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Abstract—Temporal causal modeling can be used to recover
the causal structure among a group of relevant time series
variables. Several methods have been developed to explicitly
construct temporal causal graphical models. However, how to
best understand and conceptualize these complicated causal
relationships is still an open problem. In this paper, we propose
a decomposition approach to simplify the temporal graphical
model. Our method clusters time series variables into groups
such that strong interactions appear among the variables within
each group and weak (or no) interactions exist for cross-
group variable pairs. Specifically, we formulate the cluster-
ing problem for temporal graphical models as a regression-
coefficient sparsification problem and define an interesting
objective function which balances the model prediction power
and its cluster structure. We introduce an iterative optimization
approach utilizing the Quasi-Newton method and generalized
ridge regression to minimize the objective function and to
produce a clustered temporal graphical model. We also present
a novel optimization procedure utilizing a graph theoretical
tool based on the maximum weight independent set problem
to speed up the Quasi-Newton method for a large number
of variables. Finally, our detailed experimental study on both
synthetic and real datasets demonstrates the effectiveness of
our methods.

Keywords-temporal graphical model decomposition; Quasi-
Newton method; generalized ridge regression; maximum
weight independent set;

I. INTRODUCTION

Causality modeling in time series data has drawn much

research attention of late. Given a set of interacting time

series, how can we determine if the history of one time series

affects the development of another variable? This question

about causality plays a fundamental role in economics,

health and medical sciences, biology, and the decision-

making process, at various domains and levels. For instance,

economists are interested in if the domestic demand is a

causal factor for China’s economic growth [1]; financial

analysts want to determine if a company’s stock price is

causally affected by its inventory turnover ratio [2], and

neurobiologists try to understand if the time series of one

brain region is a causal factor of another region [3].

Temporal causal modeling tries to recover the causal

structure among a group of relevant time series variables [2].

A fundamental tool for such inference is the notion of

Granger causality [4]. It is derived from the intuition that if

one time series is the cause of another time series, then the

former can help improve the prediction accuracy of the latter

significantly. More specifically, to determine if time series x
is Granger-causal for y, we test if the auto-regressive model
for y using the past values of both x and y is statistically
significantly more accurate than the model using only y’s
own past value. The notion of Granger causality has been

combined with graphical models to study the interaction

between multiple time series [5]. A temporal graphical

model is a directed graph where each vertex corresponds

to a time series and each edge indicates a direct causality

from the starting vertex to the end vertex. The regression

coefficient from the auto-regressive model can be assigned to

each corresponding edge to indicate the degree of causation

or interaction.

Several methods have been developed to explicitly re-

construct temporal causal models [2], [6]. These works

typically target a small number of time series variables (on

the order of tens). Recently, temporal causal modeling has

been extended to study relatively large complex systems,

whose dynamics are captured through a set of time series.

Typically, each time series measures a basic unit in the

system. Basic units may interact with each other for a certain

period of time, and their possible interaction relationships

can be summarized through a so-called complex network

topology [7]. For instance, in biology, the protein-protein

interaction network specifies which two proteins may inter-

act with each other, where the activity of each protein can

be measured by the gene-expression time series profiles.

Given this, time series x can affect time series y only
if an edge (x, y) links from x to y in the network. The
sparse underlying network topology thus allows efficient

computational procedures to recover the causal structure for

a large number of time series.

However, a difficult problem naturally arises as we are

able to construct more and more causal graphical models:

how can we better understand and conceptualize these

complicated causal relationships? Indeed, a causality model

with only 20 variables can be overwhelming and difficult
to interpret at a global level [2]. Clearly, comprehending a

much larger causal model with hundreds or even thousands

of variables is even more daunting and elusive. Can we

simplify the temporal causal graphical model to get a better

global view of the interactions among a set of relevant time

series? This is the central problem we address in the present

work.



To simplify the causal graphical model, we investigate a

decomposition approach to cluster time series into groups

such that strong interactions appear among the variables

within each group and weak (or no) interactions exist for

cross-group variable pairs. Clearly, this goal is also con-

sistent with the model for complex systems, which tend to

be composed of several smaller and relatively independent

components. A key thrust here is that the decomposition

model is achieved through balancing the prediction power

of the causality model with the simplicity of the model.

