ClassSuperclasses

void ClassSuperclasses(defclassPtr,&result,inheritFlag);

void *defclassPtr;
DATA_OBJECT result;
int 1inheritFlag;

Purpose: Groups the names of superclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
superclasses command.

Arguments: 1) A generic pointer to the class.
2) Pointer to the data object in which to store the multifield.
3) The integer 1 to include inherited superclasses or O to only
include direct superclasses.

Returns: No meaningful return value.

4.12.7 DefclassModule

char *DefclassModule(theDefclass);
void *theDefclass;

Purpose: Returns the module in which a defclass is defined (the C equivalent
of the CLIPS defclass-module command).

Arguments: A generic pointer to a defclass.

CLIPS Advanced Programming Guide 111

CLIPS Reference Manual

Returns: A string containing the name of the module in which the defclass is
defined.

4.12.8 DescribeClass

void DescribeClass(logicalName,defclassPtr);
char *logicalName;
void *defclassPtr;

Purpose: Prints a summary of the specified class including: abstract/concrete
behavior, slots and facets (direct and inherited) and recognized
message-handlers (direct and inherited). This function is the C
equivalent of the CLIPS describe-class command.

Arguments: 1) The logical name of the output destination to which to send the
description.
2) A generic pointer to the class which is to be described.

Returns: No meaningful return value.

4.12.9 FindDefclass

void *FindDefclass(defclassName);
char *defclassName;

Purpose: Returns a generic pointer to a named class.
Arguments: The name of the class to be found.
Returns: A generic pointer to the named class if it exists, otherwise NULL.

4.12.10 GetClassDefaultsMode
unsigned short GetClassDefaultsMode();

Purpose: Returns the current class defaults mode (the C equivalent of the
CLIPS get-class-defaults-mode command).

Arguments: None.
Returns: An integer (see SetClassDefaultsMode for the list of mode
constants).

112 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.12.11 GetDefclassList

void GetDefclassList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of defclasses in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defclass-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defclass names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.12.12 GetDefclassName

char *GetDefclassName(defclassPtr);
void *defclassPtr;

Purpose: Returns the name of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the name of the class.

4.12.13 GetDefclassPPForm

char *GetDefclassPPForm(defclassPtr);
void *defclassPtr;

Purpose: Returns the pretty print representation of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the pretty print representation of the class (or

the NULL pointer if no pretty print representation exists).

CLIPS Advanced Programming Guide 113

CLIPS Reference Manual

4.12.14 GetDefclassWatchInstances

unsigned GetDefclassWatchInstances(defclassPtr);
void *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
instance creation and deletions.

Arguments: A generic pointer to a defclass data structure.
Returns: An integer; one (1) if the defclass is being watched, otherwise a
zero (0).

4.12.15 GetDefclassWatchSlots

unsigned GetDefclassWatchSlots(defclassPtr);
void *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
slot changes.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; one (1) if the defclass is being watched for slot changes,
otherwise a zero (0).

4.12.16 GetNextDefclass

void *GetNextDefclass(defclassPtr);
void *defclassPtr;

Purpose: Provides access to the list of classes.

Arguments: A generic pointer to a defclass data structure (or NULL to get the
first class).

Returns: A generic pointer to the first class in the list of classes if defclassPtr
is NULL, otherwise a generic pointer to the class immediately
following defclassPtr in the list of classes. If defclassPtr is the last
class in the list of classes, then NULL is returned.

4.12.17 IsDefclassDeletable

int IsDefclassDeletable(defclassPtr);
void *defclassPtr;

114 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Indicates whether or not a particular class and all its subclasses can
be deleted.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class cannot be deleted, otherwise a one
(D).

4.12.18 ListDefclasses

void ListDefclasses(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defclasses (the C equivalent of the CLIPS
list-defclasses command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defclasses to be
listed. A NULL pointer indicates that defclasses in all modules
should be listed.

Returns: No meaningful return value.

4.12.19 SetClassDefaultsMode

unsigned short SetClassDefaultsMode(value);
unsigned short value;

Purpose: Sets the current class defaults mode (the C equivalent of the CLIPS
set-class-defaults-mode command).

Arguments: The new value for the mode — one of the following defined integer
constants:

CONVENIENCE_MODE
CONSERVATION_MODE

Returns: Returns the old value for the mode.

4.12.20 SetDefclassWatchInstances

void SetDefclassWatchInstances(newState,defclassPtr);

CLIPS Advanced Programming Guide 115

CLIPS Reference Manual

unsigned newState;
void *defclassPtr;

Purpose: Sets the instances watch item for a specific defclass.

Arguments: The new instances watch state and a generic pointer to a defclass
data structure.

4.12.21 SetDefclassWatchSlots

void SetDefclassWatchSlots(newState,defclassPtr);
unsigned newState;
void *defclassPtr;

Purpose: Sets the slots watch item for a specific defclass.
Arguments: The new slots watch state and a generic pointer to a defclass data
structure.

4.12.22 SlotAllowed Values

void SlotAllowedValues(defclassPtr,slotName,&result);
void *defclassPtr;

char *slotName;

DATA_OBJECT result;

Purpose: Groups the allowed-values for a slot into a multifield data object.
This function is the C equivalent of the CLIPS slot-allowed-values
function.

Arguments: 1) A generic pointer to the class.

2) Name of the slot.

3) Pointer to the data object in which to store the multifield. The
multifield functions described in section 3.2.4 can be used to
retrieve the allowed values from the list.

Returns: No meaningful return value.

4.12.23 SlotCardinality

void SlotCardinality(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

116 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Groups the cardinality information for a slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-
cardinality function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.24 SlotDirectAccessP

int SlotDirectAccessP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is directly accessible.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is directly accessible, otherwise 0.

4.12.25 SlotExistP

int SlotExistP(defclassPtr,slotName,inheritFlag);
void *defclassPtr,

char *slotName;

int 1inheritFlag;

Purpose: Determines if the specified slot exists.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: If inheritFlag is O and the slot is directly defined in the
specified class, then 1 is returned, otherwise 0 is returned. If
inheritFlag is 1 and the slot is defined either in the specified class or
an inherited class, then 1 is returned, otherwise O is returned.

4.12.26 SlotFacets

void SlotFacets(defclassPtr,slotName,result);
void *defclassPtr;
char *slotName;

CLIPS Advanced Programming Guide 117

CLIPS Reference Manual

DATA_OBJECT *result;

Purpose: Groups the facet values of a class slot into a multifield data object.

This function is the C equivalent of the CLIPS slot-facets
command. See section 10.8.1.11 in the Basic Programming Guide

for more detail.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.27 SlotInitableP

int SlotInitableP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is initable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is initable, otherwise 0.

4.12.28 SlotPublicP

int SlotPublicP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is public.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is public, otherwise 0.

4.12.29 SlotRange

void SlotRange(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

118 Section 4

- Embedding CLIPS

Purpose:

Arguments:

Returns:

4.12.30 SlotSources

CLIPS Reference Manual

Groups the numeric range information for a slot into a multifield
data object. This function is the C equivalent of the CLIPS
slot-range function.

1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

No meaningful return value.

void SlotSources(defclassPtr,slotName,result);

void *defclassPtr;
char *slotName;
*result;

DATA_OBJECT

Purpose:

Arguments:

Returns:

4.12.31 SlotTypes

Groups the names of the class sources of a slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-sources
command. See section 10.8.1.12 in the Basic Programming Guide
for more detail.

1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

No meaningful return value.

void SlotTypes(defclassPtr,slotName,result);

void *defclassPtr;

char *slotName;
*result;

DATA_OBJECT

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

Groups the names of the primitive data types allowed for a slot into
a multifield data object. This function is the C equivalent of the
CLIPS slot-types function.

1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

No meaningful return value.

119

CLIPS Reference Manual

4.12.32 SlotWritableP

int SlotWritableP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is writable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is writable, otherwise 0.

4.12.33 SubclassP

int SubclassP(defclassPtrl,defclassPtr2);
void *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a subclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a subclass of the second class.

4.12.34 SuperclassP

int SuperclassP(defclassPtrl,defclassPtr2);
void *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a superclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a superclass of the second class.
4.12.35 Undefclass
int Undefclass(defclassPtr);

void *defclassPtr;

Purpose: Removes a class and all its subclasses from CLIPS (the C
equivalent of the CLIPS undefclass command).

120 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class could not be deleted, otherwise a
one (1).

Other: This function can trigger garbage collection.

4.13 INSTANCE FUNCTIONS

The following function calls are used for manipulating instances.

4.13.1 BinaryLoadInstances

long BinarylLoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances from a binary file into the CLIPS data base
(the C equivalent of the CLIPS bload-instances command).

Arguments: A string representing the name of the binary file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

4.13.2 BinarySavelnstances

long BinarySavelInstances(fileName,saveCode,NULL,TRUE);
char *fileName;
int saveCode;

Purpose: Saves the instances in the system to the specified binary file (the C
equivalent of the CLIPS bsave-instances command).

Arguments: 1) A string representing the name of the binary file.
2) An integer flag indicating whether to save local (current module
only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.
3) Should always be NULL.
4) Should always be TRUE.

Returns: Returns the number of instances saved.

CLIPS Advanced Programming Guide 121

CLIPS Reference Manual

4.13.3 CreateRawlnstance

void *CreateRawInstance(defclassPtr,instanceName);

void *defclassPtr;
char *instanceName;

Purpose:

Arguments:

Returns:

WARNING:

Creates an empty instance with the specified name of the specified
class. No slot overrides or class default initializations are performed
for the instance.

1) A generic pointer to the class of the new instance.
2) The name of the new instance.

A generic pointer to the new instance, NULL on errors.

This function bypasses message-passing.

4.13.4 DecrementInstanceCount

void DecrementInstanceCount(instancePtr);

void *instancePtr;

Purpose:

Arguments:

Returns:

4.13.5 DeleteInstance

This function should only be called to reverse the effects of a
previous call to IncrementInstanceCount(). As long as an instance's
count is greater than zero, the memory allocated to it cannot be
released for other use.

A generic pointer to the instance.

No meaningful return value.

int DeleteInstance(instancePtr);

void *instancePtr;

Purpose:

Arguments:

Returns:

Other:

122

Deletes the specified instance(s).

A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Non-zero if successful, O otherwise.

This function can trigger garbage collection.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

WARNING: This function bypasses message-passing.

4.13.6 DirectGetSlot

void DirectGetSlot(instancePtr,slotName,result);
void *instancePtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Stores the value of the specified slot of the specified instance in the
caller's buffer (the C equivalent of the CLIPS dynamic-get
function).

Arguments: 1) A generic pointer to the instance.

2) The name of the slot.

3) The caller's buffer for the slot value. See sections 3.2.3 and 3.2.4
for information on getting the value stored in a
DATA_OBIJECT.

Returns: No meaningful return value.
WARNING: This function bypasses message-passing.
4.13.7 DirectPutSlot

int DirectPutSlot(instancePtr,slotName,newValue);

void *instancePtr;
char *slotName;
DATA_OBJECT *newValue;

Purpose: Stores a value in the specified slot of the specified instance (the C
equivalent of the CLIPS dynamic-put function).

Arguments: 1) A generic pointer to the instance.
2) The name of the slot.
3) The caller's buffer containing the new value (an error is
generated if this value is NULL). See sections 3.3.3 and 3.3.4
for information on setting the value stored in a
DATA_OBIJECT.

Returns: Returns an integer; if zero, an error occurred while setting the slot.
If non-zero, no errors occurred.

Other: This function can trigger garbage collection.

CLIPS Advanced Programming Guide 123

CLIPS Reference Manual

WARNING:

4.13.8 FindInstance

This function bypasses message-passing.

void *FindInstance(theModule,instanceName,searchImports);

void *theModule;
char *instanceName;

unsigned searchImports;

Purpose:

Arguments:

Returns:

4.13.9 GetInstanceClass

Returns the address of the specified instance.

1) A generic pointer to the module to be searched (NULL to search
the current module).

2) The name of the instance (should not include a module
specifier).

3) A boolean flag indicating whether imported modules should also
be searched: TRUE to search imported modules, otherwise
FALSE.

A generic pointer to the instance, NULL if the instance does not
exist.

void *GetInstanceClass(instancePtr);

void *instancePtr;

Purpose:
Arguments:

Returns:

4.13.10 GetInstanceName

Determines the class of an instance.
A generic pointer to an instance.

A generic pointer to the class of the instance.

char *GetInstanceName(instancePtr);

void *instancePtr;

Purpose:
Arguments:
Returns:

124

Determines the name of an instance.
A generic pointer to an instance.
The name of the instance.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.13.11 GetInstancePPForm

void GetInstancePPForm(buffer,bufferLength,instancePtr);

char *buffer;

unsigned bufferLength;

void *instancePtr;

Purpose:

Arguments:

Returns:

Returns the pretty print representation of an instance in the caller's
buffer.

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to an instance.

No meaningful return value. The instance pretty print form is stored
in the caller's buffer.

4.13.12 GetInstancesChanged

int GetInstancesChanged();

Purpose:

Arguments:

Returns:

4.13.13 GetNextInstance

Determines if any changes to instances of user-defined instances
have occurred, e.g. instance creations/deletions or slot value
changes. If this function returns a non-zero integer, it is the user's
responsibility to call SetInstancesChanged(0) to reset the internal
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking instances.

None.

0 if no changes to instances of user-defined classes have occurred,
non-zero otherwise.

void *GetNextInstance(instancePtr);

void *instancePtr;

Purpose:

Arguments:

Provides access to the list of instances.

A generic pointer to an instance (or NULL to get the first instance
in the list).

CLIPS Advanced Programming Guide 125

CLIPS Reference Manual

Returns:

A generic pointer to the first instance in the list of instances if
instancePtr is NULL, otherwise a pointer to the instance
immediately following instancePtr in the list. If instancePtr is the
last instance in the list, then NULL is returned.

4.13.14 GetNextInstanceInClass

void *GetNextInstanceInClass(defclassPtr,instancePtr);
void *defclassPtr,*instancePtr;

Purpose:

Arguments:

Returns:

Provides access to the list of instances for a particular class.

1) A generic pointer to a class.
2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

A generic pointer to the first instance in the list of instances for the
specified class if instancePtr is NULL, otherwise a pointer to the
instance immediately following instancePtr in the list. If
instancePtr is the last instance in the class, then NULL is returned.

4.13.15 GetNextInstanceInClassAndSubclasses

void *GetNextInstanceInClassAndSubclasses(defclassPtr,instancePtr,

iterationData);

void **defclassPtr,*instancePtr;
DATA_OBJECT *iterationData;

Purpose:

Arguments:

Returns:

126

Provides access to the list of instances for a particular class and its
subclasses.

1) A generic pointer to a generic pointer to a class.

2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

3) A pointer to a DATA_OBJECT in which instance iteration is
stored. No initialization of this argument is required and the
values stored in this argument are not intended for examination
by the calling function.

A generic pointer to the first instance in the list of instances for the

specified class and its subclasses if instancePtr is NULL, otherwise
a pointer to the instance immediately following instancePtr in the

Section 4 - Embedding CLIPS

CLIPS Reference Manual

list or the next instance in a subclass of the class. If instancePtr is
the last instance in the class and all its subclasses, then NULL is
returned.

As the subclasses of the specified class are iterated through to find
instances, the value stored in defclassPtr is updated to indicate the
class of the instance returned by this function.

Example

DATA_OBJECT iterate;
void *thelnstance;
void *the(Class;

theClass = FindDefclass("USER");

for (theInstance = GetNextInstanceInClassAndSubclasses(&the(Class,

NULL,&iterate);
theInstance != NULL;

theInstance = GetNextInstanceInClassAndSubclasses(&theClass,

thelnstance,&iterate))
{
PrintRouter(WDISPLAY,GetInstanceName(theInstance));
PrintRouter(WDISPLAY,"\n");

}

4.13.16 IncrementInstanceCount

void IncrementInstanceCount(instancePtr);
void *instancePtr;

Purpose: This function should be called for each external copy of an instance
address to let CLIPS know that such an outstanding external
reference exists. As long as an instance's count is greater than zero,
CLIPS will not release its memory because there may be
outstanding pointers to the instance. However, the instance can still
be functionally deleted, i.e. the instance will appear to no longer be
in the system. The instance address always can be safely passed to
instance access functions as long as the count for the instance is
greater than zero. These functions will recognize when an instance
has been functionally deleted.

Arguments: A generic pointer to the instance.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 127

CLIPS Reference Manual

Example

[Femmmmmm====*/
/* Incorrect */
/*===========*/

void InstanceReferencekExample()
{

void *myInstancePtr;

myInstancePtr = FindInstance(NULL,"my-instance",TRUE);

/* = */
/* Instance my-instance could be potentially */
/* deleted during the run. */
/* = */
Run(-1L);
/* = */
/* This next function call could dereference */
/* a dangling pointer and cause a crash. */
/* = */
DeleteInstance(myInstancePtr);
}
/* Correct */
/F¥=========%*/

void InstanceReferencekExample()
{

void *myInstancePtr;

myInstancePtr = FindInstance(NULL,"my-instance",TRUE);

/*= = = ===%*/
/* The instance 1is correctly marked so that a dangling */
/* pointer cannot be created during the run. *

/*= = = ===%*/

IncrementInstanceCount(myInstancePtr);
Run(-1L);
DecrementInstanceCount(myInstancePtr);

J*= = = —=*/
/* The instance can now be safely deleted using the pointer. */
/*= = = ——*/

DeleteInstance(myInstancePtr);

}

128 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.13.17 Instances

void Instances(logicalName,modulePtr,className,subclassFlag);
char *logicalName;

void *defmodulePtr;

char *className;

int subclassFlag;

Purpose: Prints the list of all direct instances of a specified class currently in
the system (the C equivalent of the CLIPS instances command).

Arguments: 1) The logical name to which output is sent.

2) A generic pointer to a defmodule data structure (NULL
indicates to list all instances of all classes in all modules—the
third and fourth arguments are ignored).

3) The name of the class for which to list instances (NULL
indicates to list all instances of all classes in the specified
module —the fourth argument is ignored).

4) A flag indicating whether or not to list recursively direct
instances of subclasses of the named class in the specified
module. 0 indicates no, and any other value indicates yes.

Returns: No meaningful return value.

4.13.18 LoadInstances

long LoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPS load-instances command).

Arguments: A string representing the name of the file.
Returns: Returns the number of instances loaded or -1 if the file could not be
accessed.

4.13.19 LoadInstancesFromString

long LoadInstancesFromString(inputString,maximumPosition);
char *inputString;
unsigned maximumPosition;

Purpose: Loads a set of instances into the CLIPS data base using a string as
the input source (in a manner similar to the CLIPS load-instances
command).

CLIPS Advanced Programming Guide 129

CLIPS Reference Manual

Arguments: 1) A string containing the instance definitions.
2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns: Returns the number of instances loaded or -1 if there were problems
using the string as an input source.

4.13.20 MakelInstance

void *MakeInstance(makeCommand);
char *makeCommand;

Purpose: Creates and initializes an instance of a user-defined class (the C
equivalent of the CLIPS make-instance function).

Arguments: A string containing a make-instance command in the format
below:

(<instance-name> of <class-name> <slot-override>*)
<slot-override> :== (<slot-name> <constant>*)

Returns: A generic pointer to the new instance, NULL on errors.
Other: This function can trigger garbage collection.
Example

MakeInstance("Chenry of boy (age 8))");

4.13.21 Restorelnstances

long RestoreInstances(fileName);
char *fileName;

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPS restore-instances command).

Arguments: A string representing the name of the file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

130 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.13.22 RestorelnstancesFromString

long RestoreInstancesFromString(inputString,maximumPosition);
char *inputString;
unsigned maximumPosition;

Purpose: Loads a set of instances into the CLIPS data base using a string as
the input source (in a manner similar to the CLIPS restore-
instances command).

Arguments: 1) A string containing the instance definitions.
2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns: Returns the number of instances loaded or -1 if there were problems
using the string as an input source.

4.13.23 Savelnstances

long Savelnstances(fileName,saveCode,NULL,TRUE);
char *fileName;
int saveCode;

Purpose: Saves the instances in the system to the specified file (the C
equivalent of the CLIPS save-instances command).

Arguments: 1) A string representing the name of the file.
2) An integer flag indicating whether to save local (current module
only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.
3) Should always be NULL.
4) Should always be TRUE.

Returns: Returns the number of instances saved.

4.13.24 Send

void Send(instanceBuffer,msg,msgArgs,result);
DATA_OBJECT *instanceBuffer, *result;
char *msg,*msgArgs;

Purpose: Message-passing from C Sends a message with the specified
arguments to the specified object and stores the result in the caller's
buffer (the C equivalent of the CLIPS send function).

CLIPS Advanced Programming Guide 131

CLIPS Reference Manual

Arguments: 1) A data value holding the object (instance, symbol, float, etc.)
which will receive the message.
2) The message.
3) A string containing any constant arguments separated by blanks
(this argument can be NULL).
4) Caller's buffer for storing the result of the message. See sections
3.2.3 and 3.2.4 for information on getting the value stored in a
DATA_OBIJECT.
Returns: No meaningful return value.
Other: This function can trigger garbage collection.
Example

void SendMessageExample()

{

DATA_OBJECT 1insdata, rtn;
void *myInstancePtr;

myInstancePtr = MakeInstance("(my-instance of MY-CLASS");
SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,myInstancePtr);

Send(&insdata, "my-msg","1 abc 3",&rtn);

4.13.25 SetInstancesChanged

void SetInstancesChanged(changedFlag);

int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to
instances of user-defined classes have occurred. This function is
normally used to reset the flag to zero after GetInstancesChanged()
returns non-zero.

Arguments: An integer indicating whether changes in instances of user-defined
classes have occurred (non-zero) or not (0).

Returns: Nothing useful.

4.13.26 Unmakelnstance

132

int UnmakeInstance(instancePtr);
void *instancePtr;

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: This function is equivalent to Deletelnstance except that it uses
message-passing instead of directly deleting the instance(s).

Arguments: A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Returns: Non-zero if successful, O otherwise.

Other: This function can trigger garbage collection.

4.13.27 ValidInstanceAddress

int ValidInstanceAddress(instancePtr);
void *instancePtr;

Purpose: Determines if an instance referenced by an address still exists. See
the description of IncrementInstanceCount.

Arguments: The address of the instance.

Returns: The integer 1 if the instance still exists, O otherwise.

4.14 DEFMESSAGE-HANDLER FUNCTIONS

The following function calls are used for manipulating defmessage-handlers.

4.14.1 FindDefmessageHandler

unsigned FindDefmessageHandler(defclassPtr,
handlerName,handlerType);

void *defclassPtr,

char *handlerName, *handlerType;

Purpose: Returns an index to the specified message-handler within the list of
handlers for a particular class.

Arguments: 1) A generic pointer to the class to which the handler is attached.
2) The name of the handler.
3) The type of the handler: around, before, primary or after.

Returns: An index to the specified handler if it exists, otherwise 0.

CLIPS Advanced Programming Guide 133

CLIPS Reference Manual

4.14.2 GetDefmessageHandlerList

void GetDefmessageHandlerlList(defclassPtr,&returnValue,

void *defclassPtr;

includeInheritedp);

DATA_OBJECT returnValue;
int 1includeInheritedp;

Purpose:

Arguments:

Returns:

Returns the list of currently defined defmessage-handlers for the
specified class. This function is the C equivalent of the CLIPS
get-defmessage-handler-list command).

1) A generic pointer to the class (NULL for all classes).

2) A pointer to the DATA_OBJECT in which the list of
defmessage-handler constructs is to be stored.

3) An integer flag indicating whether to list inherited handlers
(TRUE to list them or FALSE to not list them).

No meaningful value. The second argument to this function is set to
a multifield value containing the list of defmessage-handler
constructs for the specified class. The multifield functions described
in section 3.2.4 can be used to retrieve the defmessage-handler
class, name, and type from the list. Note that the class, name, and
type for each defmessage-handler are stored as triplets in the return
multifield value.

4.14.3 GetDefmessageHandlerName

char *GetDefmessageHandlerName(defclassPtr,handlerIndex);

void *defclassPtr;

unsignhed handlerIndex;

Purpose:

Arguments:

Returns:

Returns the name of a message-handler.

1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

A string containing the name of the message-handler.

4.14.4 GetDefmessageHandlerPPForm

char *GetDefmessageHandlerPPForm(defclassPtr,handlerIndex);

void *defclassPtr;

unsigned handlerIndex;

134

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Returns the pretty print representation of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the pretty print representation of the
message-handler (or the NULL pointer if no pretty print
representation exists).

4.14.5 GetDefmessageHandlerType

char *GetDefmessageHandlerType(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Returns the type (around, before, primary or after) of a
message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the type of the message-handler.

4.14.6 GetDefmessageHandler Watch

unsigned GetDefmessageHandlerWatch(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Indicates whether or not a particular defmessage-handler is being
watched.
Arguments: A generic pointer to a defclass data structure and the index of the

message-handler.

Returns: An integer; one (1) if the defmessage-handler is being watched,
otherwise a zero (0).

4.14.7 GetNextDefmessageHandler

unsigned GetNextDefmessageHandler(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

CLIPS Advanced Programming Guide 135

CLIPS Reference Manual

Purpose: Provides access to the list of message-handlers.

Arguments: 1) A generic pointer to a defclass data structure.
2) An index to a particular message-handler for the class (or O to
get the first message-handler).

Returns: An index to the first handler in the list of handlers if handlerIndex is
0, otherwise an index to the handler immediately following
handlerIndex in the list of handlers for the class. If handlerIndex is
the last handler in the list of handlers for the class, then O is
returned.

4.14.8 IsDefmessageHandlerDeletable

int IsDefmessageHandlerDeletable(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Indicates whether or not a particular message-handler can be
deleted.
Arguments: 1) A generic pointer to a defclass data structure.

2) The index of a message-handler.

Returns: An integer; zero (0) if the message-handler cannot be deleted,
otherwise a one (1).

4.14.9 ListDefmessageHandlers

void ListDefmessageHandlers(logicalName,defclassPtr,

includeInheritedp);
char *logicalName;
void *defclassPtr;
int includelnheritedp;
Purpose: Prints the list of message-handlers for the specified class. This

function is the C equivalent of the CLIPS
list-defmessage-handlers command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the class (NULL for all classes).
3) An integer flag indicating whether to list inherited handlers
(TRUE to list them or FALSE to not list them).

Returns: No meaningful return value.

136 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.14.10 PreviewSend

void PreviewSend(logicalName,defclassPtr,messageName);
char *logicalName;
void *defclassPtr;
char *messageName;

Purpose: Prints a list of all applicable message-handlers for a message sent to
an instance of a particular class (the C equivalent of the CLIPS
preview-send command). Output is sent to the logical name
wdisplay.

Arguments: 1) The logical name to which output is sent.
2) A generic pointer to the class.

3) The message name.

Returns: No meaningful return value.

4.14.11 SetDefmessageHandlerWatch

void SetDefmessageHandlerWatch(newState,defclassPtr,

handlerIndex);
int newState;
void *defclassPtr;
unsigned handlerIndex;
Purpose: Sets the message-handlers watch item for a specific defmessage-
handler.
Arguments: The new message-handlers watch state, a generic pointer to a

defclass data structure, and the index of the message-handler.

4.14.12 UndefmessageHandler

int UndefmessageHandler(defclassPtr,handlerIndex);
void *defclassPtr;
unsignhed handlerIndex;

Purpose: Removes a message-handler from CLIPS (similar but not
equivalent to the CLIPS undefmessage-handler command - see
WildDeleteHandler).

Arguments: 1) A generic pointer to a defclass data structure (NULL to delete

all message-handlers in all classes).

CLIPS Advanced Programming Guide 137

CLIPS Reference Manual

2) The index of the message-handler (0 to delete all
message-handlers in the class - must be 0 if defclassPtr is
NULL).

Returns: An integer; zero (0) if the message-handler could not be deleted,
otherwise a one (1).

Other: This function can trigger garbage collection.

4.15 DEFINSTANCES FUNCTIONS

The following function calls are used for manipulating definstances.

4.15.1 DefinstancesModule

char *DefinstancesModule(theDefinstances);
void *theDefinstances;

Purpose: Returns the module in which a definstances is defined (the C
equivalent of the CLIPS definstances-module command).

Arguments: A generic pointer to a definstances.

Returns: A string containing the name of the module in which the
definstances is defined.

4.15.2 FindDefinstances

void *FindDefinstances(definstancesName);
char *definstancesName;

Purpose: Returns a generic pointer to a named definstances.

Arguments: The name of the definstances to be found.

Returns: A generic pointer to the named definstances if it exists, otherwise
NULL.

4.15.3 GetDefinstancesList

void GetDefinstanceslList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

138 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Returns the list of definstances in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-definstances-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the definstances names
from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.15.4 GetDefinstancesName

char *GetDefinstancesName(definstancesPtr);
void *definstancesPtr;

Purpose: Returns the name of a definstances.
Arguments: A generic pointer to a definstances data structure.
Returns: A string containing the name of the definstances.

4.15.5 GetDefinstancesPPForm

char *GetDefinstancesPPForm(definstancesPtr);
void *definstancesPtr;

Purpose: Returns the pretty print representation of a definstances.

Arguments: A generic pointer to a definstances data structure.

Returns: A string containing the pretty print representation of the
definstances (or the NULL pointer if no pretty print representation
exists).

4.15.6 GetNextDefinstances

void *GetNextDefinstances(definstancesPtr);
void *definstancesPtr;

Purpose: Provides access to the list of definstances.

CLIPS Advanced Programming Guide 139

CLIPS Reference Manual

Arguments: A generic pointer to a definstances data structure (or NULL to get
the first definstances).

Returns: A generic pointer to the first definstances in the list of definstances
if definstancesPtr is NULL, otherwise a generic pointer to the
definstances immediately following definstancesPtr in the list of
definstances. If definstancesPtr is the last definstances in the list of
definstances, then NULL is returned.

4.15.7 IsDefinstancesDeletable

int IsDefinstancesDeletable(definstancesPtr);
void *definstancesPtr;

Purpose: Indicates whether or not a particular class definstances can be
deleted.

Arguments: A generic pointer to a definstances data structure.

Returns: An integer; zero (0) if the definstances cannot be deleted, otherwise
aone (1).

4.15.8 ListDefinstances

void ListDefinstances(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of definstances (the C equivalent of the CLIPS
list-definstances command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the definstances to
be listed. A NULL pointer indicates that definstances in all
modules should be listed.

Returns: No meaningful return value.
4.15.9 Undefinstances
int Undefinstances(definstancesPtr);

void *definstancesPtr;

140 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Removes a definstances from CLIPS (the C equivalent of the
CLIPS undefinstances command).

Arguments: A generic pointer to a definstances data structure.

Returns: An integer; zero (0) if the definstances could not be deleted,
otherwise a one (1).

Other: This function can trigger garbage collection.

4.16 DEFMODULE FUNCTIONS

The following function calls are used for manipulating defmodules.

4.16.1 FindDefmodule

void *FindDefmodule(defmoduleName);
char *defmoduleName;

Purpose: Returns a generic pointer to a named defmodule.

Arguments: The name of the defmodule to be found.

Returns: A generic pointer to the named defmodule if it exists, otherwise
NULL.

4.16.2 GetCurrentModule
void *GetCurrentModule();

Purpose: Returns the current module (the C equivalent of the CLIPS get-
current-module function).

Arguments: None.

Returns: A generic pointer to the generic defmodule data structure that is the
current module.

4.16.3 GetDefmoduleList

void GetDefmodulelList(&returnValue);
DATA_OBJECT returnValue;

CLIPS Advanced Programming Guide 141

CLIPS Reference Manual

Purpose: Returns the list of defmodules as a multifield value in the
returnValue DATA_OBJECT (the C equivalent of the CLIPS get-
defmodule-list function).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defmodule names from the list.

Returns: No meaningful return value.

4.16.4 GetDefmoduleName

char *GetDefmoduleName(defmodulePtr);
void *defmodulePtr;

Purpose: Returns the name of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the name of the defmodule.

4.16.5 GetDefmodulePPForm

char *GetDefmodulePPForm(defmodulePtr);
void *defmodulePtr;

Purpose: Returns the pretty print representation of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the pretty print representation of the defmodule

(or the NULL pointer if no pretty print representation exists).

4.16.6 GetNextDefmodule

void *GetNextDefmodule(defmodulePtr);
void *defmodulePtr;

Purpose: Provides access to the list of defmodules.
Arguments: A generic pointer to a defmodule data structure (or NULL to get the
first defmodule).

142 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A generic pointer to the first defmodule in the list of defmodules if
defmodulePtr 1s NULL, otherwise a generic pointer to the
defmodule immediately following defmodulePtr in the list of
defmodules. If defmodulePtr is the last defmodule in the list of
defmodules, then NULL is returned.

4.16.7 ListDefmodules

void ListDefmodules(logicalName);
char *logicalName;

Purpose: Prints the list of defmodules (the C equivalent of the CLIPS
list-defmodules command).

Arguments: 1) The logical name to which the listing output is sent.

Returns: No meaningful return value.

4.16.8 SetCurrentModule

void *SetCurrentModule(defmodulePtr);
void *defmodulePtr;

Purpose: Sets the current module to the specified module (the C equivalent of
the CLIPS set-current-module function).

Arguments: A generic pointer to a defmodule data structure.

Returns: A generic pointer to the previous current defmodule data structure.

4.17 EMBEDDED APPLICATION EXAMPLES

4.17.1 User-Defined Functions

This section lists the steps needed to define and use an embedded CLIPS application. The

example given is the same system used in section 3.4, now set up to run as an embedded
application.

1) Copy all of the CLIPS source code file to the user directory.

CLIPS Advanced Programming Guide 143

CLIPS Reference Manual

2) Define the user function (Triple Number), a new main routine, and UserFunctions in a new
file. These could go in separate files if desired. For this example, they will all be included in
a single file.

#include "clips.h"

main()
{
InitializeEnvironment();
Load("constructs.clp");
Reset();
Run(-1L)
}

void TripleNumber(
DATA_OBJECT_PTR returnValuePtr)

{
void *value;
long longValue;
double doubleValue;
/*= */
/* If 1illegal arguments are passed, return zero. */
/*= */
if (ArgCountCheck("triple",EXACTLY,1) == -1)
{
SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@L));
return;
}

if (! ArgTypeCheck("triple",1,INTEGER_OR_FLOAT,returnValuePtr))

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@QL));

return;
}
/* */
/* Triple the number. */
/* */
if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);
longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,AddLong(longValue));

}
else /* the type must be FLOAT */

{
value = GetpValue(returnValuePtr);

doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));

144 Section 4 - Embedding CLIPS

CLIPS Reference Manual

return;
}
void UserFunctions()
{

extern void TripleNumber();

DefineFunction2("triple",'u',PTIF TripleNumber, "TripleNumber",
llllnll);
}

void EnvUserFunctions(
void *theEnv))

{
}

3) Define constructs which use the new function in a file called constructs.clp (or any file; just
be sure the call to Load loads all necessary constructs prior to execution).

(deffacts 1init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))
(defrule get-new-value
(new-value ?num)
=>
(printout t crlf "Now equal to " ?num crlf))

4) Compile all CLIPS files, except main.c, along with all user files.
5) Link all object code files.

6) Execute new CLIPS executable.

4.17.2 Manipulating Objects and Calling CLIPS Functions

This section lists the steps needed to define and use an embedded CLIPS application. The
example illustrates how to call deffunctions and generic functions as well as manipulate objects
from C.

1) Copy all of the CLIPS source code file to the user directory.

2) Define a new main routine in a new file.

CLIPS Advanced Programming Guide 145

CLIPS Reference Manual

#include <stdio.h>
#include "clips.h"

main()
{
void *cl,*c2,*c3;
DATA_OBJECT 1insdata,result;
char numbuf[20];

InitializeEnvironment();

[*== ===*/
/* Load the classes, message-handlers, generic functions */
/* and generic functions necessary for handling complex */

/* numbers. */

Load("complex.clp");

4 P —— = ==%/
/* Create two complex numbers. Message-passing is used to */
/* create the first instance cl, but c2 is created and has */

/* its slots set directly. */
/* = ——%/

cl = MakelInstance("(cl of COMPLEX (real 1) (imag 10))");
c2 = CreateRawInstance(FindDefclass("COMPLEX"),"c2");

result.type = INTEGER;
result.value = AddLong(3L);
DirectPutSlot(c2,"real”,&result);

result.type = INTEGER;
result.value = AddLong(-7L);
DirectPutSlot(c2,"imag" ,&result);

A — e — e —————— ==%/
/* Call the function '+' which has been overloaded to handle */
/* complex numbers. The result of the complex addition 1is */
/* stored in a new instance of the COMPLEX class. */

£ T — e ——— e ———— e ==%*/

FunctionCall("+","[c1] [c2]",&result);
c3 = FindInstance(NULL,DOToString(result),TRUE);

/¥== ===%/
/* Print out a summary of the complex addition using the */
/* "print" and "magnitude" messages to get information */
/* about the three complex numbers. */

/*== ===*/

PrintRouter("stdout","The addition of\n\n");
SetType(insdata, INSTANCE_ADDRESS);

SetValue(insdata,cl);
Send(&insdata, "print" ,NULL,&result);

146 Section 4 - Embedding CLIPS

CLIPS Reference Manual

PrintRouter("stdout", "\nand\n\n");

SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,c2);
Send(&insdata, "print" NULL,&result);

PrintRouter("stdout"”, "\nis\n\n");

SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,c3);
Send(&insdata, "print" ,NULL,&result);

PrintRouter("stdout","\nand the resulting magnitude is\n\n");

SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,c3);

Send(&insdata, "magnitude" ,NULL,&result);
sprintf(numbuf,"%1f\n",DOToDouble(result));
PrintRouter("stdout",numbuf);

}

void UserFunctions()

i}

void EnvUserFunctions(
void *theEnv)

i}

3) Define constructs which use the new function in a file called complex.clp (or any file; just
be sure the call to Load loads all necessary constructs prior to execution).

(defclass COMPLEX (is-a USER)
(role concrete)

(slot real (create-accessor read-write))
(slot imag (create-accessor read-write)))

(defmethod + ((?a COMPLEX) (?b COMPLEX))
(make-instance of COMPLEX
(real (+ (send ?a get-real) (send ?b get-real)))
(imag (+ (send ?a get-imag) (send ?b get-imag)))))

(defmessage-handler COMPLEX magnitude ()
(sgrt (+ (** 7self:real 2) (** ?self:imag 2))))

4) Compile all CLIPS files, except main.c, along with all user files.
5) Link all object code files.

6) Execute new CLIPS executable.

CLIPS Advanced Programming Guide 147

CLIPS Reference Manual

Section S - Creating a CLIPS Run-time Program

5.1 COMPILING THE CONSTRUCTS

This section describes the procedure for creating a CLIPS run-time module. A run-time program
compiles all of the constructs (defrule, deffacts, deftemplate, etc.) into a single executable and
reduces the size of the executable image. A run-time program will not run any faster than a
program loaded using the load or bload commands. The constructs-to-c command used to
generate a run-time program creates files containing the C data structures that would
dynamically be allocated if the load or bload command was used. With the exception of some
initialization routines, the constructs-to-c command does not generate any executable code. The
primary benefits of creating a run-time program are: applications can be delivered as a single
executable file; loading constructs as part of an executable is faster than loading them from an
text or binary file; the CLIPS portion of the run-time program is smaller because the code needed
to parse constructs can be discarded; and less memory is required to represent your program’s
constructs since memory for them is statically rather than dynamically allocated.

Creating a run-time module can be achieved with the following steps:

1) Start CLIPS and load in all of the constructs that will constitute a runtime module. Call the
constructs-to-c command using the following syntax:

(constructs-toc <file-name> <id> [<max-elements>])

where <file-name> is a string or a symbol, <id> is an integer, and the optional argument
<max-elements> is also an integer. For example, if the construct file loaded was named
"expert.clp", the conversion command might be

(constructs-toc exp 1)

This command would store the converted constructs in several output files ("expl_1.c",
"expl_2.c", ..., "exp7_1.c") and use a module id of 1 for this collection of constructs. The
use of the module id will be discussed in greater detail later. Once the conversion is
complete, exit CLIPS. For large systems, this output may be very large (> 200K). It is
possible to limit the size of the generated files by using the <max-elements> argument. This
argument indicates the maximum number of structures which may be placed in a single
array stored in a file. Where possible, if this number is exceeded new files will be created to
store additional information. This feature is useful for compilers that may place a limitation
on the size of a file that may be compiled.

CLIPS Advanced Programming Guide 149

CLIPS Reference Manual

2)

3)

Note that the .c extension is added by CLIPS. When giving the file name prefix, users
should consider the maximum number of characters their system allows in a file name. For
example, under MS-DOS, only eight characters are allowed in the file name. For very large
systems, it is possible for CLIPS to add up to 5 characters to the file name prefix. Therefore,
for system which allow only 8 character file names, the prefix should be no more than 3
characters.

Constraint information associated with constructs is not saved to the C files generated by the
constructs-to-c command unless dynamic constraint checking is enabled (using the set-
dynamic-constraint-checking command).

The constructs-to«c command is not available in the standard CLIPS distribution
executable. Users wishing to create a run-time program must recompile CLIPS to include
this capability (see section 2.2 for information on tailoring CLIPS and the
CONSTRUCT_COMPILER setup flag).

Set the RUN_TIME setup flag in the setup.h header file to 1 and compile all of the c files
just generated.

Modify the main.c module for embedded operation. Unless the user has other specific uses,
the argc and argv arguments to the main function should be eliminated. The function
InitializeEnvironment should not be called. Also do not call the CommandLoop or
RerouteStdin functions which are normally called from the main function of a command
line version of CLIPS. Do not define any functions in the UserFunctions or
EnvUserFunctions functions. These functions are not called during initialization. All of the
function definitions have already been compiled in the 'C' constructs code. In order for your
run-time program to be loaded, a function must be called to initialize the constructs module.
This function is defined in the 'C' constructs code, and its name is dependent upon the id
used when translating the constructs to 'C' code. The name of the function is
InitCImage_<id> where <id> is the integer used as the construct module <id>. In the
example above, the function name would be InitCImage_1. The return value of this
function is a pointer to an environment (see section 9) which was created and initialized to
contain your run-time program. This initialization steps probably would be followed by any
user initialization, then by a reset and run. Finally, when you are finished with a run-time
module, you can call DestroyEnvironment to remove it. An example main.c file would be

#include <stdio.h>
#include "clips.h"

main()

150

{
void *theEnv;
extern void *InitCImage_1(Q);

theEnv = InitCImage_1Q);

Section 5 - Creating a CLIPS Run-time Program

CLIPS Reference Manual

U /* Any user Initialization */
[]

EnvReset(theEnv);
EnvRun(theEnv,-1);

° /* Any other code */

[]
DestroyEnvironment(theEnv);

ks
void UserFunctions()

/* UserFunctions 1is nhot called for a run-time version. */

}

void EnvUserFunctions(
void *theEnv)

{

/* EnvUserFunctions is not called for a run-time version. */

}

4) Recompile all of the CLIPS source code (the RUN_TIME flag should still be 1). This causes
several modifications in the CLIPS code. The run-time CLIPS module does not have the
capability to load new constructs. Do NOT change any other compiler flags! Because of the
time involved in recompiling CLIPS, it may be appropriate to recompile the run-time
version of CLIPS into a separate library from the full version of CLIPS.

5) Link all regular CLIPS modules together with any user-defined function modules and the 'C'
construct modules. Make sure that any user-defined functions have global scope. Do not
place the construct modules within a library for the purposes of linking (the regular CLIPS
modules, however, can be placed in a library). Some linkers (most notably the VAX VMS
linker) will not correctly resolve references to global data that is stored in a module
consisting only of global data.

6) The run-time module which includes user constructs is now ready to run.

Note that individual constructs may not be added or removed in a run-time environment.
Because of this, the load function is not available for use in run-time programs. The clear
command will also not remove any constructs (although it will clear facts and instances). Use
calls to the InitCImage_... functions to clear the environment and replace it with a new set of
constructs. In addition, the eval and build functions do not work in a runt{ime environment.