Specifically, the model simplicity is described in terms of

both the sparsification of the regression coefficient matrix

and an explicit cluster structure of the graphical model. From

a different perspective, our approach can also be viewed

as a method for clustering a set of interacting time series.

What differentiates our work from the existing work on time

series clustering [8], [9], [10], [11] is our clustering criteria,

which is derived from temporal graphical modeling and is

very challenging to optimize.

In this work, we present a novel and efficient decomposi-

tion scheme for a temporal graphical model to cluster a set

of interacting time series, with the following contributions:

1. We formulate the clustering problem for temporal

graphical models as a regression coefficient sparsification

problem and define an interesting objective function which

balances model prediction power with its cluster structure.

2. We propose an iterative optimization approach utilizing

the Quasi-Newton method and generalized ridge regression

to minimize the objective function and to produce a clustered

temporal graphical model.

3. We develop a novel optimization procedure using a

graph theoretical tool based on the maximum weight inde-

pendent set problem to speed up the Quasi-Newton method

for a large number of variables.

4. We performed a detailed experimental study on syn-

thetic and real datasets to demonstrate the effectiveness and

efficiency of our approach.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Temporal Graphical Modeling

In the following, we give an overview of temporal

graphical modeling for the cause-effect relationships of

multivariate time series. Let Xi = [x0
i , x

1
i , · · · , xL

i ] be
the i-th time series from time point 0 to the end point
L. Let X(j) = [xj

1, x
j
2, · · · , xj

N ]′ be the snapshot vector
for the value of each time series at time point j. Let
X = [X1,X2, · · · ,XN ]′ = [X(0),X(1), · · · ,X(L)] be the
matrix for all N time series, where each row (Xi) corre-

sponds to a time series and each column (X(j)) corresponds
to all time series at time point j.
In time series analysis, inference about cause-effect re-

lationships is commonly based on the concept of Granger

causality [4], which is defined in terms of predictability

and exploits the direction of the flow of time to achieve

a causal ordering of dependent variables. Simply speaking,

given two time series Xi and Xj , Granger causality tests

if time series Xi at time point t + 1, Xt+1
i , can be better

predicted if we consider both time series Xi and Xj from

time t − u to t than if we only consider the time series Xi

itself. When the Granger test is restricted to revealing linear

relationships among different variables, it is closely related

to the linear vector autoregressive (VAR) model. Let XV be

the submatrix of X which contains only the time series of
information set V = {v1, . . . , v|V |}. We formally represent
time series Xj in a VAR model as follows:

Xj(t) =

T
∑

u=1

∑

v∈V

φjv(t − u)x(t−u)
v + ε(t),

where each φjv(t−u) is the coefficient indicating the causal
influence from Xv to Xj , and {ε(t), t ∈ Z} is a white noise
process with non-singular covariance matrix Σ. In this sense,
we say Xi is Granger-non-causal for Xj with respect to XV

if and only if φji(t − u) = 0 for all 1 ≤ u ≤ T .
The path diagram proposed by Eichler [5] combines the

notion of (multivariate) Granger causality with a graphical

model, thus forming the basis of temporal graphical model-

ing. A path diagram is a directed graph G = (V,E), such
that each vertex represents a time series and each edge (v, v′)
exists if and only if v is a causal factor to v′. Path diagrams

aid in visualizing the causal relationships among different

variables. To construct a path diagram, for each vertex (or

variable in time series data), we identify which neighbors are

Granger causal for it. Efficient algorithms introduced in [2],

[7] are able to construct the path diagram and recover the

causal relationships. Next, using the path diagram concept,

we formally define our problem of studying the global view

of interactions among multivariate time series.

B. Problem Definition

Our goal is to decompose a temporal graphical model into

clusters of interacting time series. Our input includes a set

of time series and the path diagram, G = (V,E), which
indicates the potential causal relationship between any two

time series. By selectively removing links of low impor-

tance, we seek to break the path diagram into disconnected

components. Then, each time series variable is affected by

(or interacts with) time series inside its own component but

not between components. Dropping the cross-group causal

factor should result in a minimal loss of prediction accuracy.