Since new constructs can’t be added, a run-time program can’t dynamically load a deffacts or
definstances construct. To dynamically load facts and/or instances in a run-time program, the
CLIPS load-facts and load-instances functions or the C LoadFacts and LoadInstances
functions should be used in place of deffacts and definstances constructs.

CLIPS Advanced Programming Guide 151

CLIPS Reference Manual

|| Important Note ||

In prior versions of CLIPS, it was possible to switch between different images by calling the
InitCImage function of the desired run-time program while execution was halted. This
mechanism is no longer available. Each call to separate InitCImage functions creates a unique
environment into which the run-time program is loaded. You can thus switch between various
runtime programs by using the environment API to specify which environment is the target of a
command. Also note that only the first call to a given InitCImage function will create an
environment containing the specified run-time program. Subsequent calls have no effect and a
value of NULL is returned by the function. Once the DestroyEnvironment function has been
called to remove an environment created by an InitCImage call, there is no way to reload the
run-time program.

152 Section 5 - Creating a CLIPS Run-time Program

CLIPS Reference Manual

Section 6 - Combining CLIPS with Languages Other Than C

CLIPS is developed in C and is most easily combined with user functions written in C. However,
other languages can be used for user-defined functions, and CLIPS even may be embedded
within a program written in another language. Users wishing to embed CLIPS with Ada should
consider using CLIPS/Ada (see the CLIPS/Ada_Advanced Programming Guide).

6.1 INTRODUCTION

This section will describe how to combine CLIPS with Ada or FORTRAN routines. Specific
code examples will be used to illustrate the concepts. The code used in these examples is valid
for VAX VMS systems which have the DEC C compiler, the DEC FORTRAN compiler, and the
DEC Ada compiler.

Three basic capabilities are needed for complete language mixing.
* A program in another language may be used as the main program.

e The C access functions to CLIPS can be called from the other language and have parameters
passed to them.

e Functions written in the other language can be called by CLIPS and have parameters passed
to them.

The integration of CLIPS (and C) with other languages requires an understanding of how each
language passes parameters between routines. In general, interface functions will be needed to
pass parameters from C to another language and from another language to C. The basic concepts
of mixed language parameter passing are the same regardless of the language or machine.
However, since every machine and operating system passes parameters differently, specific
details (and code) may differ from machine to machine. To improve usability and to minimize
the amount of recoding needed for each machine, interface packages can be developed which
allow user routines to call the standard CLIPS embedded command functions. The details of
passing information from external routines to CLIPS generally are handled inside of the interface
package. To pass parameters from CLIPS 7o an external routine, users will have to write inter-
face functions. Example interface packages for VMS FORTRAN and VMS Ada to selected
CLIPS functions are listed in appendix A. Section 6.9 will discuss how to construct an interface
package for other machines/compilers.

6.2 ADA AND FORTRAN INTERFACE PACKAGE FUNCTION LIST

The Ada and FORTRAN interface packages in appendix A provide many of the embedded
CLIPS commands discussed in section 4 of this manual. Each function in the interface package

CLIPS Advanced Programming Guide 153

CLIPS Reference Manual

prepends an x to the beginning of the corresponding C function name. A list of the C functions
and their FORTRAN or Ada corollaries which are provided in the interface packages listed in the
appendices appears below.

C Function Ada/FORTRAN Function
InitializeEnvironment xInitializeEnvironment
Reset xReset

Load xLoad

Run xRun

Facts xFacts

Watch xWatch

Unwatch xUnwatch
AssertString xAssertString

Retract xRetract

PrintRouter xPrintRouter
FindDefrule xFindDefrule
Undefrule xUndefrule

The arguments to these functions are the same as described in section 4, however, the
corresponding data type in either Ada or FORTRAN should be passed as a parameter. For
example, when using Ada, the function xLLoad should be passed an Ada string, not a C string (the
function xLoad will perform the conversion). FORTRAN function names defined above do not
follow ANSI 77 name standards. The VMS FORTRAN implementation described in this section
allows long function names.

6.3 EMBEDDED CLIPS - USING AN EXTERNAL MAIN PROGRAM

Any program may be used as the main program for embedded CLIPS applications. The main
program works essentially the same as in C.

Example Ada Main Program
with CLIPS; use CLIPS;

with TEXT_IO; use TEXT_IO;

procedure MAIN is

File_Name : string (1..50);
File_Open_Status : 1integer;
Rules_Fired : 1integer;

begin

xInitializeEnvironment;

File_Name (1..7) := "mab.clp";
-- Load rules

154 Section 6 - Combining CLIPS with Languages Other Than C

CLIPS Reference Manual

File_Open_Status := xLoad (File_Name);

if File_Open_Status = 1 then
XReset;
Rules_Fired := xRun (-1);
PUT (integer'IMAGE (Rules_Fired));
PUT_LINE (" Rules Fired");
else
PUT_LINE ("Unable to open rules file");
end if;

end MAIN;

Example FORTRAN Main Program
PROGRAM MAIN

C
INTEGER xLoad, FILE_OPEN_STATUS
CHARACTER *8 FILE_NAME
INTEGER xRun, RULES_FIRED
C
CALL xInitializeEnvironment
C

FILE_NAME = 'mab.clp'
FILE_OPEN_STATUS = xLoad (FILE_NAME)

IF (FILE_OPEN_STATUS .EQ. 1) THEN
CALL xReset
RULES_FIRED = xRun (-1)
WRITE (6,100) RULES_FIRED
ELSE
WRITE (6,101)
END IF

100 FORMAT (I8,' RULES FIRED')

101 FORMAT (' UNABLE TO OPEN RULES FILE")
STOP
END

SUBROUTINE UserFunctions
RETURN
END

6.4 ASSERTING FACTS INTO CLIPS

An external function may assert a fact into CLIPS by calling xAssertString. External functions
also may retract a fact previously asserted from outside of CLIPS. Note that the parameter passed
to xRetract must have been received from a call to xAssertString. Any other value will cause
unpredictable results.

CLIPS Advanced Programming Guide 155

CLIPS Reference Manual

Ada Example

Fact_Pointer : integer;
Not_Previously_Retracted : boolean;

Fact_Pointer := xAssertString ("dummy hello");
Not_Previously_Retracted := xRetract (Fact_Pointer);

FORTRAN Example
CHARACTER *20 FACT_STRING

INTEGER xAssertString, FACT_POINTER
INTEGER xRetract, NOT_PREVIOUSLY_RETRACTED

FACT_STRING = 'dummy hello’
FACT_POINTER = xAssertString (FACT_STRING)
NOT_PREVIOUSLY_RETRACTED = xRetract (FACT_POINTER)

6.5 CALLING A SUBROUTINE FROM CLIPS

Like any other user-defined functions, subroutines written in other languages may be called from
CLIPS. Depending on the language, the return value from the function call may or may not be
useful. For example, most FORTRAN implementations allow a return value from a function but
not from a subroutine. In these instances, the subroutine may be called for side effect only. As
with defined functions written in C, the user must create an entry in UserFunctions for the
subroutine (see section 3.1). An extern definition also must appear in the same file as the
UserFunctions function, defining the type of data that the function will return. If the function
does not return a value (Ada procedures or FORTRAN subroutines), it should be defined as
returning a void value. See section 3.1 for the allowed return values for user-defined functions.

Ada Example

l:procedure DISPLAY 1is

2:-- Standard Ada definitions and declarations
3:begin

4:--

5:-- Any kind of normal Ada code may be used
6:--

7i--

8:end DISPLAY;

FORTRAN Example

subroutine display

C
C Any kind of normal FORTRAN code may be used
C
C
return
end

156 Section 6 - Combining CLIPS with Languages Other Than C

CLIPS Reference Manual

UserFunctions entry for either example
extern void display(Q);

UserFunctions()

DefineFunction("display",'v',PTIF display,"display");
[]
[]
[]

/* Any other user-defined functions. */
[]

6.6 PASSING ARGUMENTS FROM CLIPS TO AN EXTERNAL FUNCTION

Arguments may be passed from CLIPS to an external function. CLIPS does not actually pass
arguments to the function; instead arguments must be pulled from internal CLIPS buffers by
using the functions described in section 3. Although the argument access functions could be
called directly from Ada or FORTRAN, it probably is easier to write an interface function in C.
CLIPS will call the C routine, which gathers the arguments and passes them in the proper
manner to the external subprogram.

In this situation, the user must ensure argument compatibility. In particular, string variables must
be converted from C arrays to FORTRAN or Ada string descriptors. The actual code used in the
interface routine for argument conversion will depend on the language. Examples are given
below for Ada and FORTRAN. Each example assumes the subroutine is called as follows:

(dummy 3.7 "An example string")

VMS Ada Example
Note the procedure definition in line 2 of the Ada routine. The numerical value is defined as an

IN OUT type and the string as an IN. Also note the compiler PRAGMA on line 4-5. PRAGMA
is DEC-Ada-specific, and a similar statement will be needed for other compilers. Following the
Ada routine is an example of a C interface function that calls the Ada subroutine. The C routine
must convert a C string into an Ada string descriptor using the MakeStringDsc (see section 6.7
for more on string conversion) function as shown in line 16 of the C routine. Note that the C
function passes the address of the numerical parameters to the Ada subprogram (line 16) and a
pointer to a descriptor for the string parameter. Note also that the UserFunctions definition
(lines 21-24) calls the dummy C routine, not the Ada program.

CLIPS Advanced Programming Guide 157

CLIPS Reference Manual

package DUMMY_PKG 1is
procedure DUMMY (Value : in out float ;
Name : 1in string);

(The following two 1lines are DEC Ada specific)

pragma EXPORT_PROCEDURE (DUMMY
PARAMETER_TYPES => (float,string));

end DUMMY_PKG;

-- Ada interface to CLIPS 1internal functions, see Appendix A
with CLIPS_INTERNALS; use CLIPS_INTERNALS;

PACKAGE Dummy_PKG IS
package body DUMMY_PKG is

procedure DUMMY (Value : in out float ;
Name : 1in string) 1is

begin
-- Value and Name may be used as normal Ada variables.
-- Name should not be modified by this procedure since
-- it has a direct pointer to a CLIPS C string.

end DUMMY;

end DUMMY_PKG;

158 Section 6 - Combining CLIPS with Languages Other Than C

CLIPS Reference Manual

C interface routine
#include <stdio.h>
#include "clips.h"

(The following two 1lines are VAX VMS specific)

#include <descrip.h>
struct dsc$descriptor_s *MakeStringDsc();

c_dummy()
{
double value;
char *name;

extern int dummy(Q);

value
name

RtnDouble(l);
RtnLexeme(2);

dummy(&value, MakeStringDsc(name));

return(0);
ks

UserFunctions()

{
DefineFunction("dummy", 'i', c_dummy, "c_dummy");

}

VMS FORTRAN Example
The VMS FORTRAN routine looks very similar to the Ada routine and, in fact, uses the same C
interface function listed for VMS Ada.

subroutine dummy(value, name)

C
REAL value
CHARACTER *8@ name
C
C value and name may now be used as normal FORTRAN variables
C
C
return
end

Note that the previous two examples performed the string conversion in C, not in the language
(Ada or FORTRAN) to which the string was being passed. On some machines, it may be easier
to convert the string in the language (Ada or FORTRAN) to which the string is being passed
rather than in the language (C) from which the string is being passed.

CLIPS Advanced Programming Guide 159

CLIPS Reference Manual

6.7 STRING CONVERSION

Much of the information that needs to be passed between CLIPS and another language typically
is stored as strings. The storage of string variables can differ radically between languages. Both
Ada and FORTRAN use a special (machine-dependent) string descriptor for string data types,
whereas C uses simple arrays. Because of this difference, special functions must be defined to
convert FORTRAN or Ada strings to C strings and back. The implementation of these functions
will be different for every language and computer. Typically, two functions are needed: one to
convert an Ada or a FORTRAN string to a C string, and one to convert a C string to an Ada or a
FORTRAN string descriptor. When converting C strings that have been provided by CLIPS to
strings suitable for other languages, do not modify the original C string. The following table
shows the string conversion routines provided in the interface packages in appendix A.

Environment Function to Convert Function to Convert
TO a C string FROM a C string
VMS Ada ADA_TO_C_STRING MakeStringDsc
VMS FORTRAN CONVERT_TO_C_STRING MakeStringDsc

The interface package does all of the converting from Ada or FORTRAN strings to C strings.
Users will have to convert from C when defining functions that are passed parameters from
CLIPS. Appendix A.3 has a listing for a function that will convert C strings to Ada or
FORTRAN character strings under VAX VMS.

6.8 COMPILING AND LINKING

After all routines are defined, they must be compiled and linked to execute. The manner of
compilation will depend on the machine on which the user is working. Two examples are given

below: one for VMS Ada and one for VMS FORTRAN.

6.8.1 VMS Ada Version

1) Copy all of the CLIPS include files and Ada interface package to the user directory.

$copy [{CLIPS master directory}]*.h [{user directory}]
$copy [{CLIPS master directory}]*.ada [{user directory}]

2) Create an object file from the file holding the UserFunctions definition.
$cc usrfuncs.c

3) Set up the Ada library and compile the Ada routine(s).

160 Section 6 - Combining CLIPS with Languages Other Than C

CLIPS Reference Manual

$acs create library [{user directory}.adalib]

$acs set library [{user directory}.adalib]

$ada {Ada files, including the interface packages}

4) Export the Ada object code from the DEC ACS library.

$acs export/main {Ada files, including the interface package}

5) Define the link libraries and link all of the files together. Note that, prior to linking, each
user must define the standard link libraries with the define Ink$library command. This
usually is done once in the login.com file during login. This definition may be different for

each VMS system.

$link/executable={exec name} {Ada files}, usrfuncs, [{CLIPS master directory}]
clipslib/library

This will create an embedded version of CLIPS using an Ada routine as the main program. To
create a program that uses the CLIPS interface but calls Ada subprograms, modify step 4 to read

$acs export {user's Ada packages}

5) Copy the CLIPS main.c file from the CLIPS master directory and remove the
UserFunctions definition from the CLIPS main.c routine. Then recompile

$cc main
6) Link with the following command:

$link/executable={exec name} {Ada files}main, usrfuncs, [{CLIPS master directory}]
clipslib/library

6.8.2 VMS FORTRAN Version

1) Copy all of the CLIPS include files to the user directory.

$copy [{CLIPS master directory}]*.h [{user directory}]

2) Create an object file from the file holding the UserFunctions definition.
$cc usrfuncs.c

3) Compile the FORTRAN routine(s).

CLIPS Advanced Programming Guide 161

CLIPS Reference Manual

$fortran {FORTRAN files}
4) Link all of the files together.

$link/executable={exec name} {FORTRAN files}, usrfuncs, [{CLIPS master directory}]
clipslib/library, clipsforlib/library

Note that one of the FORTRAN programs must be a main program.

6.8.3 CLIPS Library

All of the previous examples assume a CLIPS library has been created on the user's machine. A
CLIPS library can be made with any standard object code library program and should include all
of the CLIPS object code files except the main.c file. A library also may be made for the
interface packages.

6.9 BUILDING AN INTERFACE PACKAGE

To develop an interface package for CLIPS and FORTRAN, Ada, or any other language, the
primary need is the string conversion routines. Once these have been developed, the rest of the
interface package should look very similar to the examples shown in appendices A.1 to A.3. The
majority of the conversion work should be done in the interface package. Note that if a CLIPS
function takes no arguments then it is not necessary to write an interface function for it. For
example, the function ListFacts takes no arguments and has no return value and can therefore be
called directly (however, some languages, such as Ada, will require the function to be declared).
The Ada listing in appendix A.l use pragmas to map the C ListFacts function to the Ada
xListFacts function (for consistency with the other functions which are proceeded by an x). The
FORTRAN listings in appendix A include interface routines to function which do not require
them as well. The functions listed in appendix A also directly mimic the equivalent C functions.
That is, functions which return the integer O or 1 in C have the exact same value returned by their
Ada and FORTRAN counterparts (rather than a boolean or logical value). It would normally be
more useful to directly map these integers values into their boolean counterparts (TRUE or
FALSE) in the other language.

162 Section 6 - Combining CLIPS with Languages Other Than C

CLIPS Reference Manual

Section 7 - I/O Router System

The I/0 router system provided in CLIPS is quite flexible and will allow a wide variety of
interfaces to be developed and easily attached to CLIPS. The system is relatively easy to use and
is explained fully in sections 7.1 through 7.4. The CLIPS 1I/O functions for using the router
system are described in sections 7.5 and 7.6, and finally, in appendix B, some examples are
included which show how I/O routing could be used for simple interfaces.

7.1 INTRODUCTION

The problem that originally inspired the idea of I/O routing will be considered as an introduction
to I/O routing. Because CLIPS was designed with portability as a major goal, it was not possible
to build a sophisticated user interface that would support many of the features found in the
interfaces of commercial expert system building tools. A prototype was built of a semi-portable
interface for CLIPS using the CURSES screen management package. Many problems were
encountered during this effort involving both portability concerns and CLIPS internal features.
For example, every statement in the source code which used the C print function, printf, for
printing to the terminal had to be replaced by the CURSES function, wprintw, which would
print to a window on the terminal. In addition to changing function call names, different types of
I/O had to be directed to different windows. The tracing information was to be sent to one
window, the command prompt was to appear in another window, and output from printout
statements was to be sent to yet another window.

This prototype effort pointed out two major needs: First, the need for generic I/O functions that
would remain the same regardless of whether 1/0O was directed to a standard terminal interface or
to a more complex interface (such as windows); and second, the need to be able to specify
different sources and destinations for I/O. I/O routing was designed in CLIPS to handle these
needs. The concept of I/0 routing will be further explained in the following sections.

7.2 LOGICAL NAMES

One of the key concepts of I/O routing is the use of logical names. An analogy will be useful in
explaining this concept. Consider the Acme company which has two computers: computers X
and Y. The Acme company stores three data sets on these two computers: a personnel data set,
an accounting data set, and a documentation data set. One of the employees, Joe, wishes to
update the payroll information in the accounting data set. If the payroll information was located
in directory A on computer Y, Joe's command would be

update Y:[A]lpayroll

If the data were moved to directory B on computer X, Joe’s command would have to be changed
to

CLIPS Advanced Programming Guide 163

CLIPS Reference Manual

update X:[B]payroll

To update the payroll file, Joe must know its location. If the file is moved, Joe must be informed
of its new location to be able to update it. From Joe’s point of view, he does not care where the
file is located physically. He simply wants to be able to specify that he wants the information
from the accounting data set. He would rather use a command like

update accounting:payroll

By using logical names, the information about where the accounting files are located physically
can be hidden from Joe while still allowing him to access them. The locations of the files are
equated with logical names as shown here.

accounting = X:[A]
documentation = X:[(]
personnel = Y:[B]

Now, if the files are moved, Joe does not have to be informed of their relocation so long as the
logical names are updated. This is the power of using logical names. Joe does not have to be
aware of the physical location of the files to access them; he only needs to be aware that
accounting is the logical name for the location of the accounting data files. Logical names allow
reference to an object without having to understand the details of the implementation of the
reference.

In CLIPS, logical names are used to send I/O requests without having to know which device
and/or function is handling the request. Consider the message that is printed in CLIPS when rule
tracing is turned on and a rule has just fired. A typical message would be

FIRE 1 example-rule: f-0

The routine that requests this message be printed should not have to know where the message is
being sent. Different routines are required to print this message to a standard terminal, a window
interface, or a printer. The tracing routine should be able to send this message to a logical name
(for example, trace-out) and should not have to know if the device to which the message is
being sent is a terminal or a printer. The logical name trace-out allows tracing information to be
sent simply to “the place where tracing information is displayed.” In short, logical names allow
I/0O requests to be sent to specific locations without having to specify the details of how the I/0
request is to be handled.

Many functions in CLIPS make use of logical names. Both the printout and format functions
require a logical name as their first argument. The read function can take a logical name as an
optional argument. The open function causes the association of a logical name with a file, and
the close function removes this association.

164 Section 7 - I/O Router System

CLIPS Reference Manual

Several logical names are predefined by CLIPS and are used extensively throughout the system
code. These are

Name Description
stdin The default for all user inputs. The read and readline functions
read from stdin if t is specified as the logical name.

stdout The default for all user outputs. The format and printout functions
send output to stdout if t is specified as the logical name.

wprompt The CLIPS prompt is sent to this logical name.
wdialog All informational messages are sent to this logical name.
wdisplay Requests to display CLIPS information, such as facts or rules, are

sent to this logical name.

werror All error messages are sent to this logical name.
wwarning All warning messages are sent to this logical name.
wtrace All watch information is sent to this logical name (with the

exception of compilations which is sent to wdialog).

7.3 ROUTERS

The use of logical names has solved two problems. Logical names make it easy to create generic
I/O functions, and they allow the specification of different sources and destinations for I/O. The
use of logical names allows CLIPS to ignore the specifics of an I/O request. However, such
requests must still be specified at some level. I/O routers are provided to handle the specific
details of a request.

A router consists of three components. The first component is a function which can determine
whether the router can handle an I/O request for a given logical name. The router which
recognizes 1/O requests that are to be sent to the serial port may not recognize the same logical
names as that which recognizes I/O requests that are to be sent to the terminal. On the other
hand, two routers may recognize the same logical names. A router that keeps a log of a CLIPS
session (a dribble file) may recognize the same logical names as that which handles I/O requests
for the terminal.

CLIPS Advanced Programming Guide 165

CLIPS Reference Manual

The second component of a router is its priority. When CLIPS receives an I/O request, it begins
to question each router to discover whether it can handle an I/O request. Routers with high
priorities are questioned before routers with low priorities. Priorities are very important when
dealing with one or more routers that can each process the same I/O request. This is particularly
true when a router is going to redefine the standard user interface. The router associated with the
standard interface will handle the same 1/O requests as the new router; but, if the new router is
given a higher priority, the standard router will never receive any I/O requests. The new router
will "intercept" all of the I/O requests. Priorities will be discussed in more detail in the next
section.

The third component of a router consists of the functions which actually handle an I/O request.
These include functions for printing strings, getting a character from an input buffer, returning a
character to an input buffer, and a function to clean up (e.g., close files, remove windows) when
CLIPS is exited.

7.4 ROUTER PRIORITIES

Each I/O router has a priority. Priority determines which routers are queried first when
determining the router that will handle an I/O request. Routers with high priorities are queried
before routers with low priorities. Priorities are assigned as integer values (the higher the integer,
the higher the priority). Priorities are important because more than one router can handle an I/O
request for a single logical name, and they enable the user to define a custom interface for
CLIPS. For example, the user could build a custom router which handles all logical names
normally handled by the default router associated with the standard interface. The user adds the
custom router with a priority higher than the priority of the router for the standard interface. The
custom router will then intercept all I/O requests intended for the standard interface and specially
process those requests to the custom interface.

Once the router system sends an I/O request out to a router, it considers the request satisfied. If a
router is going to share an I/O request (i.e., process it) then allow other routers to process the
request also, that router must deactivate itself and call PrintRouter again. These types of routers
should use a priority of either 30 or 40. An example is given in appendix B.2.

Priority Router Description
50 Any router that uses "unique" logical names and does not want to
share I/0O with catch-all routers.

40 Any router that wants to grab standard 1/O and is willing to share it
with other routers. A dribble file is a good example of this type of
router. The dribble file router needs to grab all output that normally
would go to the terminal so it can be placed in the dribble file, but
this same output also needs to be sent to the router which displays
output on the terminal.

166 Section 7 - I/O Router System

30

20

10

CLIPS Reference Manual

Any router that uses "unique" logical names and is willing to share
I/O with catch-all routers.

Any router that wants to grab standard logical names and is not
willing to share them with other routers.

This priority is used by a router which redefines the default user
interface I/0 router. Only one router should use this priority.

This priority is used by the default router for handling standard and
file logical names. Other routers should not use this priority.

7.5 INTERNAL I/0O FUNCTIONS

The following functions are called internally by CLIPS. These functions search the list of active

routers and determine which

router should handle an I/O request. Some routers may wish to

deactivate themselves and call one of these functions to allow the next router to process an I/O

request. Prototypes for these
router.h header file.

7.5.1 ExitRouter

functions can be included by using the clips.h header file or the

void ExitRouter(exitCode);

int exitCode;

Purpose: The function ExitRouter calls the exit function associated with
each active router before exiting CLIPS.

Arguments: The exitCode argument corresponds to the value that normally
would be sent to the system exit function. Consult a C system
manual for more details on the meaning of this argument.

Returns: No meaningful return value.

Info: The function ExitRouter calls the system function exit with the
argument num after calling all exit functions associated with I/O
routers.

7.5.2 GetcRouter

int GetcRouter(logicalName);

char *logicalName;

CLIPS Advanced Programming Guide

167

CLIPS Reference Manual

The function GetcRouter queries all active routers until it finds a
router that recognizes the logical name associated with this I/O re-
quest to get a character. It then calls the get character function asso-
ciated with that router.

The logical name associated with the get character 1/0 request.
An integer; the ASCII code of the character.

This function should be used by any user-defined function in place
of getc to ensure that character input from the function can be
received from a custom interface. On machines which default to
unbuffered I/0, user code should be prepared to handle special
characters like the backspace.

PrintRouter(logicalName,str);

*str;

The function PrintRouter queries all active routers until it finds a
router that recognizes the logical name associated with this I/O re-
quest to print a string. It then calls the print function associated with
that router.

1) The logical name associated with the location at which the string
is to be printed.
2) The string that is to be printed.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

This function should be used by any user-defined function in place
of printf to ensure that output from the function can be sent to a
custom interface.

UngetcRouter(ch,logicalName);

Purpose:
Arguments:
Returns:
Info:
7.5.3 PrintRouter
int
char *logicalName,
Purpose:
Arguments:
Returns:
Info:
7.5.4 UngetcRouter
int
int ch;
char *logicalName;
168

Section 7 - I/O Router System

CLIPS Reference Manual

Purpose: The function UngetcRouter queries all active routers until it finds a
router that recognizes the logical name associated with this 1/0 re-
quest. It then calls the ungetc function associated with that router.

Arguments: 1) The ASCII code of the character to be returned.
2) The logical name associated with the ungetc character 1/0
request.
Returns: Returns ch if successful, otherwise -1.
Info: This function should be used by any user-defined function in place

of UngetcRouter to ensure that character input from the function
can be received from a custom interface. As with GetcRouter, user
code should be prepared to handle special characters like the
backspace on machines with unbuffered I/0.

7.6 ROUTER HANDLING FUNCTIONS

The following functions are used for creating, deleting, and handling I/O routers. They are
intended for use within user-defined functions. Prototypes for these functions can be included by
using the clips.h header file or the router.h header file.

7.6.1 ActivateRouter

int ActivateRouter(routerName);
char *routerName;

Purpose: The function ActivateRouter activates an existing I/O router. This
router will be queried to see if it can handle an I/O request. Newly
created routers do not have to be activated.

Arguments: The name of the I/O router to be activated.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 169

CLIPS Reference Manual

7.6.2 AddRouter

int

AddRouter(routerName,priority,queryFunction,printFunction,
getcFunction,ungetcFunction,exitFunction);

char *routerName;
int priority;
int (*queryFunction)(), (*printFunction)();
int (*getcFunction)(), (*ungetcFunction)(), (*exitFunction)();
int queryFunction(logicalName);
int printFunction(logicalName,str);
int getcFunction(logicalName);
int wungetcFunction(ch,logicalName);
int exitFunction(exitCode);
char *logicalName, *str;
int ch, exitCode;
Purpose: The function AddRouter adds a new I/O router to the list of I/O
routers.
Arguments: 1) The name of the I/O router. This name is used to reference the

170

router by the other I/0 router handling functions.

2) The priority of the I/O router. I/O routers are queried in
descending order of priorities.

3) A pointer to the query function associated with this router. This
query function should accept a single argument, a logical name,
and return either TRUE (1) or FALSE (0) depending upon
whether the router recognizes the logical name.

4) A pointer to the print function associated with this router. This
print function should accept two arguments: a logical name and
a character string. The return value of the print function is not
meaningful.

5) A pointer to the get character function associated with this
router. The get character function should accept a single ar-
gument, a logical name. The return value of the get character
function should be an integer which represents the character or
end of file (EOF) read from the source represented by logical
name.

6) A pointer to the ungetc character function associated with this
router. The ungetc character function accepts two arguments: a
logical name and a character. The return value of the unget
character function should be an integer which represents the
character which was passed to it as an argument if the ungetc is
successful or end of file (EOF) is the ungetc is not successful.

Section 7 - I/O Router System

CLIPS Reference Manual

7) A pointer to the exit function associated with this router. The
exit function should accept a single argument: the exit code
represented by num.

Returns: Returns a zero value if the router could not be added, otherwise a
non-zero value is returned.

Info: I/O routers are active upon being created. See the examples in ap-
pendix B for further information on how to use this function. Each
of the router functions must except an environment pointer if the
environment companion function is used (see section 9.2).

7.6.3 DeactivateRouter

int DeactivateRouter(routerName);
char *routerName;

Purpose: The function DeactivateRouter deactivates an existing I/O router.
This router will not be queried to see if it can handle an I/O request.
The syntax of the DeactivateRouter function is as follows.

Arguments: The name of the I/O router to be deactivated.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

7.6.4 DeleteRouter

int DeleteRouter(routerName);
char *routerName;

Purpose: The function DeleteRouter removes an existing I/O router from the
list of I/O routers.

Arguments: The name of the I/O router to be deleted.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 171

CLIPS Reference Manual

Section 8 - Memory Management

Efficient use of memory is a very important aspect of an expert system tool. Expert systems are
highly memory intensive and require comparatively large amounts of memory. To optimize both
storage and processing speed, CLIPS does much of its own memory management. Section 8.1
describes the basic memory management scheme used in CLIPS. Section 8.2 describes some
functions that may be used to monitor/ control memory usage.

8.1 HOW CLIPS USES MEMORY

The CLIPS internal data structures used to represent constructs and other data entities require the
allocation of dynamic memory to create and execute. Memory can also be released as these data
structures are no longer needed and are removed. All requests, either to allocate memory or to
free memory, are routed through the CLIPS memory management functions. These functions
request memory from the operating system and store previously used memory for reuse. By
providing its own memory management, CLIPS is able to reduce the number of malloc calls to
the operating system. This is very important since malloc calls are handled differently on each
machine, and some implementations of malloc are very inefficient.

When new memory is needed by any CLIPS function, CLIPS first checks its own data buffers
for a pointer to a free structure of the type requested. If one is found, the stored pointer is
returned. Otherwise, a call is made to malloc for the proper amount of data and a new pointer is
returned.

When a data structure is no longer needed, CLIPS saves the pointer to that memory against the
next request for a structure of that type. Memory actually is released to the operating system only
under limited circumstances. If a malloc call in a CLIPS function returns NULL,all free memory
internally stored by CLIPS is released to the operating system and the malloc call is tried again.
This usually happens during rule execution, and the message

*4% DEALLOCATING MEMORY *%**
% MEMORY DEALLOCATED ***

will be printed out to the wdialog stream. Users also may force memory to be released to the
operating system (see section 8.2).

CLIPS uses the generic C function malloc to request memory. Some machines provide
lowerlevel memory allocation/deallocation functions that are considerably faster than malloc.
Generic CLIPS memory allocation and deallocation functions are stored in the memalloc.c file
and are called genalloc and genfree. The call to malloc and free in these functions could be
replaced to improve performance on a specific machine.

CLIPS Advanced Programming Guide 173

CLIPS Reference Manual

Some machines have very inefficient memory management services. When running on the such
machines, CLIPS can be made to request very large chunks of memory and internally allocate
smaller chunks of memory from the larger chunks. This technique bypasses numerous calls to
malloc thus improving performance. This behavior can be enabled by setting the
BLOCK_MEMORY compiler option in the setup.h header file to 1 (see section 2.2). In general,
this option should not be enabled unless memory allocation routines are very slow since the
CLIPS block memory routines tend to trade increased overhead for memory requests for faster
speed.

Extensive effort has gone into making CLIPS garbage free. Theoretically, if an application can
fit into the available memory on a machine, CLIPS should be able to run it forever. Of course,
user-defined functions that use dynamic memory may affect this.

8.2 STANDARD MEMORY FUNCTIONS

CLIPS currently provides a few functions that can be used to monitor and control memory usage.
Prototypes for these functions can be included by using the clips.h header file or the memalloc.h
header file.

8.2.1 GetConserveMemory

int GetConserveMemory();
Purpose: Returns the current value of the conserve memory behavior.
Arguments: None.
Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if

the behavior is enabled.

8.2.2 MemRequests
long int MemRequests();

Purpose: The function MemRequests will return the number of times CLIPS
has requested memory from the operating system (the C equivalent
of the CLIPS mem-requests command).

Arguments: None.
Returns: A long integer representing the number of requests CLIPS has
made.

174 Section 8 — Memory Management

Other:

8.2.3 MemUsed
long int MemUsed();

Purpose:

Arguments:

Returns:

Other:

8.2.4 ReleaseMem

CLIPS Reference Manual

When used in conjunction with MemoryUsed, the user can
estimate the number of bytes CLIPS requests per call to malloc.

The function MemUsed will return the number of bytes CLIPS has
currently in use or has held for later use (the C equivalent of the
CLIPS mem-used command).

None.
A long integer representing the number of bytes requested.

The number of bytes used does not include any overhead for
memory management or data creation. It does include all free
memory being held by CLIPS for later use; therefore, it is not a
completely accurate measure of the amount of memory actually
used to store or process information. It is used primarily as a
minimum indication.

long int ReleaseMemChowMuch, printMessage);

long int howMuch;
int printMessage;

Purpose:

Arguments:

Returns:

CLIPS Advanced Programming Guide

The function ReleaseMem will cause all free memory, or a
specified amount, being held by CLIPS to be returned to the
operating system (the C equivalent of the CLIPS release-mem
command).

1) The number of bytes to be released. If this argument is -1, all
memory will be released; otherwise, the specified number of
bytes will be released.

2) A non-zero value causes a memory deallocation message to be
printed when this function is called.

A long integer representing the actual amount of memory freed to
the operating system.

175

CLIPS Reference Manual

Other:

8.2.5 SetConserveMemory

This function can be useful if a userdefined function requires
memory but cannot get any from a malloc call. However, it should
be used carefully. Excessive calls to ReleaseMemory will cause
CLIPS to call malloc more often, which can reduce the
performance of CLIPS.

int SetConserveMemory(value);
int value;
Purpose: The function SetConserveMemory allows a user to turn on or off

Arguments:

Returns:

Other:

the saving of pretty print information. Normally, this information is
saved. If constructs are never going to be pretty printed or saved, a
significant amount of memory can be saved by not keeping the
pretty print representation.

A boolean value: FALSE (0) to keep pretty print information for
newly loaded constructs and TRUE (1) to not keep this information
for newly loaded constructs.

Returns the old value for the behavior.

This function can save considerable memory space. It should be
turned on before loading any constructs. It can be turned on or off
as many times as desired. Constructs loaded while this is turned off
can be displayed only by reloading the construct, even if the option
is turned on subsequently.

8.2.6 SetOutOfMemoryFunction

int (*SetOutOfMemoryFunction(outOfMemoryFunction))();
int (*outOfMemoryFunction)();

int outOfMemoryFunction(theEnv,size);

void *theEnv;
unsigned long size;

Purpose:

Arguments:

176

Allows the user to specify a function to be called when CLIPS
cannot satisfy a memory request.

A pointer to the function to be called when CLIPS cannot satisfy a
memory request. This function is passed the size of the memory
request which could not be satisfied and a pointer to the
environment. It should return a non-zero value if CLIPS should not

Section 8 — Memory Management

Returns:

Other:

CLIPS Advanced Programming Guide

CLIPS Reference Manual

attempt to allocate the memory again (and exit because of lack of
available memory) or a zero value if CLIPS should attempt to
allocate memory again.

Returns a pointer to the previously called out of memory function.
Because the out of memory function can be called repeatedly for a

single memory request, any user-defined out of memory function
should return zero only if it has released memory.

177

CLIPS Reference Manual

Section 9 - Environments

CLIPS provides the ability to create multiple environments into which programs can be loaded.
Each environment maintains its own set of data structures and can be run independently of the
other environments.

9.1 CREATING, SELECTING, AND DESTROYING ENVIRONMENTS

If you have no need for multiple CLIPS programs loaded concurrently, there is no need to use
any of the environment functions described in this section. The call to InitializeEnvironment
automatically creates an environment for you and any subsequent calls to CLIPS functions will
be applied to that environment. Environments can also be created using the CreateEnvironment
function. The return value of the CreateEnvironment function is an anonymous (void *) pointer
to an environmentData data structure. Environments created using the CreateEnvironment
function are automatically initialized, so there is no need to call the InitializeEnvironment
function.

Once multiple environments have been created, it is necessary to specify to which environment
CLIPS function calls should be applied. This can be done in one of two ways. First, each of the
CLIPS embedded function calls has a companion function call of the same name prefaced with
“Env.” These companion function call accept an additional first argument: a generic pointer to an
environment data structure. The CLIPS embedded function call is applied to this argument.
CLIPS also supports the notion of a current environment. CLIPS embedded function calls that do
not specify an environment are applied to the current environment. Environments newly created
by the CreateEnvironment function call automatically become the current environment. The
current environment can also be set by using the SetCurrentEnvironment function call.
Environments also have an integer index associated with them that can be retrieved using the
GetEnvironmentIndex function. The current environment can also be set by passing this index
to the SetCurrentEnvironmentByIndex function.

Once you are done with an environment, it can be deleted with the DestroyEnvironment
function call. This will deallocate all memory associated with that environment. Alternately if
the ALLOW_ENVIRONMENT_GLOBALS compiler directive is enabled and you are ready
to terminate execution of your program, the DeallocateEnvironmentData function call can be
used to delete all existing environments and release the global memory used to keep track of
environments.

If you have added your own user-defined functions or extensions to CLIPS and you want these to
work properly with multiple environments, you need to make them environment aware.
Principally this involves using the environment companion functions in place of the standard
embedded function calls. In addition, any functions or extensions which use global data should
allocate this data for each environment by using the AllocateEnvironmentData function.

CLIPS Advanced Programming Guide 179

CLIPS Reference Manual

Shown following are two example main programs which make use of environments. The first
example uses the environment companion embedded function calls and the second example uses
the standard embedded function calls.

Environments Using Environment Embedded Calls
void main()
{
void *theEnvl, *theEnvZ;

theEnvl
theEnv2

CreateEnvironment();
CreateEnvironment();

EnvLoad(theEnvl, "programl.clp");
EnvLoad(theEnv2, "program2.clp");

EnvReset(theEnvl);
EnvReset(theEnv2);

EnvRun(theEnvl,-1);
EnvRun(theEnv2,-1);

DestroyEnvironment(theEnvl);
DestroyEnvironment(theEnv2);

}

Environments Using Standard Embedded Calls

void main()

{
void *theEnvl, *theEnvZ;

theEnvl
theEnv2

= CreateEnvironment();
= CreateEnvironment();
SetCurrentEnvironment(theEnvl);
Load("programl.clp");

Reset();

Run(-1);

SetCurrentEnvironment(theEnv2);
Load("program2.clp");

Reset();

Run(-1);

DestroyEnvironment(theEnvl);
DestroyEnvironment(theEnv2);

}

9.2 ENVIRONMENT COMPANION FUNCTIONS

With a few exceptions, all of the CLIPS embedded function calls described in sections 3 through
8 have a companion function of the same name preceded with “Env”. The first argument to these

180 Section 9 - Environments

CLIPS Reference Manual

companion functions is a generic pointer to an environment data structure and the remaining
arguments are the same as the standard embedded function. For example, the standard embedded
function call for Run is defined as follows:

long int RunCrunLimit);

long 1int runlLimit;
The environment companion function for Run is defined as follows:

long int EnvRun(theEnv,runlLimit);

void *theEnv;
long 1int runlLimit;

The pointers to functions passed in to the companion functions for the AddClearFunction,
AddResetFunction, AddPeriodicFunction, AddRunFunction, and AddRouter should have as
an additional first argument a generic pointer to an environment. For example, the standard
embedded function call for AddClearFunction is defined as follows:

int AddClearFunction(clearItemName,clearFunction,priority);
char *clearItemName;

void (*clearFunction)();

int priority;

void clearFunction();

The environment companion function for AddClearFunction is defined as follows:

int EnvAddClearFunction(theEnv,clearItemName,envClearFunction,priority);

void *theEnv;

char *clearItemName;
void (*clearFunction)();
int priority;

void envClearFunction(theEnv);

void *theEnv;
The InitializeEnvironment function does not have a companion function since this function is
unnecessary when you explicitly create environments using the CreateEnvironment function.

The following embedded functions all have environment companion functions, but it is not
necessary to use the companion functions in order to be environment aware:

GetType DOToString GetDOLength ValueToString
GetpType DOPToString GetpDOLength ValueToDouble
SetType DOToDouble GetDOBegin ValueToLong
SetpType DOPToDouble GetpDOBegin ValueTolnteger

CLIPS Advanced Programming Guide 181

CLIPS Reference Manual

GetValue DOToFloat GetDOEnd
GetpValue DOPToFloat GetpDOEnd
SetValue DOToLong SetDOBegin
SetpValue DOPToLong SetpDOBegin
GetMFType DOTolnteger SetDOEnd
GetMFValue DOPTolnteger SetpDOEnd
SetMFType DOToPointer

SetMFValue DOPToPointer

If the ENVIRONMENT_API_ONLY compiler directive is enabled, then the standard
embedded functions require their first argument to be a generic pointer to an environment. For
example, the function Run would be defined as follows:

long 1int Run(theEnv,runlLimit);

void *theEnv;
long 1int runlLimit;

This change only applies to the functions that are required in order to be environment aware. For
example, the GetType function would not require an additional argument if this compiler
directive were enabled. In addition, even with this compiler directive enabled, the “Env”
companion functions are still available. Use of this compiler directive is a good way to verify
that any code you have written is environment aware. It is also useful if, for whatever reason,
you prefer that the CLIPS embedded function calls do not all begin with the “Env” prefix. By
default, the ENVIRONMENT_API_ONLY compiler directive is disabled.

9.3 STANDARD ENVIRONMENT FUNCTIONS

The following functions are used to create and manipulate environments. Prototypes for these
functions can be included by using the clips.h header file or the envrnmnt.h header file.

9.3.1 AddEnvironmentCleanupFunction

int AddEnvironmentCleanupFunction(theEnv,theName,theFunction,priority);
struct environmentData *theEnv;

char *theName;

void (*)(void *theFunction);

int priority;

void theFunction(void *);

Purpose: Adds a cleanup function that is called when an environment is
destroyed.
Arguments: 1) A generic pointer to an environment data structure.

182 Section 9 - Environments

2)
3)

4)

CLIPS Reference Manual

The name associated with the environment cleanup function.

A pointer to the environment cleanup function which is to be
called when the environment is deleted. When called, the
function is passed a generic pointer to the environment being
destroyed.

The priority of the environment cleanup function which
determines the order in which cleanup functions are called
(higher priority items are called first). The values -2000 to 2000
are reserved for CLIPS system defined run items and should not
be used for user defined run items.

Returns: Boolean value. TRUE if the cleanup function was successfully
added, otherwise FALSE.

Other: Environment cleanup functions created using this function are
called after all the cleanup functions associated with environment
data created using AllocateEnvironmentData have been called.

9.3.2 AllocateEnvironmentData

int AllocateEnvironmentData(theEnv,position,size,cleanupFunction);

void *theEnv;
unsigned 1int position;
unsigned long size;

void (*)(void *cleanupFunction);

void cleanupFunction(void *);

Purpose: Allocates environment specific data of the specified size.
Arguments: 1) A generic pointer to an environment data structure.

2) The integer position index used to reference the data.

3) The amount of environment data that needs to be allocated.

4) A pointer to a cleanup function that is called when the

CLIPS Advanced Programming Guide

environment is destroyed. When called, the function is passed a
generic pointer to the environment being destroyed. CLIPS
automatically handles the allocation and deallocation of the base
environment data created by this function (the amount of data
specified by the size argument). You do not need to supply a
cleanup function for this purpose and can supply NULL as this
argument. If your base environment data contains pointers to
memory that you allocate, then you need to either supply a
cleanup function as this argument or add a cleanup function
using AddEnvironmentCleanupFunction.

183

CLIPS Reference Manual

Returns:

Other:

9.3.3 CreateEnvironment

Boolean value. TRUE if the environment data was successfully
allocated, otherwise FALSE.

Environment cleanup functions specified using this function are
called in ascending order of the position indices. If the deallocation
of your environment data has order dependencies, you can either
assign the position indices appropriately to achieve the proper order
or you can use the AddEnvironmentCleanupFunction function to
more explicitly specify the order in which your environment data
must be deallocated.

void *CreateEnvironment();

Purpose:
Arguments:

Returns:

Creates an environment and initializes it.
None.

A generic pointer to an environment data structure. NULL is
returned in the event of an error.

9.3.4 DeallocateEnvironmentData

int DeallocateEnvironmentData();

Purpose:

Arguments:

Returns:

Other:

9.3.5 DestroyEnvironment

Calls DestroyEnvironment to deallocate each existing environment
and then deallocates the remaining memory used to keep track of
environment allocations.

None.

Boolean value. TRUE if the function was able to successfully
deallocate the environment data, otherwise FALSE.

You should not call this function if any environments are currently
executing or you are not terminating your program. If the compiler

directive ALLOW_ENVIRONMENT_GLOBALS is FALSE, this
function does nothing.

int DestroyEnvironment(theEnv);

184

Section 9 - Environments

void *theEnv;

Purpose:

Arguments:

Returns:

Other:

CLIPS Reference Manual

Destroys the specified environment deallocating all memory
associated with it.

A generic pointer to an environment data structure.

Boolean value. TRUE if the environment was successfully
destroyed, otherwise FALSE.

You should not call this function to destroy an an environment that
is currently executing.

9.3.6 GetCurrentEnvironment

void *GetCurrentEnv

Purpose:
Arguments:

Returns:

ironment();

Returns a generic pointer to the current environment.
None.

A generic pointer to the current environment. NULL is returned if
there is no current environment.

9.3.7 GetEnvironmentByIndex

void *GetEnvironmen

tByIndex(envIndex);

unsigned long envIndex;

Purpose:

Arguments:

Returns:

9.3.8 GetEnvironmentData

void *GetEnvironmen
void *theEnv;

Returns a generic pointer to the environment associated with the
specified environment index.

An unsigned long integer; the environment index of the
environment to become the current environment.

A generic pointer to the environment associated with the specified

environment index. NULL is returned if there is no such
environment.

tData(theEnv,position);

unsigned 1int position;

CLIPS Advanced Programming Guide

185

CLIPS Reference Manual

Purpose: Returns a generic pointer to the environment data associated with
the specified position index.

Arguments: 1) A generic pointer to an environment data structure.
2) An unsigned integer; the position index of the desired
environment data.

Returns: A generic pointer; the environment data associated with the
specified position index.
9.3.9 GetEnvironmentIndex

unsigned long GetEnvironmentIndex(theEnv);
void *theEnv;

Purpose: Returns the unique integer index asssociated with the specified
environment.

Arguments: A generic pointer to an environment data structure.

Returns: An integer; the index associated with the specified environment.

9.3.10 SetCurrentEnvironment

void SetCurrentEnvironment(theEnv);
void *theEnv;

Purpose: Sets the current environment to the specified environment.
Arguments: A generic pointer to an environment data structure.
Returns: No meaningful return value.

9.3.11 SetCurrentEnvironmentByIndex

int SetCurrentEnvironmentByIndex(envIndex);
unsigned long envIndex;

Purpose: Sets the current environment to the environment associated with the
specified environment index.

Arguments: An unsigned long integer; the environment index of the
environment to become the current environment.

186 Section 9 - Environments

CLIPS Reference Manual

Returns: Boolean value. TRUE if the environment with the specified index
existed and was set as the current environment, otherwise FALSE.

9.4 ENVIRONMENT AWARE USER-DEFINED FUNCTIONS

In order to support all environment features fully, any user-defined functions that you create
must be environment aware. To be environment aware, user-defined function must satisfy the
following conditions:

1) The user-defined function must be registered using either EnvDefineFunction or
EnvDefineFunction2. Use of these functions inform CLIPS that your user-defined function
is environment aware and accepts a generic pointer to an environment as its first argument.

2) You should register your functions from within EnvUserFunctions instead of
UserFunctions. EnvUserFunctions is located in main.c and its single argument is a
generic pointer to an environment. This pointer should be passed into your calls to either
EnvDefineFunction or EnvDefineFunction2. The macro identifier PTIEF can be placed in
front of a function name to cast it as a pointer to a function which accepts a generic pointer
(the environment) as its single argument and returns an integer. This macro is analogous to
the PTIF macro with the addition of the generic pointer to theenvironment.

3) Your user-defined function should accept an additional argument as its first argument: a
generic pointer to an environment.

4) Your user-defined function should use the environment companion functions where required
to be environment aware.

5) If your user-defined functions (or other extensions) make use of global data that could differ
for each environment, you should allocate this data with the AllocateEnvironmentData
function (see section 9.5).

Example
The following example shows the necessary modifications to the code from section 3.4 in order

for the user-defined function to be environment aware.

void EnvUserFunctions(
void *theEnv)

EnvDefineFunction2(theEnv,"triple",'u',PTIEF TripleNumber, "TripleNumber",
llllnll);
}

void TripleNumber(
void *theEnv,
DATA_OBJECT_PTR returnValuePtr)

{
void *value;
long longValue;
double doubleValue;

CLIPS Advanced Programming Guide 187

CLIPS Reference Manual

/*= */
/* If illegal arguments are passed, return zero. */
/*= */
if (EnvArgCountCheck(theEnv,"triple" ,EXACTLY,1) == -1)
{

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,,EnvAddLong(theEnv,0L));

return;
3
if (! EnvArgTypeCheck(theEnv,"triple",1,INTEGER_OR_FLOAT,returnValuePtr))
{
SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,,EnvAddLong(theEnv,0L));
return;
}
/* */
/* Triple the number. */
/* */
if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);
longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,EnvAddLong(theEnv,longValue));

}
else /* the type must be FLOAT */

{
value = GetpValue(returnValuePtr);
doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,EnvAddDouble(theEnv,doubleValue));

}

return;

}

9.5 ALLOCATING ENVIRONMENT DATA

If your user-defined functions (or other extensions) make use of global data that could differ for
each environment, you should allocate this data with the AllocateEnvironmentData function. A
call to this function has four arguments. The first is a generic pointer to the environment to which
the data is being added.

The second argument is the integer position index. This is the value that you will pass in to the
GetEnvironmentData function to retrieve the allocated environment data. This position index
must be unique and if you attempt to use an index that has already been allocated, then the call to
AllocateEnvironmentData will fail returning FALSE. To avoid collisions with environment
positions predefined by CLIPS, use the macro constant USER_ENVIRONMENT_DATA as the
base index for any position indices you define. This constant will always be greater than the

188 Section 9 - Environments

CLIPS Reference Manual

largest predefined position index used by CLIPS. The maximum number of environment position
indices is specified by the macro constant MAXIMUM_ENVIRONMENT_POSITIONS found
in the envrnmnt.h header file. A call to AllocateEnvironmentData will fail if the position index
is greater than or equal this value. If this happens, you can simply increase the value of this
macro constant to provide more environment positions.

The third argument is an integer indicating the size of the environment data that needs to be
allocated. Typically you’ll define a struct containing the various values you want stored in the
environment data and use the sizeof operator to pass in the size of the struct to the function.
When an environment is created directly using CreateEnvironment or indirectly using
InitializeEnvironment, CLIPS automatically allocates memory of the size specified, initializes
the memory to contain all zeroes, and stores the memory in the environment position associated
with position index. When the environment is destroyed using DestroyEnvironment, CLIPS
automatically deallocates the memory originally allocated for each environment data position. If
the environment data contains pointers to memory that you allocate, it is your responsibility to
deallocate this memory. You can do this by either specifying a cleanup function as the fourth
argument in your AllocateEnvironmentData call or by adding a cleanup function using the
AddEnvironmentCleanupFunction function.

The fourth argument is a pointer to a cleanup function. If this argument is not NULL, then the
cleanup function associated with this environment position is called whenever an environment is
deallocated using the DestroyEnvironment function. The cleanup functions are called in
ascending order of the position indices.

As an example of allocating environment data, we’ll look at a get-index function that returns an
integer index starting with one and increasing by one each time it is called. For example:

CLIPS> (get-index)

1

CLIPS> (get-index)

2

CLIPS> (get-index)

3
CLIPS>

Each environment will need global data to store the current value of the index. The C source
code that implements the environment data first needs to specify the position index and specify a
data structure for storing the data:

#define INDEX_DATA USER_ENVIRONMENT_DATA + @
struct indexData

{long index;

1
#define IndexData(theEnv) \

CLIPS Advanced Programming Guide 189

CLIPS Reference Manual

((struct indexData *) GetEnvironmentData(theEnv,INDEX_DATA))

First, the position index GET_INDEX_DATA is defined as USER_ENVIRONMENT_DATA
with an offset of zero. If you were to define additional environment data, the offset would be
increased each time by one to get to the next available position. Next, the indexData struct is
defined. This struct contains a single member, index, which will use to store the next value
returned by the get-index function. Finally, the IndexData macro is defined which merely
provides a convenient mechanism for access to the environment data.

The next step in the C source code is to add the initialization code to the EnvUserFunctions
function:

void EnvUserFunctions(
void *theEnv)

{
if (! AllocateEnvironmentData(theEnv,INDEX_DATA,

sizeof(struct indexData),NULL))
{
printf("Error allocating environment data for INDEX_DATA\n");
exit(EXIT_FAILURE);
}

IndexData(theEnv)->index = 1;

EnvDefineFunction2(theEnv, "get-index",'1' ,PTIEF GetIndex, "GetIndex",
"00");
}
First, the call to AllocateEnvironmentData is made. If this fails, then an error message is
printed and a call to exit is made to terminate the program. Otherwise, the index member of the
environment data is initialized to one. If a starting value of zero was desired, it would not be
necessary to perform any initialization since the value of index is automatically initialized to zero
when the environment data is initialized. Finally, EnvDefineFunction2 is called to register the
get-index function.

The last piece of the C source code is the GetIndex C function which implements the get-index
function:

long GetIndex(
void *theEnv)

{
if (EnvArgCountCheck(theEnv,"get-index" ,EXACTLY,0) == -1)
{ return(@®; }

return(IndexData(theEnv)->index++);

}

This function is fairly straightforward. A generic pointer to the current environment is passed to
the function since it was registered using EnvDefineFunction2. First a check for the correct

190 Section 9 - Environments

CLIPS Reference Manual

number of arguments is made and then a call to the IndexData macro is made to retrieve the
index member of struct which is the return value. Use of the ++ operator increments the current
value of the index member before the function returns.

9.6 ENVIRONMENT GLOBALS

The only global variables in the C source code for CLIPS are used to keep track of the current
environment and the environment indices. If it is desired to remove these global variables, the
ALLOW_ENVIRONMENT_GLOBALS compiler directive can be disabled. If disabled, you
can no longer use the following functions: GetCurrentEnvironment,
GetEnvironmentByIndex, GetEnvironmentIndex, SetCurrentEnvironment, and
SetCurrentEnvironmentByIndex. In addition, if disabled the ENVIRONMENT_API_ONLY
compiler directive is enabled and the EMACS_EDITOR compiler directive is disabled.

9.7 OTHER CONSIDERATIONS

The mechanism for loading run-time program has changed with the introduction of
environments. See section 5 for more details.

CLIPS Advanced Programming Guide 191

CLIPS Reference Manual

Appendix A - Language Integration Listings

This appendix includes listings for various language interface packages described in section 6.
The portability of these routines varies. Most of the code listed in the interface packages defined
in sections A.1 and A.2 should be fairly portable. However, the string conversion routine in
section A.3 is not as portable. For example, the Ada function Convert_to_C_String is probably
portable to any Ada machine, yet the C function MakeStringDsc listed here is very specific to
the DEC VMS. These functions should be typed in exactly as shown below.

A.1 ADA INTERFACE PACKAGE FOR CLIPS

The following listings are an Ada package specification and body for some of the CLIPS
functions used in embedded CLIPS systems. The code is specific to the DEC Ada compiler
because of the PRAGMA IMPORT_PROCEDURE. Other Ada compilers may provide a similar
capability, and this package specification could be modified.

CLIPS Package Specification

package CLIPS 1is

-- Initializes the CLIPS environment upon program startup.

procedure xInitializeEnvironment;

-- Resets the CLIPS environment.

procedure xReset;
-- Loads a set of constructs into the CLIPS database. If there are syntactic
-- error in the constructs, xLoad will still attempt to read the
-- entire file, and error notices will be sent to werror.
-- Returns: an 1integer, zero if an error occurs.

function xLoad (File_Name : 1in string) return integer;
-- Allows Run_Limit rules to fire (execute).
-- -1 dallows rules to fire until the agenda is empty.
-- Returns: Number of rules that were fired.

function xRun (Run_Limit : in integer := -1) return 1integer;

-- Lists the facts in the fact-list.

procedure xFacts (Logical_Name : in string;
Module_Ptr : in integer;
First : in integer;
Last : in integer;
Max : in integer);

-- Turns the watch facilities of CLIPS on.

CLIPS Advanced Programming Guide 193

CLIPS Reference Manual

-- to print a string.
with that router.

function xWatch (Watch_Item : in string) return integer;

Turns the watch facilities of CLIPS off.

function xUnwatch (Watch_Item : in string) return integer;

Asserts a fact into the CLIPS fact-list. The function version
returns the Fact_Pointer required by xRetractFact.

function xAssertString (Pattern : in string) return integer;

Causes a fact asserted by the ASSERT_FACT function to be retracted.

Returns:

false if fact has already been retracted, else true.

Input of any value not returned by ASSERT_FACT will
cause CLIPS to abort.

function xRetract (Fact_Pointer : 1in 1integer) return integer;

Queries all active routers until it finds a router that
recognizes the logical name associated with this I/0 request

It then calls the print function associated

function xPrintRouter (Log_Name : in string ;

Str : in string) return integer;

Removes a rule from CLIPS.

-- Returns: false if rule not found, else true.
function xUndefrule (Rule_Name : in string) return integer;
private
pragma INTERFACE (C, xInitializeEnvironment);
pragma IMPORT_PROCEDURE (INTERNAL => xInitializeEnvironment,
EXTERNAL => InitializeEnvironment);
pragma INTERFACE (C, xReset);

194

pragma

IMPORT_PROCEDURE (INTERNAL => xReset,

EXTERNAL => Reset);

function clLoad (File_Name : 1in string) return integer;

pragma INTERFACE (C,

clLoad);

pragma IMPORT_FUNCTION (INTERNAL => cload,

pragma INTERFACE (C,

EXTERNAL => Load,
MECHANISM => REFERENCE);

xRun);

pragma IMPORT_FUNCTION (INTERNAL => xRun,

EXTERNAL => Run,
MECHANISM => VALUE);

procedure cFacts(Logical_Name : 1in string;

Module_Ptr : in integer;
First : in integer;
Last : in integer;

Appendix A - Language Integration Listings

CLIPS Reference Manual

Max : in integer);
pragma INTERFACE (C, cFacts);
pragma IMPORT_PROCEDURE (INTERNAL => cFacts,
EXTERNAL => Facts,
MECHANISM => (REFERENCE, VALUE,
VALUE, VALUE, VALUE));

function cWatch (Item : in string) return integer;

pragma INTERFACE (C, cWatch);

pragma IMPORT_FUNCTION (INTERNAL => cWatch,
EXTERNAL => Watch,
MECHANISM => REFERENCE);

function cUnwatch (Item : in string) return integer;

pragma INTERFACE (C, cUnwatch);

pragma IMPORT_FUNCTION (INTERNAL => cUnwatch,
EXTERNAL => Unwatch,
MECHANISM => REFERENCE);

function cAssertString (Pattern : 1in string) return integer;
pragma INTERFACE (C, cAssertString);
pragma IMPORT_FUNCTION (INTERNAL => cAssertString,

EXTERNAL => AssertString,

MECHANISM => REFERENCE);

function cRetract (Fact_Pointer : 1in 1integer) return integer;
pragma INTERFACE (C, cRetract);
pragma IMPORT_FUNCTION (INTERNAL => cRetract,

EXTERNAL => Retract,

MECHANISM => VALUE);

function cPrintRouter (Log_Name : 1in string ;
Str : 1in string) return integer;
pragma INTERFACE (C, cPrintRouter);
pragma IMPORT_FUNCTION (INTERNAL => cPrintRouter,
EXTERNAL => PrintRouter,
MECHANISM => REFERENCE);

function cUndefrule (Rule_Name : in string) return integer;
pragma INTERFACE (C, cUndefrule);
pragma IMPORT_FUNCTION (INTERNAL => cUndefrule,

EXTERNAL => Undefrule,

MECHANISM => REFERENCE);

end CLIPS;

CLIPS Package Body

package body CLIPS is

function ADA_TO_C_STRING (Input_String : 1in string)
return string is

Out_String : string (1..Input_String'LAST+1);

begin

CLIPS Advanced Programming Guide 195

CLIPS Reference Manual

for I in Input_String'RANGE loop
if (Input_String (I) in " ' .. '~' or
Input_String (I) = ASCII.Cr or
Input_String (I) = ASCII.Lf) then
Out_String (I) := Input_String (I);

else
Out_String (I) := ASCII.Nul;
end if;
end loop;
Out_String (OQut_String'LAST) := ASCII.Nul;

return Out_String;
end ADA_TO_C_STRING;

function xLoad (File_Name : in string) return integer 1is
begin
return cLoad (ADA_TO_C_STRING (File_Name));
end xLoad;
procedure xFacts (Logical_Name : in string;

Module_Ptr : in 1integer;
First : in integer;

Last : in integer;

Max : in integer) is

begin
cFacts (ADA_TO_C_STRING (Logical_Name),Module_Ptr,First,Last,Max);

end xFacts;

function xWatch (Watch_Item : in string) return integer is

begin
return cWatch (ADA_TO_C_STRING (Watch_Item));

end xWatch;

function xUnwatch (Watch_Item : 1in string) return integer is

begin
return cUnwatch (ADA_TO_C_STRING (Watch_Item));

end xUnwatch;

function xAssertString (Pattern : in string) return integer is

begin
return cAssertString (ADA_TO_C_STRING (Pattern));

196 Appendix A - Language Integration Listings

CLIPS Reference Manual

end xAssertString;

function xRetract (Fact_Pointer : in 1integer) return integer is

begin
return cRetract (Fact_Pointer);
end xRetract;

function xPrintRouter (Log_Name : in string ;
Str : in string) return integer is

begin
return cPrintRouter (ADA_TO_C_STRING (Log_Name),
ADA_TO_C_STRING (Str));
end xPrintRouter;

function xUndefrule (Rule_Name : in string) return integer 1is

begin
return cUndefrule (ADA_TO_C_STRING (Rule_Name));
end xUndefrule;

end CLIPS;

A.2 FORTRAN INTERFACE PACKAGE FOR VAX VMS

The following pages are listings of the FORTRAN interface functions for the VAX VMS plus
the internal functions used to convert FORTRAN character strings to C character strings and vice
versa. Many of these functions may work with minor modifications on other machines; note,
however, the use of the VMS argument passing modifier, % VAL, in some functions.

C
Cm oo o o o oo
C
SUBROUTINE xInitializeEnvironment
CALL InitializeEnvironment
RETURN
END
C
Cm m o o oo
C
SUBROUTINE xReset
CALL Reset
RETURN
END
C
Cm oo o o

CLIPS Advanced Programming Guide 197

CLIPS Reference Manual

INTEGER FUNCTION xLoad (FILE_NAME)

CHARACTER * (*) FILE_NAME

CHARACTER *80 C_FILE_NAME

INTEGER C_FILE_NAME_POINTER, Load

EQUIVALENCE (C_FILE_NAME, C_FILE_NAME_POINTER)

CALL CONVERT_TO_C_STRING (FILE_NAME, C_FILE_NAME)
xLoad = Load (C_FILE_NAME_POINTER)

RETURN

END

INTEGER FUNCTION xRun (RUN_LIMIT)
INTEGER RUN_LIMIT, Run

xRun = Run (%VAL (RUN_LIMIT))
RETURN
END

SUBROUTINE xFacts (LOGICAL_NAME, MODULE, BEGIN, END, MAX)

CHARACTER * (*) LOGICAL_NAME
INTEGER MODULE, BEGIN, END, MAX
CHARACTER *8@ C_LOGICAL_NAME
INTEGER C_LOGICAL_NAME_POINTER
EQUIVALENCE (C_LOGICAL_NAME, C_LOGICAL_NAME_POINTER)

CALL CONVERT_TO_C_STRING (LOGICAL_NAME, C_LOGICAL_NAME)
CALL Facts(C_LOGICAL_NAME_POINTER,%VAL (MODULE),

* %VAL (BEGIN),%VAL (END),%VAL (MAX))

RETURN

END

INTEGER FUNCTION xWatch (WATCH_ITEM)

CHARACTER * (*) WATCH_ITEM

CHARACTER *8@ C_WATCH_ITEM

INTEGER C_WATCH_ITEM_POINTER, Watch

EQUIVALENCE (C_WATCH_ITEM, C_WATCH_ITEM_POINTER)

CALL CONVERT_TO_C_STRING (WATCH_ITEM, C_WATCH_ITEM)
xWatch = Watch (C_WATCH_ITEM_POINTER)

RETURN
END

INTEGER FUNCTION xUnwatch (WATCH_ITEM)

CHARACTER * (*) WATCH_ITEM

198 Appendix A - Language Integration Listings

CLIPS Reference Manual

CHARACTER *80 C_WATCH_ITEM
INTEGER C_WATCH_ITEM_POINTER, Unwatch
EQUIVALENCE (C_WATCH_ITEM, C_WATCH_ITEM_POINTER)

CALL CONVERT_TO_C_STRING (WATCH_ITEM, C_WATCH_ITEM)
xUnwatch = Unwatch (C_WATCH_ITEM_POINTER)

RETURN
END
C
C __
C
INTEGER FUNCTION xAssertString (PATTERN)
C
CHARACTER * (*) PATTERN
CHARACTER *8@ C_PATTERN
INTEGER C_PATTERN_POINTER, AssertString
EQUIVALENCE (C_PATTERN, C_PATTERN_POINTER)
C
CALL CONVERT_TO_C_STRING (PATTERN, C_PATTERN)
xAssertString = AssertString (C_PATTERN_POINTER)
RETURN
END
C
Cm = m o o o oo ______
C
INTEGER FUNCTION xRetract (FACT_ADDRESS)
INTEGER FACT_ADDRESS, Retract
xRetract = Retract (%VAL (FACT_ADDRESS))
RETURN
END
C
C __
C
INTEGER FUNCTION xPrintRouter (LOG_NAME, PRINT_LINE)
CHARACTER * (*) LOG_NAME
CHARACTER * (*) PRINT_LINE
CHARACTER *80 C_LOG_NAME
CHARACTER *8@ C_PRINT_LINE
INTEGER C_PRINT_LINE_POINTER, C_LOG_NAME_POINTER
EQUIVALENCE (C_PRINT_LINE, C_PRINT_LINE_POINTER),
* (C_LOG_NAME , C_LOG_NAME_POINTER)
CALL CONVERT_TO_C_STRING (PRINT_LINE, C_PRINT_LINE)
CALL CONVERT_TO_C_STRING (LOG_NAME, C_LOG_NAME)
xPrintRouter = PrintRouter (C_LOG_NAME_POINTER,
* C_PRINT_LINE_POINTER)
RETURN
END
C
C __
C

INTEGER FUNCTION xFindDefrule (RULE_NAME)

CHARACTER * (*) RULE_NAME
CHARACTER *80 C_RULE_NAME

CLIPS Advanced Programming Guide 199

CLIPS Reference Manual

INTEGER C_RULE_NAME_POINTER, Undefrule
EQUIVALENCE (C_RULE_NAME, C_RULE_NAME_POINTER)

CALL CONVERT_TO_C_STRING (RULE_NAME, C_RULE_NAME)
xFindDefrule = FindDefrule (C_RULE_NAME_POINTER)

RETURN
END
C
C __
C
INTEGER FUNCTION xUndefrule (RULE_NAME)
CHARACTER * (*) RULE_NAME
CHARACTER *80 C_RULE_NAME
INTEGER C_RULE_NAME_POINTER, Undefrule
EQUIVALENCE (C_RULE_NAME, C_RULE_NAME_POINTER)
CALL CONVERT_TO_C_STRING (RULE_NAME, C_RULE_NAME)
xUndefrule = Undefrule (C_RULE_NAME_POINTER)
RETURN
END
C
C __
C

SUBROUTINE CONVERT_TO_C_STRING (F_STRING, C_STRING)
CHARACTER * (*) F_STRING, C_STRING

K = LENGTH (F_STRING)

DO 100 I = 1,K

C_STRING (I:I) = F_STRING (I:I)
100 CONTINUE

K=K+ 1

C_STRING (K:K) = CHAR (©)

RETURN

END
C
Cm o oo o o e
C

INTEGER FUNCTION LENGTH (STRING)
C

CHARACTER * (*) STRING
C

K = LEN (STRING)

DO 100 I=K,1,-1

IF(STRING(I:I) .NE. ' ') GO TO 150
C

100 CONTINUE
150 CONTINUE
LENGTH = I
RETURN
END

A.3 FUNCTION TO CONVERT C STRINGS FOR VMS ADA OR FORTRAN

This function converts a C string to an Ada string. The MakeStringDsc function normally is
stored in the same file together with the UserFunctions definition and any C interface

200 Appendix A - Language Integration Listings

CLIPS Reference Manual

subroutines. The function is not portable and is specific to the VAX VMS environment. The
definition of Ada string descriptors is implementation dependent, and access to those definitions
from C also is implementation dependent. However, a very similar function could be written for
any environment that supports Ada and C.
C Function: MakeStringDsc

(Note:This function definition is VAX VMS specific)

#include <ssdef.h>
#include <descrip.h>

struct dsc$descriptor_s *MakeStringDsc(c_str)
char *c_str;

struct dsc$descriptor_s *desc;

desc = (struct dsc$descriptor_s *) malloc
(sizeof (struct dsc$descriptor_s));

/* Define String Descriptor */

desc->dsc$w_length = strlen(c_str);
desc->dsc$a_pointer = c_str;

desc->dsc$b_class DSC$K_CLASS_S;
desc->dsc$b_dtype DSC$K_DTYPE_T;

return(desc);

CLIPS Advanced Programming Guide 201

CLIPS Reference Manual

Appendix B - I/0 Router Examples

The following examples demonstrate the use of the I/O router system. These examples show the
necessary C code for implementing the basic capabilities described.

B.1 DRIBBLE SYSTEM

Write the necessary functions that will divert all tracing information to the trace file named
"trace.txt".

/*

First of all, we need a file pointer to the dribble file which will contain
the tracing information.

*/

#include <stdio.h>
#include "clips.h"

static FILE *TraceFP = NULL;

/*

We want to recognize any output that is sent to the logical name "wtrace"
because all tracing information is sent to this logical name. The recognizer
function for our router 1is defined below.

*/

int FindTrace(
char *logicalName)

{
if (strcmp(logicalName,"wtrace") == @) return(TRUE);

return(FALSE);
3

/*
We now need to define a function which will print the tracing information to

our trace file. The print function for our router 1is defined below.
*/
int PrintTrace(

char *1logicalName,

char *str)

fprintf(TraceFP,"%s",str);

}
/*
When we exit CLIPS the trace file needs to be closed. The exit function for
our router is defined below.
*/
int ExitTrace(

int exitCode) /* unused */

fclose(TraceFP);

CLIPS Advanced Programming Guide 203

CLIPS Reference Manual

}

/*
There is no need to define a get character or ungetc character function since
this router does not handle 1input.

A function to turn the trace mode on needs to be defined. This function will
check if the trace file has already been opened. If the file is already
open, then nothing will happen. Otherwise, the trace file will be opened and
the trace router will be created. This new router will 1intercept tracing
information intended for the user interface and send it to the trace file.
The trace on function 1is defined below.

*/

int TraceOn()

if (TraceFP == NULL)

{
TraceFP = fopen("trace.txt","w");
if (TraceFP == NULL) return(FALSE);
3
else

{ return(FALSE); }

AddRouter("trace", /* Router name */
20, /* Priority */
FindTrace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
ExitTrace); /* Exit function */

return(TRUE);

3

/*

A function to turn the trace mode off needs to be defined. This function
will check if the trace file 1is dlready closed. If the file 1is already
closed, then nothing will happen. Otherwise, the trace router will be

deleted and the trace file will be closed. The trace off function is defined
below.

*/
int TraceOff()
{if (TraceFP != NULL)
¢ DeleteRouter("trace");
i; (fclose(TraceFP) == 0)

TraceFP = NULL;
return(TRUE);
}

}

TraceFP = NULL;
return(FALSE);

204 Appendix B — I/O Router Examples

CLIPS Reference Manual

}

/*

Now add the definitions for these functions to the UserFunctions function in
file "main.c".

*/

extern 1int TraceOn(), TraceOff(Q);

DefineFunction("tron",'b',TraceOn, "TraceOn");
DefineFunction("troff",'b',Trace0ff, "TraceOff");

/*
Compile and 1link the appropriate files. The trace functions should now be
accessible within CLIPS as external functions. For Example
CLIPS>(tron)
[]
[
[]
CLIPS>(troff)
*/

B.2 BETTER DRIBBLE SYSTEM

Modify example 1 so the tracing information is sent to the terminal as well as to the trace dribble
file.

/*

This example requires a modification of the PrintTrace function. After the
trace string is printed to the file, the trace router must be deactivated.
The trace string can then be sent through the PrintRouter function so that

the next router in 1line can handle the output. After this 1is done, then the
trace router can be reactivated.
*/

int PrintTrace(

char *1logicalName,

char *str)

{
fprintf(TraceFP,"%s",str);
DeactivateRouter("trace");
PrintRouter(logicalName,str);
ActivateRouter("trace");

}

/*
The TraceOn function must also be modified. The priority of the router
should be 40 instead of 20 since the router passes the output along to other

routers.
*/

int TraceOn()

{
if (TraceFP == NULL)

{

TraceFP = fopen("trace.txt","w");

CLIPS Advanced Programming Guide 205

CLIPS Reference Manual

if (TraceFP == NULL) return(FALSE);
}

else
{ return(FALSE); }

AddRouter("trace", /* Router name */
40, /* Priority */
FindTrace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
ExitTrace); /* Exit function */

return(TRUE);

}
B.3 BATCH SYSTEM

Write the necessary functions that will allow batch input from the file "batch.txt" to the CLIPS
topdevel interface.

/*

First of all, we need a file pointer to the batch file which will contain
the batch command information.

*/

#include <stdio.h>
#include "clips.h"

static FILE *BatchFP = NULL;

/*

We want to recognize any input requested from the logical name "stdin"
because all user input 1is received from this logical name. The recognizer
function for our router 1is defined below.

*/

int FindMybatch(
char *logicalName)

if (strcmp(logicalName,"stdin") == @) return(TRUE);

return(FALSE);
}

/*
We now need to define a function which will get and unget characters from our
batch file. The get and ungetc character functions for our router are

defined below.
*/

static char BatchBuffer[80];
static 1int BatchLocation = 0;

int GetcMybatch(
char *1logicalName)

206 Appendix B — I/O Router Examples

{

int rv;
rv = getc(BatchFP);

if (rv == EOF)

{
DeleteRouter("mybatch");
fclose(BatchFP);
return(GetcRouter(logicalName));
ks
BatchBuffer[BatchLocation] = (char) rv;
BatchLocation++;
BatchBuffer[BatchLocation] = EOS;
if ((rv == "\n") Il (rv == "\r'))

{
PrintRouter("wprompt",BatchBuffer);
BatchLocation = 0;

}

return(rv);

int UngetcMybatch(
int ch,
char *logicalName)

if (BatchLocation > 0) BatchlLocation--;
BatchBuffer[BatchLocation] = EOS;
returnCungetc(ch,BatchFP));

3

/*

When we exit CLIPS the batch file needs to be
our router is defined below.

*/

int ExitMybatch(
int exitCode)

fclose(BatchFP);
}

/*

CLIPS Reference Manual

/* unused */

closed. The exit function for

/* unused */

There is no need to define a print function since this router does not handle

output except for echoing the command line.

Now we define a function that turns the batch mode on.

*/
int MybatchOn()
{
BatchFP = fopen("batch.txt","r");

if (BatchFP == NULL) return(FALSE);

AddRouter("mybatch", /* Router name */

CLIPS Advanced Programming Guide

207

CLIPS Reference Manual

20, /* Priority */
FindMybatch, /* Query function */
NULL, /* Print function */
GetcMybatch, /* Getc function */
UngetcMybatch, /* Ungetc function */
ExitMybatch); /* Exit function */
return(TRUE);
}
/*

Now add the definition for this function to the UserFunctions function 1in
file "main.c".

*/

extern 1int MybatchOn();

DefineFunction("mybatch",'b' ,MybatchOn, "MybatchOn");

/*
Compile and 1link the appropriate files. The batch function should now be
accessible within CLIPS as external function. For Example
CLIPS> (mybatch)
*/

B.4 SIMPLE WINDOW SYSTEM

Write the necessary functions using CURSES (a screen management function available in
UNIX) that will allow a top/bottom split screen interface. Output sent to the logical name top
will be printed in the upper window. All other screen I/O should go to the lower window.
(NOTE: Use of CURSES may require linking with special libraries.)

/*

First of all, we need some pointers to the windows and a flag to indicate
that the windows have been initialized.

*/

#include <stdio.h>
#finclude <curses>
#include "clips.h"

WINDOW *LowerWindow, *UpperWindow;
int WindowInitialized = FALSE;

/*
We want to intercept any I/0 requests that the standard interface would
handle. In addition, we dalso need to handle requests for the logical name

top. The recognizer function for our router 1is defined below.
*/

int FindScreen(
char *1logicalName)

if ((strcmp(logicalName,"stdout") == 0) 1]
(strcmp(logicalName, "stdin") == @) 1|

208 Appendix B — I/O Router Examples

CLIPS Reference Manual

(strcmp(logicalName, "wprompt") == 0) ||

(strcmp(logicalName, "wdisplay") == @) ||

(strcmp(logicalName, "wdialog") == 0) 1|
I

(strcmp(logicalName, "werror") == 0) |
(strcmp(logicalName, "wwarning") == @) ||
(strcmp(logicalName, "wtrace") == @) ||

(strcmp(logicalName,"top") == @))
{ return(TRUE); }

return(FALSE);
3

/*

We now need to define a function which will print strings to the two windows.
The print function for our router 1is defined below.

*x/

int PrintScreen(
char *logicalName,
char *str)

if (strcmp(logicalName,"top") == 0)
{

wprintw(UpperWindow, "%s" ,str);
wrefresh(UpperWindow);

}
else
{
wprintw(LowerWindow, "%s" ,str);
wrefresh(LowerWindow);
}
}
/*
We now need to define a function which will get and unget characters from the
lower window. CURSES uses unbuffered input so we will simulate buffered
input for CLIPS. The get and ungetc character functions for our router are
defined below.
*/

static int UseSave = FALSE;
static 1int SaveChar;
static int SendReturn = TRUE;

static char StrBuff[80] = {'\0'};
static int CharlLocation = 0;

CLIPS Advanced Programming Guide 209

CLIPS Reference Manual

int GetcScreen(
char *logicalName)

{

int rv;

if (UseSave == TRUE)
{
UseSave = FALSE;
return(SaveChar);

ks
if (StrBuff[CharLocation] == '\0'")
{

if (SendReturn == FALSE)
{
SendReturn = TRUE;
returnC'\n");

}

wgetstr(LowerWindow, StrBuff[80]);
CharLocation = 0;

}

rv = StrBuff[CharLocation];
if (rv == '\0"') return('\n");
CharLocation++;

SendReturn = FALSE;
return(rv);

}

int UngetcScreen(
char ch,
char *1logicalName)
{
UseSave = TRUE;
SaveChar = ch;
return(ch);

}
/*

When we exit CLIPS CURSES needs to be deactivated.

router is defined below.
*/

int ExitScreen(
int num) /*

endwin();

}
/*

The exit function for our

unused */

Now define a function that turns the screen mode on.

*/
int ScreenOn()

int halflines, 1i;

210

Appendix B — I/O Router Examples

CLIPS Reference Manual

/* Has initialization already occurred? */

if (WindowInitialized == TRUE) return(FALSE);
else WindowInitialized = TRUE;

/* Reroute I/0 and initialize CURSES. */

initscrQ);

echo();

AddRouter("screen", /* Router name */
10, /* Priority */
FindScreen, /* Query function */
PrintScreen, /* Print function */
GetcScreen, /* Getc function */
UngetcScreen, /* Ungetc function */
ExitScreen); /* Exit function */

/* Create the two windows. */

halflLines = LINES / 2;

UpperWindow = newwinChalflLines,COLS,0,0);

LowerWindow = newwinChalflLines - 1,COLS,halflLines + 1,0);
/* Both windows should be scrollable. */

scrollok(UpperWindow, TRUE);
scrollok(LowerWindow, TRUE);

/* Separate the two windows with a line. */
for (i =0 ; i < COLS ; 1i++)
{ mvaddchChalfLines,i,'-"); }

refresh();

wclear(UpperWindow);

wclear(LowerWindow);

wmove(LowerWindow, 0,0);

return(TRUE);
/*
Now define a function that turns the screen mode off.
*/
int ScreenOff()

/* Is CURSES already deactivated? */

if (WindowInitialized == FALSE) return(FALSE);

WindowInitialized = FALSE;

/* Remove I/0 rerouting and deactivate CURSES. */

DeleteRouter("screen");

endwin();

CLIPS Advanced Programming Guide 211

CLIPS Reference Manual

return(TRUE);
3

/*

Now add the definitions for these functions to the UserFunctions function 1in
file "main.c".

*/

extern 1int ScreenOn(), ScreenOff(Q);

DefineFunction("screen-on",'b',ScreenOn, "ScreenOn");
DefineFunction("screen-off",'b',Screen0ff, "ScreenOff");

/*
Compile and 1link the appropriate files. The screen functions should now be
accessible within CLIPS as external functions. For Example

CLIPS> (screen-on)

[]
[}
[}
CLIPS> (screen-off)
*/

212 Appendix B — I/O Router Examples

CLIPS Reference Manual

Appendix C - Update Release Notes

The following sections denote the changes and bug fixes for CLIPS versions 6.05, 6.1, 6.2, 6.21,
6.22, and 6.23.

C.1 VERSION 6.23

* FalseSymbol and TrueSymbol Changes — The FalseSymbol and TrueSymbol constants
were not defined as specified in the Advanced Programming Guide. These constants have
have now been defined as macros so that their corresponding environment companion
functions (EnvFalseSymbol and EnvTrueSymbol) could be defined. See sections 3.3.2 and
9.2 for more details.

* Run-time Program Bug Fix — Files created by the constructs-to-c function for use in a run-
time program generate compilation errors.

¢ External Function Interface - A new function has been added:
GetNextFactInTemplate (see section 4.4.17)

e Compiler Directives — The FACT_SET_QUERIES flag has been added. See section 2.2 for
more details.

e New Source Files — New source files have been added (see section 2.1 for a complete list of
source files):

factqpsr.c
factqpsr.h
factqury.c
factqury.h

C.2 VERSION 6.22

* Function and Macro Corrections — The following functions and macros were corrected to
accept the correct number of arguments as specified in the Advanced Programming Guide:

Agenda

BatchStar
EnvGetActivationSalience
EnvBatchStar
EnvFactDeftemplate
EnvFactExistp

CLIPS Advanced Programming Guide 213

CLIPS Reference Manual

EnvFactList

EnvFactSlotNames
EnvGetNextInstanceInClassAndSubclasses
EnvLoadInstancesFromString
EnvRestorelnstancesFromString
EnvSetOutOfMemoryFunction
FactDeftemplate

FactExistp

FactList

FactSlotNames
GetNextInstanceInClassAndSubclasses
LoadInstancesFromString
RestorelnstancesFromString
SetOutOfMemoryFunction

C.3 VERSION 6.21

Introduction — Added information on thread\concurrency and garbage collection issues (see
sections 1.3 and 1.4).

External Function Interface - Several new functions have been added including:

DeallocateEnvironmentData (see section 9.3.4)
DecrementGCLocks (see section 1.4)
FactDeftemplate (see section 4.4.6)
GetEnvironmentByIndex (see section 9.3.7)
IncrementGCLocks (see section 1.4)

C.4 VERSION 6.2

214

Environments — It is now possible in an embedded application to create multiple
environments into which programs can be loaded (see section 9).

External Function Interface - Several new functions have been added including:

GetClassDefaultsMode (see section 4.12.10)
SetClassDefaultsMode (sce section 4.12.19)

Run-time Programs — Support for environments requires some changes in code for loading
run-time programs (see section 5).

Appendix C — Update Release Notes

CLIPS Reference Manual

e Compiler Directives — Two new flags have been added: ENVIRONMENT_API_ONLY
and ALLOW_ENVIRONMENT_GLOBALS.

* New Source Files — New source files have been added (see section 2.1 for a complete list of
source files):

envrnmnt.c
envrnmnt.h

* Deleted Source Files — The following source files have been removed (see section 2.1 for a
complete list of source files):

extobj.h

C.5 VERSION 6.1

e C++ Compatible — The CLIPS source code can now be compiled using either an ANSI C
or C++ compiler. Minimally, non-ANSI C compilers must support full ANSI style function
prototypes and the void data type in order to compile CLIPS.

* Obsolete External Function Interface Changes - The following functions should be
replaced with the specified functions. If clips.h is included in your C files, macros will
automatically map these functions to their new names.

CLIPSFunctionCall (use FunctionCall instead)
ExitCLIPS (use ExitRouter instead)

GetcCLIPS (use GetcRouter instead)

Initialize CLIPS (use InitializeEnvironment instead)
PrintCLIPS (use PrintRouter instead)
UngetcCLIPS (use UngetcRouter instead)

* Obsolete Constants and Variables Changes - The following constants and variables
should be replaced with the specified replacements. If clips.h is included in your C files,
macros will automatically map the old names to their new names.

CLIPS_FALSE (use FALSE instead)
CLIPS_TRUE (use TRUE instead)
CLIPSFalseSymbol (use FalseSymbol instead)
CLIPSTrueSymbol (use TrueSymbol instead)
WCLIPS (use WPROMPT instead)

* Source File Name Changes - The names of the following source files have been changed:

CLIPS Advanced Programming Guide 215

CLIPS Reference Manual

clipsmem.h (use memalloc.h instead)
memory.c (use memalloc.c instead)

Compiler Directives — Some of the compiler directive flags in the file setup.h have been
changed. The CLP_TEXTPRO and CLP_HELP flags have been renamed to
TEXTPRO_FUNCTIONS and HELP_FUNCTIONS. The ANSI_COMPILER flag has been
removed.

External Function Interface - Several new functions have been added including:
GetNextInstanceInClassAndSubclasses (see section 4.13.15)

New Source Files — Several new source files have been added (see section 2.1 for a
complete list of source files):

parsefun.c
parsefun.h
proflfun.c
proflfun.h
sortfun.c
sortfun.h

C.6 VERSION 6.05

216

Compiler Directives - The CLP_EDIT flag in the file setup.h has been renamed to
EMACS_EDITOR.

External Function Interface - Several new functions have been added including:

BatchStar (see section 4.1.4)

Build (see section 4.1.7)

Eval (see section 4.1.9)

FactExistp (see section 4.4.7)

FactSlotNames (see section 4.4.10)

GetFactList (see section 4.4.12)
LoadFactsFromString (see section 4.4.20)
LoadInstancesFromString (see section 4.13.19)
RestoreInstancesFromString (see section 4.13.22)

Appendix C — Update Release Notes

CLIPS Reference Manual

Index

ACtIVAtEROULET ...vvvveiieiieiiieeeee e, 169 BLOAD_INSTANCES......ccooovevivveeeinnee 14
Ada....oooiiiiieeeee e, iv, 153 BLOAD_ONLY ...ccoveeiieiieeeeeieeeee 14, 15
AddClearFunction.........ccceeeeveeeeennnnnn.. 45, 181 bload-INStancCesS.......cevvevumeeeeeeeeeeeeennnnn. 14, 121
AddDouble..........ccooveiiieiiiieieiieeee 36, 37 BLOCK_MEMORYccceevvveennnn. 14,174
AddEnvironmentCleanupFunction ..182, 189 DOOIEANcceevieieiiiiiiieiieeeeeeeeeeeeeeeeee 34
AddLONG ..o 36, 37 FALSE ..o, 34
AddPeriodicFunction...........ccceeeee..... 46, 181 TRUEooooiiiiiee e 34
AddResetFunction.........cccoeeevveeeennnnnne. 46, 181 BrowseClassescovvvveeveeeiieieiiiiiiieennes 109
AddROULET ..., 170, 181 browse-Classes........coouvvveeeeeeeeeeiiieieieeenenenn., 109
AddRunFunction........cccceeevvevveeeinnnnnne. 83, 181 DSAVE. ..ot 14, 48
AddSymbolcoeeveiiiiieiieee, 32, 36, 37 BSAVE_INSTANCES.......cooooeeivveeennnee, 15
Advanced Programming Guide............... v, v bSave-INStances.........cceevveerruveernueeennne 15,121
AeNda....cooviiiiieeieeee e 213 {92051 1 I 19, 48, 151, 216
AZENAA ...eoiiiiiiiieiie e 15, 84 e i1, 153
AllocateEnvironmentData........ 179, 183, 188 callmext-handler.........cccccvvvviviiiiiiiiininnnnn... 17
ALLOW_ENVIRONMENT GLOBALS13, callmext-method..........ccooevvviviiiiiieiiieeniininnns 17
179, 184, 191, 215 call-specific-method..........ccceevevveeeiiennnnnnns 17
ANSI oo 19 ClasSADbStractPccoovvvvvveeeeeieeiennnen, 109
ANSI COMPILER.ooeeeeiieiiieaen. 216 class-abstractp......cccceeevveeecieeencieeeeiee e, 110
ANYFACID oot 17 ClassReactiveP.........ccccceeviiiniiiinicnnnnen. 110
ANY-INSTANCED.c.vveeeereeerreeeireeerreeeireeenaaeeens 18 Class-TeaCtiVeD....ceevuveeeeieeeiie e 110
ArgCountCheckcoocoveeriiiiniiiiniiiiieenne 25 ClasSSIOtS.....cevvuveeriieeeiieeeiieeee e, 110
ArgRangeCheck........cccouveeviieerciieinieeeiens 25 Class-SIOtSuevevveeeieeeieecee e, 110
ArgTypeChecK......ccoovviiiviiiiniiinnens 28, 30 ClassSubclasses........coovveeviieinieennieennnen. 110
ART .o, i1l class-Subclasses.........covvvevvvereeiieiiiiinnnee, 111
Artificial Intelligence Section.................... 1ii ClassSuperclasses.........ccevvveeerieerneeennnen. 111
ASSEIT oo 5,60, 62,72 class-superclasses.......ccceeeeveeerveeenveeennnen. 111
AssertString...........oc.ee.... 5,61, 72,154, 155 Clear.....cooouvueeeeeeiieeeeiiieeeeeeeeeeeeeinan 5,45, 48
ASSETT-STIING .eeevrreerireeerieeerieeerreeeireeeaeeens 61 ClearFocusStackK.........cccceeevveercrieeniieeenneenns 84
AssignFactSlotDefaults...........ccccccoeveennenne. 62 clear-focus-stackcoceevieriiinicnicennene 84
AUXILIARY_MESSAGE_HANDLERS .14 CLIPS. .o i1l
Basic Programming Guide............ v, v, 1,23 CLIPS _FALSE.....ccoovviieeeiiiiiiiiiieieeen 215
BASIC_IO....iiieiiieiieieeeeeeeeeee, 14 CLIPS_TRUEooooeiiiiieeieeeeeeeeee, 215
batch™ . ..o, 47 CLIPSFalseSymbol........cccccceevviiennieennen. 215
BatchStar......coooovvvveeiiiiiiie e, 213 CLIPSFunctionCall.........ccccccceeeeveviennneee. 215
BatchStar......coooevvvvviviiiiiiieeeiieeeeiiiene, 47,216 clipsmem.h.......cccooviiiiiiiiniiiiiiieee, 216
BinaryLoadlInstances............cccccceeeveennee. 121 CLIPSTrueSymbol.........ccccveevveeeeieeenneen. 215
BinarySavelnstances...........ccecueevreeennnnen. 121 ClOSE oo 14, 164
BLOAD.......ccovveeeeeieeeee, 14, 47, 149 (@)) S0 =1 D)) 1 R 216
BLOAD_AND_BSAVE.......ccccceeevveeenn. 14 CLP_HELP ...t 216
CLIPS Advanced Programming Guide 217

CLIPS Reference Manual

CLP_TEXTPROccccovviieeeieeeeereeeens 216
CommandLoop.......ccceeeveeeciieenieeeieeeneen. 150
Common Lisp Object System..................... v
compiler direCtives.......cceevvuveercreeenveeenneenns 13
CONFLICT_RESOLUTION_STRATEGIE
S e 15
CONSEIVE-TNEMoeeevrvreneneeeeeeerrnannnns 174, 176
CONSTRUCT_COMPILER.............. 15, 150
CONSLIUCES-LO-C.uvvvvervrrrnieeereeenens 19, 149, 213
(6010 IR v
CIEALES ..o 18
CreateEnvironment 179, 181, 184, 189
CreateFactcoooovvvvvvviiienennnn, 60, 62, 69, 70
CreateMultifield...........ccoevvvvvveeiieiiiiinnnnen, 39
CreateRawlInstance..........cccccveeeeeeeenennnnenn. 122
DeactivateRouter..........cccoevvvveeieiiiiinnnnen. 171
DeallocateEnvironmentData....179, 184, 214
DEBUGGING_FUNCTIONS 15
DecrementFactCount 65,72
DecrementGCLOCKS. ...uueeeeeeeieeeienn... 6,214
DecrementlnstanceCount......................... 122
DefclassModulecooovvvveeiiiiiiiinnnnnen. 111
defclass-moduleccoeevvveeeieeeennnnnnnnn. 111
DEFFACTS_CONSTRUCT.........cccuu...... 15
DeffactsModule............ccoeeevrvvreereeeeeieennnnen. 74
deffacts-module...........ccooevvvveveeiieiiviinnnnnee, 74
DEFFUNCTION_CONSTRUCT 15
DeffunctionModule........cccoovvvverieviiinnnnnnee. 98
deffunction-module..........cccovvveeriereeennnnnnnn. 98
deffunctions

calling from C.......cccoviiiiniiiiniiinieen, 49
DEFGENERIC_CONSTRUCT................. 15
DefgenericModulecccccoevieennieennnen. 101
defgeneric-moduleccccvveeieeinieennneen. 101
DEFGLOBAL_CONSTRUCT.................. 16
DefglobalModule............cccoveevrieiniieennenne 92
defglobal-module...........ccoceeeriiiiniinien. 92
DefineFunction............. 21, 32, 34, 35, 36, 38
DefineFunction2..........ccccovvvvveviviiiviienennnn.. 23
DEFINSTANCES_CONSTRUCT 16
DefinstancesModule..............cceceeeennnnnnen. 138
definstances-module..........cccceeeeevviennnneee. 138
DEFMODULE_CONSTRUCT 16

218

DEFRULE_CONSTRUCT...........cccuue..... 16
DefruleHasBreakpointccceeeveeennennne 77
DefruleModule............ccoeevvrrrreeiieeeeeennnnee. 77
defrule-module............coovvvvrrvreeiieiiiiinnnnnen, 77
DEFTEMPLATE_CONSTRUCT 16
DeftemplateModuleccceevvevrieennnnenn. 57
deftemplate-moduleccoecvverriiennnen. 57
delayed-do-for-all-facts..........ccceevrveernnennne 17
delayed-do-for-all-instances..........c...c........ 18
deleteS ..o 18
Delete Activationccoeeevvvveeeeeeeeeecnnnnnen. 85
Deletelnstance.......ooeuueeeeeeeeeeeeeeeneaenn... 5,122
DeleteROUtervveeeeeieeeecinrieeeeeeeeeeennee, 171
dependenciesccocuveeeieeeiieeeriie e 18
dependents..........ceeveeeriiieeniiieeniieeee e 18
DescribeClass.uuvviieeiveeeireeeeieeeeeeenneeee, 112
describe-Class.........eeeeeeeeeiciinrreeeeeeeeeeinnee, 112
DestroyEnvironment................ 179, 185, 189
DirectGetSIotuvvveeeeeieeeiciireeeeee e, 123
DirectPutSIOot.....oooeeeeeieeeeeeeeeeeeeen 5,123
do-for-all-factsceeeeeeeeeveinereeeeeeeeeennnen, 17
do-for-alldnstancesccoeevvveveeeieeeeeennnnnee. 18
dofor-fact......ccccvvveeeeeiiiiiiiiieeeeeeeeeeee 17
dO-fOr-INStANCE.....vvvveeeeeeieerieeeeeeee e, 18
DOPToDoubIecccccoeeeevrrerieiieeeeennnneee, 28
| D10) & Ko 3l (Y| SRR 28
DOPTOINtEZETcccvveeeiieeiieeiieeieeeeee 28
DOPTOLONG......veieiieeieeeiieeciieeeiee e 28
DOPTOPOINLET.....vvveeeeeeeeeeiireeeeeeeeeeeeinnee 28
DOPTOSHING ..o 28
DOToDouble.........ceeeeeeeeeiirerieieeeeeeinnee, 28
DOTOFIOoatcevvvveeeeeeeiieeiieeeeeeeeeeeeiieee, 28
DOTOINtEZETeeeeieeeeiieeeiieeiieeiee e 28
DOTOLONG....ccovieeiiieeieeeiee et 28
DOTOoPOINter........vvvveeeeeeeeiiereeeeeeeeeeiennee, 28
DOTOSHING...ccvveeeiiieeieeeiie e 28
Dribble ACtiVe......vvveeeeeeeeeiiiieeeeeeeeeeeeeinnee, 55
DribbleOff........ovvveeeiiiiiiiieeeee 55
dribble-offcooovviriiiiiiie e, 55
DribbleOn......ccoouvvveeiiiiiiiiieeeeeeeeeeeeie, 55
dribble-0n......ccccovveiieeieiieiiireeee e, 55
DYNAMIC_SALIENCE............cccoevuunn.... 16
dynamic-get.......ccoevveervireeniieeniieeiee e 123
Index

dynamicCPut........ceeeveeevieeniiieenieeeieeeen. 123
EMACS_EDITOR................ 13, 16, 191, 216
embedded applicationcceceevvveernnnenne 45
EnvBatchStar ... 213
EnvDefineFunction..........ccccccceeeeeevnnnnnen. 187
EnvDefineFunction2........................ 187, 190
EnvFactDeftemplate............cccocueerneennnnen. 213
EnvFactEXistp....cccovvveevieeeiieeeiee e, 213
EnvFactList.....ccoocveeiiiiieiiiiieeeecceeeiee, 214
EnvFactSlotNames........cccocvveeeeiiiiennnnee. 214
EnvFalseSymbolcccooievniiinniinnnnen. 213
EnvGetActivationSalience....................... 213
EnvGetNextInstanceInClassAndSubclasses
.. 214
ENVIRONMENT_API_ONLY17, 182,

191, 215
environmentData............ccccevveeeeeeeeennnnnnen. 179
EnvLoadInstancesFromString.................. 214
EnvRestorelnstancesFromString.............. 214
(1079110111 SRR 215
envrnmnt.hooooovviiviiiiieneiieieeiiine, 189, 215
EnvSetOutOfMemoryFunction................ 214
EnvTrueSymbol.......ccccceevviiiiiiiniinnnnen. 213
EnvUserFunctions............................ 21, 150
€VAl.coiiiiiiiiieee 19,49, 151, 216
EX_MATH. ..o, 13,17
EXitCLIPS ..o 215
EXitROULET w.eveeeeeeeeeeeeeeeeeeeeeeee, 167,215
explodeS ... 18
| 254 N (O TR 17
external address...........cooevvvvvvvreeeieeeeeeennnen. 35
1470] o} 1 TSR 215
FACT_SET_QUERIES 17,213
FactDeftemplate........ccccceeveveencieeeeieeenneen. 214
FactDeftemplate.......cc.ccccevcueeenieennnnen. 65,214
FactEXIStP....vveeieeeieeeiie e 214
FactEXIStP....veeviieeiieeeiieeieeeceee, 65,216
fACt-EXASTP.evveeerieeeree et 65
FactIndeX.......ooooovvvveeeeiiiieiieeeeec e, 66
faCt-INAEX ...coovvrriiiiiieeeiieeeeee e, 66
FactList........ooovviiniieeieeeieiieeee e, 214
faACtPST.Corrnriieieeeieeee e 213
factgpsr.h.....oeeiiiii, 213

CLIPS Advanced Programming Guide

CLIPS Reference Manual

factqUIY.Coooeriiiiieiieeeeee e, 213
factqury.h...coeeevieeiee e, 213
FACES e, 15, 66, 154
FactSIotcooovviieeiieeeeeeeee e, 67
FactSIotNamescooeeevvveeeeeeeeeecnnnen. 214
FactSIotNAmMESoooeevvvieiieiieeeeeeeeeineee, 216
fact-slot-NamesS........c..coeveevvrrereeeeeeeeeennnnen. 67
FALSEoooiiiie e, 215
FalseSymbol........cccccevvveennen. 34,213,215
1767 o TR 19
files
header
clips.h.21, 28, 45, 167, 169, 174, 182
envinmnt.hcocooeviiiiii 182
memalloc.h........ccoovvveeiiiiiinnnnnnnne. 174
router.n.....eeeeeeeiiiiiiiiiiee, 167, 169
setup.h................ 12, 13, 16, 150, 174
source
main.c21, 43, 45, 145, 147, 150, 161,
162
memalloc.C.....cooeevvreeeeeieeieinnnnne, 173
SN (S5 o X 13
find-all-facts.......oooovvveveeiiiiiiiie 17
find-all-nStances..........ccooevvvvvvveeeieeeeeinnnneen, 18
FindDefclass........cccceeeeevveiinnneeeeeieeennnee, 112
FindDeffacts.....cccvvveeiiiiiiiiieeieiieeeeeeinnee, 74
FindDeffunction...........ccceeeevvveeiieeeenncnnnnne. 98
FindDefgeneric.........cccovveevevveencieeceieeennnen. 102
FindDefglobalccocoeeviiiiniiiiiiiiies 92
FindDefinstances.........cccoevvvvvveieeiiiennnnnen. 138
FindDefmessageHandler......................... 133
FindDefmoduleccoovvvvvveiiiiiiiinnnnee. 141
FindDefrule........cooovvvvmmvvveniiiieeiininnnne, 77, 154
FindDeftemplate..........ccccceovveeecrierncrieennnne 57
fiIndfactooovviiieeeeee e, 17
FindInstance.......cccccoeevvvvevveveeeeeeieiennenee, 124
fiINd-NStanCec.cvveeeeeeeeeeiiirereeeeeeeeeeinnee, 18
FIESES oo 18
FLOAL vt 26
FOCUS v, 85
format......ceeeeeeeviiviiiiiiiiieeeeeeeeens 17, 164, 165
FORTRAN ..., 153
FunctionCall.........cc...coovvveeeennnne... 5,49, 215
219

CLIPS Reference Manual

functions
argument aCCessueevruveerruveernnnen. 25, 157
calling from C.......cccoviiiiniiiiniiiiniens 49
external......ccceeeeeeeeeeeeiiieeeennnn. 21, 25,27
library
[€ | SO 167
TICE e, 173
oS (oS 168
malloc........ouveeeeeeeiieennn. 173, 175, 176
102501 L SRS 168
SPrintf....cociiiiiiiie 62
string conversion
Convert_to_C_String 193
MakeStringDsc............. 157, 193, 200
user-defined........cccceeeeeeeeeiiiinniieeneeeeenn, 21
garbage collectioncccccveevevveenieeenieenne, 3
€eNAllOC ..ccoiiiiiiiiiice e, 173
GENERIC ...t 13
generic functions
calling from C.......ccceevveeviieeniieeeiene 49
GENTTEE...eeviiiiiiiieeieeeeee e, 173
GetActivationNameccoccvvveeeeeeeeeinnnnee. 85
GetActivationPPForm.............cc..ccoeennnnnnnee. 86
GetActivationSaliencecccceeeeveveennnneen. 86
GetAgendaChanged.......cccccceevvieinieennnene 86
GetAutoFloatDividend................ccooveunnne... 50
get-auto-float-dividend.........c.ccceevveennnenn. 50
GetcCLIPS ..., 215
GetClassDefaultsMode..................... 112,214
get-class-defaults-modeccueeeeneee. 112
GetConserveMemoryccoecveeerueeennnnen. 174
GetcRouteroooooovvvvvveunnnnnnn... 168, 169, 215
GetCurrentEnvironment................... 185, 191
GetCurrentModulecccocvvvvvviieiiiiennnnee. 141
get-current-module..........oocceeeviieinieennen. 141
GetDefclasSLiSt.....uiiiiiivieeveeeeieeeiiiininnee, 113
get-defclass-list ...oouveeviieeniiiiniiiiiceee, 113
GetDefclassName.........ccooevvvveeeeeeeeiennnnnee. 113
GetDefclassPPForm..........cccccoeeeeeeennnnnnen. 113
GetDefclassWatchlnstances..................... 114
GetDefclassWatchSlots..............cccoeuunneeee. 114
GetDeffactSLiSt....uvvvieeeiiieiiieeieeieeeeeeirneee 74
get-deffacts-list........ccoevveeriiiiniienniieniee 74
220

GetDeffactsName..........cccoeeeeviiienniiennneene 75
GetDeffactsPPForm..........ccccooevveviiiennnennn. 75
GetDeffunctionListcovvvveeviienniiennneene 98
get-deffunction-list.........ccceeveiniinicnnnnne 99
GetDeffunctionName..........cccoceevvviennnnenne 99
GetDeffunctionPPFormcccccueeennenn. 99
GetDeffunctionWatch..........cocceevniiennen. 99
GetDefgenericList.......ccccoevveercieeenieeennnen. 102
get-defgeneric-listccceevveeevieennieennnen. 102
GetDefgenericName..........ccccoeevveeeveeenneen. 102
GetDefgenericPPForm............ccccceevennee. 103
GetDefgenericWatch.........ccccoeevveveveeneen. 103
GetDefglobalLList.........cceeviieeniieiniienieene 92
get-defglobal-list........coceevieriiiniiniiiiinne 92
GetDefglobalNameccccceevvieinieennnene 93
GetDefglobalPPForm...........cccccvevvvieennennn. 93
GetDefglobalValuecccccoviieniiiinnnen. 93
GetDefglobalValueForm.............cccccceuu..... 93
GetDefglobalWatchcccceeviiiiniienniens 94
GetDefinstancesList..........ccceeveveeveveennnnen. 138
get-definstances-1istcoceevveeiieenecnneee 139
GetDefinstancesName...........c.cccceeveenee. 139
GetDefinstancesPPForm.......................... 139
GetDefmessageHandlerList 134
get-defmessage-handler-list...................... 134
GetDefmessageHandlerName.................. 134
GetDefmessageHandlerPPForm 134
GetDefmessageHandlerType.................... 135
GetDefmessageHandlerWatch................. 135
GetDefmethodDescription....................... 105
GetDefmethodList..........covveveeriiennieennen. 106
get-defmethod-listc.cooevvevieerniennnnnen. 106
GetDefmethodPPForm............ccccooeeenneee. 106
GetDefmethodWatchcccceevnveeneen. 106
GetDefmoduleList..........cooceeeriiennieennen. 141
get-defmodule-list........ccceevveeeiieinieennnnen. 142
GetDefmoduleNamecccoceeeveeennnnen. 142
GetDefmodulePPForm............ccccoouvenneee. 142
GetDefruleListceeevvieeriieiniieiiceeieene 77
get-defrule-list........ccoevieeniieeniiiiieeee 78
GetDefruleName...........ccoeoveeriieiniiennneenne 78
GetDefrulePPForm...........ccccoeeviivnvieennnn. 78
GetDefruleWatchActivations..................... 78

GetDefruleWatchFirings.........ccccoecveevnnneene 79
GetDeftemplateList.........cccceevevieercieeennenns 57
get-deftemplate-1iStcoeveeeniiiiniiiennnenns 57
GetDeftemplateName...........cccccveeeveeeennennne 58
GetDeftemplatePPForm..........ccccccoceeneenne. 58
GetDeftemplateWatch...........cccceevveeennennne 58
GetDOBegIN.......cooviieiiieeniieeiieeieeceee 30
GetDOENA.......cccevieiiieieeeeeeeeee 30
GetDOLength........cccovviieniiiiniiiiiieeiene 30
GetDynamicConstraintChecking 50
get-dynamic-constraint-checking................ 50
GetEnvironmentByIndex 185, 191, 214
GetEnvironmentData........................ 186, 188
GetEnvironmentIndex.............. 179, 186, 191
GetFactDuplication........ccccccecveevveniieennnenne. 67
get-fact-duplication...........ccceevevveerveeennnennne 67
GetFactLiSt.....eevvieveieiiieeeeeeeeeeeevienene, 67,216
et-TaCt-IiSt..ueveiieeiieeeeee e 67
GetFactListChanged..........ccccovevieiniiennnen. 68
GetFactPPForm.........cccccoevviiiiiiiiiiecie, 68
GetFactSIot.....c.veeeiieeiieeieeieeeeee 68
GetFOCUS ...ovvieiiecieeeeeeeee e 87
GEt-TOCUS. .ottt 87
GetFocusStackc.coeeveeeeiieevciieceiieeiee 87
get-focus-Stackooovveeviieeniiiiiiiiiee 87
GetGlobalsChanged..........cccceeevveerveeennnenns 94
GetIncrementalReset...........coecveevniiennnnenne 79
get-incremental-reset.........cccoeeeveeennennne 18,79
GetlnstanceClass........ccceeveeeeenieernieennnen. 124
GetlnstanceName.........c.cccccveeeveeeeveeennnen. 124
GetlnstancePPFormccooceevieennen. 125
GetlnstancesChanged...........cccceeveuveeeneen. 125
GetMethodRestrictionscceeueeennee. 107
get-method-restrictions..........occveeeeveeenee. 107
GetMFType...ccooovvvviieeiiieeieeeee, 30, 69, 70
GetMFValue.........ccccoovvvvvvvennnnnnn... 30, 69, 70
GetNexXtACtVAtION ...ccoveeeveieeiieeieeeieene 87
GetNextDefclasscoeeveeeeiveenieeceieeenen. 114
GetNextDeffacts........cocceevvieiniiinniiienniennne 75
GetNextDeffunction..........cccoeeeveeveveenneen. 100
GetNextDefgenericcooceeevieernieennnnen. 103
GetNextDefglobal..........cccoovvevevieiniieenenne 94
GetNextDefinstancesccceceeveeeennneen. 139

CLIPS Advanced Programming Guide

CLIPS Reference Manual

GetNextDefmessageHandler.................... 135
GetNextDefmethod........ccccvvvveiiiiviinnneee. 107
GetNextDefmodule.........ccoovveeeeeeeennnnnnen. 142
GetNextDefrule.........ccoovvvvvvvvreeiieiiiiinnnnnee, 79
GetNextDeftemplatecccoecveevriiennnene 59
GetNextFactvvvveviiiiiiiiieeeeeeeeeeee 69
GetNextFactInTemplate..................... 69,213
GetNextInstance..........oooevvvvvveeeeeeeeiennnnnen. 125
GetNextlnstanceInClass...............ccuuu...... 126

GetNextInstanceInClassAndSubclasses...214
GetNextInstanceInClassAndSubclasses126,
216

GetpDOBegIN.....cccoveeeieeiieeiieeieeeee 30
GetpDOENA........coooiiieieeeieeciieceiee e 30
GetpDOLength.........coocveeviiiiniiiiiieiiene 30
get-profile-percent-threshold 19
GetPTYPC..oeiiieiieeieeeeeete e 27
GetpValuecoovveevieeeieeeieeevee e 30, 37
GetResetGlobals..........ccccevvieiniieiniiennien. 95
get-reset-globalsccoceeviiiiiiniiniiiniee 95
GetSalienceEvaluation.........cccccceevveennneen. 87
get-salience-evaluation............c.cceuu..... 16, 88
GetSequenceOperatorRecognition............. 50
get-sequence-operator-recognition............. 50
GetStaticConstraintChecking..................... 50
get-static-constraint-checking 51
GetStrategy...cocoveeevireeeiieeeiieeriee e 88
[0S N 1 1 () USSR 15, 88
GetTYPC..eeiieeeieeeteeeeeeeteete e 27
GetValUe cooeeeeeeeeeeeeeeeeeeeeeeeeeeeee 30, 37
GetWatchltem.......cccoevveeniieiniienniieiieee 56
HELP_DEFAULTcoceiiiiiieieieeeens 17
HELP_FUNCTIONScccoovvieienee. 17,216
T/O rOUteT e 163, 203
PIIOTIEY et 166
IMPERATIVE_MESSAGE_HANDLERS
.. 17
IMPERATIVE_METHODS.............c..c...... 17
IMplodeS.......cooeeiriiiiiiee 18
INCREMENTAL_RESET........ccccceeuenen. 18
IncrementFactCount................. 61, 69,70,72
IncrementGCLOCKS c.vvvveeeeeeeeieeeienn.. 6,214
IncrementInstanceCountc....... 127
21

CLIPS Reference Manual

Inference Corporation..........cccceeevveernnnenn. 1ii
INItCIMAZE ...ooovveeeieeeieeeee e 150
InitializeCLIPS........cccooeviiiiiiinieienne 215

InitializeEnvironment45, 51, 150, 154, 179,
181, 189, 215

INSEITS ... 18
installation of CLIPS..........cccoccvveiiiiieinnnnnn. 9
Instance address..........coovvvvvvvereerieeeeeiennnnnne. 35
Instance manipulation from C.................. 121
INSTANCE_PATTERN_MATCHING18
INSTANCE_SET_QUERIES.................... 18
INStances.......cooovvvvveeeieiieiiieeeeeeee e, 129
INEEEET.c..eeeiniiieeiiee et eiee et eree e 26
FTIY o 21 (o) 1 SR 1
Interfaces Guide............cooeevenvveveeeieieeiicnnnnn. v
IsDefclassDeletable............cccooeevvvvnnnneee. 114
IsDeffactsDeletable..........cccovveeeeeeeeennnnnen.. 76
IsDeffunctionDeletable................cc.......... 100
IsDefgenericDeletable.............cccccevueeneen. 104
IsDefglobalDeletableccceevveeennnnne 95
IsDefinstancesDeletable........................... 140
IsDefmessageHandlerDeletable............... 136
IsDefmethodDeletablec........... 108
IsDefruleDeletablecccocvvveeiieveviennnnneee. 80
IsDeftemplateDeletable..............ccoceeeuneenee. 59
LISP e 11l
ListDefclassesuuveeeeeeeeececinreeeeeeeeeeecnnnen, 115
IiSt-defClasSes ...uvvevveiieeieieirieeeeeee e, 115
ListDeffacts.....ccoovvveeeeeeiieiiieeeeeeeeeeeinnee, 76
List-deffacts....cccouvveeeeeeeiiiieiieeeeeeee e 76
ListDeffunctions..........cccceevvvveeeeeeeenncnnnen. 100
list-deffunctionsS...........ccoeevvvveeeeeeiiiennnnnee. 100
ListDefgenericscc.eeeuveerieeenieennieennen. 104
list-defgenericsccceevveeecieeenieeceiee e, 104
ListDefglobals.........cccocveeriiiiniiiiniiiniene 95
list-defglobals........cccceviiiiiiniiiiiiiie 95
ListDefinstances...........ccoeevvvveeeeeeeerecnnnnnen. 140
list-definStances...........ooovvvvvvveeeeeeviennnnnee. 140
ListDefmessageHandlersc....... 136
list-defmessage-handlerscccec........ 136
ListDefmethods...........ccooevvvvveeeeeiienncnnnee. 108
list-defmethodS.........coovvvevvveeeeiieiiiiinnnee, 108
ListDefmodules...........ccooeevvvveeeeeeeenncnnnnne. 143

222

list-defmodules............ccoeevvrreeeeeiienncnnnnen. 143
ListDefrules......ccccvvveeiiiiiieiiieeieeieeeeeeinnee, 80
List-defrules......ccoovvveeeeeeiieiiiiieeeeeeeeeennee, 80
ListDeftemplates........cccceeevveercreeencieeenneenns 59
list-deftemplatesccocveevveeeniiennieennneens 59
ListFocusStacK........cccoovvvvvvvvreeiieiiiiinnnnnen, 88
List-fOCUS-StaCK ...uvvveeeeeeeeeiirereeeeee e, 88
load............... 14, 51, 145, 147, 149, 151, 154
LoadFactS......coeevvvviiiiiiiiieeeeeeeeeiviene, 71, 151
10ad-TaCES .ceveneeeeeeeeeeeeeeeee e, 71, 151
LoadFactsFromString..........cccccce...... 71,216
LoadInstances.......cccvveeueeeeeeeeeennnnnnn. 129, 151
load-instances........cccceeeeeeeecnnveeeennnn. 129, 151
LoadInstancesFromString........................ 214
LoadInstancesFromString................. 129,216
logical names..........ccceeeveeeciieencieeenieeenen. 163
SEAIN..eeeeeiiieeeee e 165
116 (011 | SRR 165
Bttt eeere e e e e e e e e et eenns 165
WAIalog...oeeeevieeiieeiee e 165, 173
wdisplayccceeevieeiiieeniieens 66, 137, 165
WEITOT «..eeeeeeeeeeeeeeeeereeeeeeeeeeaeneens 51, 165
WPTOMPE .envieeiieeeiieeeiie e 165
WELACE .evvvveeeeeeeeeeirereeee e e e eeeearrereeeeeeees 165
WWATNINE e eeveeeiieeeiieenieeenieeenireesieees 165
LOGICAL_DEPENDENCIES. 18
JOWCASE...ciieeeeeeiirreeeeee e 19
0012113 TR 144, 145, 150
Makelnstancecouvveeeeeeeeveevevvvnnennnes 5,130
MAKE-INStANCEvvvvveiieiieieirireeeeee e, 130
MatChesoooveunrreeieee e 80
MAXIMUM_ENVIRONMENT_POSITIO
NS e 189
memalloC.C..ooovvvveeeeiieiieiiieeeeeeee e, 216
memalloc.h......ccoovveeiiiiiiiiiie, 216
MEMDEIS......oviiiiiiiiiieiieceece e 18
MemOry management.........cceceeeveeneeernneene 173
1001530010) 2% SRR 216
MemoryUsed.......ccccueeevieeniiieenieennieenen, 175
MemRequestS......ccccueeevieeeiieeeiee e 174
MEM-TEQUESES ..veeenireeeireeriieerieeeiieesieees 174
MemUsed.....cccoovvveeiiiiiiiieieeeeeeeeeeneee, 175
MEM-USEd.....cooerrrriereeeeeeiirrreeeeeeeeeeennee 175
Index

Message-passing from C.........cccccccveeueene 131
MULTIFIELD_FUNCTIONS.............. 18, 19
INASA oo iii
next-handlerp.......coocveevieeeiieeniiecrieeee 17
next-methodp........cccceevvieeniiiiniiiiniieiiee 17
NS e 18
OBJECT_SYSTEM.....ccooiiiieieeieeee, 19
0] 015 1 RS 14, 164
override-next-handlercc.cccoevveennnen. 17
override-next-methodcccceevrveeeennennne 17
PATAMELET..cneveeeiiieeiiieeeiee e 27
PArSEfUN.C...uvvieiiieeiieeieecee e, 216
parsefun.h. ..o 216
POPFOCUS......veieiieciieeeeee e 88
POP-fOCUS. ..ottt 88
POTtabIlity ...evveeieeeieecieeee e 1
Portability Note
format......cocceevieeiiiniiie, 3
ppdeffacts.......covveeviiiiiniiiee, 15
PpAefruleoveeiieeiieee 15
PreviewSend..........ccccovviiiniiiiniiiiniienen, 137
Preview-sendcccceeevieeniiieeniee e 137
PrintCLIPS ..o, 215
102501110)1 1 ARSI 14, 164, 165
PIINE-TEZION....eeeiiieeiiieeiieeiee e 19
PrintRouter...........cc........ 154, 166, 168, 215
PIofile .o, 19
Profile-infoocceeveeniiiiiiniiic 19
Profile-reset.....ccccuvevuieiniieiniieiiieiieeeen, 19
PROFILING_FUNCTIONSccccceuennee. 19
Proflfun.c......ccovieiniiiiiii 216
proflfun.h.......ccccoooeviiiiiiii e, 216
PIOZNS ..ot 18
PTIEF ...t 187
PTIF oo 187
PutFactSI1ot... oo 62,71
TEA .. iiiiiiieeeee et 14, 164, 165
TEAALNE .. 17, 165
Reference Manualcccooeevvvvvvvennnnnnn. v, Vil
Refresh ..o 81
RefreshAgenda.........ccoooveeviiiiniiiniiiinnen, 89
refresh-agenda.........cccoeeevveveciieenieennnen. 16, 89
ReleaseMem........cocceevvieeniieiniiennieenen, 175

CLIPS Advanced Programming Guide

CLIPS Reference Manual

release-mem........ccccveeeeeeeeeeiiinneeeeeeeeeennnn, 175
RemoveBreak........ccccccovvvvvveveeiiiiiiiinnnnen, 81
remove-breakcocceeeiiiiiiiiiiiiniieie e, 81
RemoveClearFunctionccccccceeveennnneee. 52
RemovePeriodicFunction........................... 52
RemoveResetFunctioncccccceeveunnneee. 52
RemoveRunFunctioncccceeeeeeennnnnnnne. 89
ReorderAgenda........ccccveeeevveeniieenieeenniens 89
TEPlACES ..o 18
RerouteStdin........eveevvvveeveeeeeieiiiiinnnee, 150
ReSet..coovviiiiiiieeeieieiiiiinnnn, 5,47,53,97, 154
TESES o 18
Restorelnstances...........cooeevvvveeeeeeeenecnnnnnen. 130
IEStOrE-INStANCES eevveneeeeeeeereeennaeennen 130, 131
RestorelnstancesFromString..................... 214
RestorelnstancesFromString............ 131, 216
Retract.....ooueeeveevivviiiiiiiiieeeeeeenens 72, 154, 155
RINATZCOUNL.....ceeeiiieeieeeieeciie e, 25
RtnDouble.......ccovvveeeeiiiieieeeeeceeeee, 26
RtnLeXeme.....ccoouvvvveeeeiiiiiiieeieeceeeeeeinnee, 26
RENLONG .o, 26
RtnUnKnownoooovvveeeeeeeeeeieieieeenn. 27, 30
RUN..coooiiiiiiiiiiieeeiieeeeee e, 90, 154, 181
RUN_TIME......ccoovvvveiieeeennn. 15,19, 150
run-time modulecooevvvinirieeieeinnnn. 149
SAVE e 53
SAVEFACESuvvvvveiieeeeeereee e 72
SAVE-TACES...evvvvieeiiciieeeeeeee e 73
SaveInstances......cccceeeeveecevveeeeeeeeeeeennnnen, 131
SAVE-INSLANCES.ceevvenrrrrreeeeeeeeeeirrreeeeeeees 131
Send.......oooeviiiieeeeeeeee e 5,131
SetActivationSalience............ccooeevuvvvvveeneen. 90
SetAgendaChanged........ccccevvveeriieennnnene 90
SetAutoFloatDividendccooevvvvennnneen. 53
set-auto-float-dividend............cccceuvvveeen.... 53
SetBreaK....oooovvveeeeiiiiiiieieeieee e 81
SEL-DIeak.......vvveevieieeiiiiirieieeeeeeeeerreeeeen, 81
SetClassDefaultsMode..................... 115,214
set-class-defaults-mode...........ccccvvveeeen.... 115
SetConserveMemory...........cceeveeeenveeennnen. 176
SetCurrentEnvironment 179, 186, 191

SetCurrentEnvironmentByIndex179, 186,
191

223

CLIPS Reference Manual

SetCurrentModule.........ccccceevvieernieennen. 143
set-current-moduleccoceevieniennnenn 143
SetDefclassWatchcocceevnneenne. 115, 116
SetDeffunctionWatch..........c.cceceerieennnne 101
SetDefgenericWatchcoeeeenieennnen. 104
SetDefglobalValue............cccceevveennennnne. 5, 96
SetDefglobalWatch..........ccccovviiiniiiinnnen. 96
SetDefmessageHandlerWatch.................. 137
SetDefmethodWatch...........ccocceeviennnnen. 108
SetDefruleWatchActivations 81
SetDefruleWatchFirings..........ccccoecveevunenne 82
SetDeftemplateWatchcccceeveveeennennn. 60
SetDOBeginccoocveeviiieiiieniceeieeeeee 39
SetDOENAcoouiiiiiiiiieieceeeee e, 39
SetDynamicConstraintChecking................ 53
set-dynamic-constraint-checking......... 54, 150
SetFactDuplication........cccccceceereeenieeneennee. 73
set-fact-duplicationccceeeveeveveeennneennne. 73
SetFactListChanged...........cccoeeveeviiiennnene 73
SetGlobalsChanged..........ccceeeveeveieeennnennne 96
SetIncrementalReset............coevveeriieennnenne 82
set-incremental-reset.......ccccvvueeeeeeeenen. 18, 82
SetlnstancesChangedccccceevueeennnnen. 132
SEtMETYPE...coovieeiieeeee e 39
SetMFValuecoocceevviiiiiiiiiiieiieeieeee 39
SetMultifieldErrorValue............cccccveeennennne 39
SetOutOfMemoryFunction....................... 214
SetOutOfMemoryFunction....................... 176
SetpDOBEZINccocuveiiiieiiieeieeeee e 39
SetpDOENdcoooviieiieiiieciee e 39
set-profile-percent-threshold...................... 19
SetPTYPE coeevveereeeee ettt 37
SetpValue.....coocveeviieiiniiiiiieeicecieeeeeee 37
SetResetGlobalscccoeceerienieinienieenee. 97
setreset-globals.......coccevviiiiiiiiiiiiiiiiieene, 97
SetSalienceEvaluation............ccccceeeeeieennee. 91
set-salience-evaluation............ccccccevueeenee. 91
SetSequenceOperatorRecognition 54
set-sequence-operator-recognition............. 54
SetStaticConstraintChecking 54
set-static-constraint-checking 54
SetSrALEZY .veeeereeeereeeeiee et eeree e 91
SEL-SITALEZY veevvveenreeeiiieeiee et 15,91
224

SELTYPE weeeeveeeiiieeieeeiee et 37, 39
SEtUP flags ..ooevvveeeieeeieeee 13
SetValue....coovveeeeeeiiiiiiiiiiieeeeeeeeeeeiin, 37, 39
SHORT_LINK_NAMES........cccovvvvvrnennn. 19
ShOWBIeaksccoovvevvrveieeeeiiecirreeeneen. 82
ShOW-breaksccoeeeeeeeeeeeeiiieeieeeeeeeeeeeeeeenn, 82
ShowDefglobals..........ccccoevviirriiiiniiiniaenns 97
show-defglobals...........ccocerviiniiniiininen. 97
SlotAllowedValuescccoveveeeeeeeeecnnnneen. 116
slot-allowed-values..........ccccccoovevvvvvnnnnnnn. 116
SlotCardinalityccooceeevvieernieennieennnen. 116
slot-cardinalitycccceeveveeerieeenieeeiene 117
SlotDirectAccessP.......ccccovvveeeeeiiiiiiicnnnne. 117
SIOtEXIStP ..., 117
SIOtFaCetSuvvvvvveeeeeeeeieirreeeee e, 117
SIOt-TACELS .uvvvveeeiei e 118
SlotInitableP............cccoevviivvevieeiiiiiiinnee, 118
SIOtPUDLCP....evvvvveiiiiiiiieeeee e, 118
SIOtRANGEcoovvvieiiieiieeeieeeeeee, 118
SIOtTANZE ..o 119
SIOtSOUICES.....uvvvreeeeeeeeieciriereeeeeeeeeeeineee 119
SIOt-SOUICES...vvvveeieeieeirieeeeeeee e 119
SIOtTYPES eevveeieieeiieiieeeee e 119
SIOt-EYPES .ottt 119
SlotWritableP...........ccoovvvvvvevieiiiiiiinnee, 120
Smalltalkccoovvvveeeiiiiiiiiieeeeeceeeeeeee, v
Software Technology Branch..................... 1ii
o) 48 1110 0 SR 216
SOrtfun.h....ccoeeeeeiiiiii 216
SEE=CAL.uuuiieeeeeeeeeeeccee e e 19
SEE-COMPATE.....uvveeiiieeriieeiieeeiieeeiieesieee e 19
18 116 (5 19
STRING_FUNCTIONS.........ceeeevvreeennee 19
strlength.....oooeoiiiiii 19
SubclassPcvvveeiiiiiii e, 120
SUDSEQS..veevveveerieeeeteete e 18
SUDSELP..eeeuiieeeiieeeiieeeiee et 18
SUD-SIIINE ...ceiieeiieeiieeiteeeee e 19
SuperclassPcoooeeviiiiiiiiiie, 120
502101 070) F S 26, 32
SYMI=CAL1euvieeeiiieeeiiieeeiteeeiieeeireeeieee s e 19
TEXTPRO_FUNCTIONS.................. 19,216
£OSS 1uurrrrrreeeeeeeieeiirrrrreeeeeeeeeerrrreeeeeeeeenntnrees 19

TRUE ..o 215
TrueSymbol.........ccccovveviveeiinennne 34,213,215
UndefClassS....oeeeveveeeieieiieeeeeeeeieiiieeene 5,120
UnNdeffactS .oeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeene 5,76
Undeffunctioneeeeeeeeeeveeiiivneneeennne. 5,101
Undefgeneric......ccoovveeeeveeecieeenveeeiieens 5, 105
Undefglobal........ccccceeviiiiniiiiiiiniene 5,97
Undefinstances......ccccevvueeeeeeeeenenn. 5, 140, 141
UndefmessageHandlercccccccceeee. 137
undefmessage-handler.............cccccevenneen. 137
Undefmethod.........coovveveeviiiiiiiiiinn. 5,109
Undefrule .oooeeeeeeeeeeeieeieeeeeeeeeeeee, 5, 83, 154
Undeftemplate..........ccocveeviiennieenneeennne. 5,60
UngetcCLIPSo.ooieieiieeeeeeeeeee e 215
UngetcRouterceeevveeenieeniieennne, 169, 215
UnmakeInstance..........ueeeeeeeeeeeennnaaenn... 5,132

CLIPS Advanced Programming Guide

CLIPS Reference Manual

UnwatCh......ooovviiiieiieiiiieeeeeeeeee, 56
UPCASE...vveeeiiiieeeeiireeeeerreeeeesireeeesennneeeenns 19
USER_ENVIRONMENT_DATA........... 188
USEr’s GUIAE ...eeeeeeeeeeeeeeeeeeeeeeeeeenn v, Vil

UserFunctions21, 26, 45, 144, 150, 156,
157, 160, 161, 200

ValidInstance Addressccceeeeeeeennnnnee. 133
ValueToDouble......c.cuuueeeeeeeiiiiiaann... 30, 37
ValueTolntegercoecuveeviieeneeennnene 30, 37
ValueToLongcccceeeeveenciieeeieeeiiens 30, 37
ValueToString......ccceeveeveiviieeiniieenneeene 30, 37
WaALCH e 56, 154
WCLIPS ... 215
WINDOW_INTERFACE............cceuuuen.. 20
WPROMPTooooiieieeieeeeeceeeeee 215
225