To formalize this requirement, we utilize the vector au-

toregressive model. The clustering structure of the temporal

graphical model is represented as the regression coefficient

matrix Φ(u) having a block diagonal structure:

Φ(u) =











Φ1(u) 0 · · · · · · 0
0 Φ2(u) · · · 0
...

. . .
...

0 0 · · · ΦK(u)











(1)

For any vertex pair i,j belonging to different clusters,
Φ(u)ij = 0, for any u. Each Φk(u) is a square matrix. Since



the regression coefficient matrices are used to simplify the

path diagram, for each Φk(u)ij 6= 0, we need (i, j) ∈ E.
We do not introduce any new causal relationship in the

VAR model besides those in the path diagram G. Formally,
we define the clustered regression coefficient matrices as

follows.

Definition 1: (Clustered Regression Coefficient Matri-

ces) Let X(t), 1 ≤ t ≤ L, be the N time series and

G = (V,E) be its path diagram for the causal modeling. Let
f be the clustering assignment function, i.e., for each vertex
i, f(i) is its cluster ID. A clustering coefficient matrix Φ(u)
is referred to as a clustered regression coefficient matrix if

it satisfies the following two properties: 1) for any vertices i
and j, f(i) 6= f(j) ⇒ Φ(u)ij = 0; and 2) for any vertices i
and j, Φ(u)ij 6= 0 ⇒ f(i) = f(j) and (i, j) ∈ E, i.e., vertex
i potentially is a causal factor of j in the path diagram.
Basically we require the clustered regression coefficient

matrices to comply with the causal prediction described

by the path diagram. Note that in general, we can require

them to comply with other known knowledge of such causal

prediction. For instance, in analysis of complex systems, we

may replace the path diagram with the underlying interaction

relationships (the so-called complex network).

To maximize the predictive accuracy while minimizing

its representation cost, we define a cost function for Φ(u)
which is the sum of all residuals (regression errors) plus a

regularization penalty:

cost =

L
∑

t=1

||X(t)−

T
∑

u=1

Φ(u)X(t−u)||2 +α(
∑

||Φ(u)||2)

where
∑

||Φ(u)||2 is the L2 penalty for the regression

coefficient, and α is the complexity parameter that controls
the amount of shrinkage.

Clearly, we would like to minimize the prediction error

(cost). In other words, we seek the coefficient matrices

for the desired clustering f which minimize the clustering
cost. However, one problem with this criteria is that if

we do not constrain the clustering assignment function, the

minimum cost configuration tends to group all the vertices

in one cluster and leave other clusters empty. To tackle

this problem, we apply a constraint to balance the size of

clusters.

To achieve this, we introduce a cluster membership matrix

C withN rows andK columns, where each row corresponds
to a vertex and each column corresponds to a cluster. Each

entry Cik acts as an indicator variable: Cik = 1 means vertex
i belongs to cluster Ck, and Cik = 0 means vertex i does not
belong to cluster Ck. In addition, we have

∑K
k=1 Cik = 1.

Utilizing the cluster membership matrix, we can rewrite

our optimization problem. For simplicity, we only consider

the time window T = 1 here (Φ = Φ(1)). Our framework
and algorithm can easily be generalized to T > 1.
Definition 2: (Optimal Decomposition Problem) The

optimal decomposition is to find a cluster membership

Figure 1. Overview of Algorithm

matrix C and its corresponding regression coefficient matrix
Φ, such that

cost =

N
∑

i=1

K
∑

k=1

L
∑

t=1

(Cikxi(t)−

N
∑

j=1

φijxj(t− 1)CikCjk)2

+ α(

N
∑

i=1

N
∑

j=1

φ2
ij) + β

K
∑

k=1

(

N
∑

i=1

Cik)2 (2)

is minimized where Cik ∈ {0, 1} ∧
∑K

k=1 Cik = 1.

Note that the last term β
∑K

k=1(
∑N

i=1 Cik)2 is our size
constraint for balancing the size of clusters. It is not hard

to see that
∑K

k=1(
∑N

i=1 Cik)2 is minimized if and only if
∑N

i=1 Cik for every k are equal. That is,
∑K

k=1(
∑N

i=1 Cik)2

serves as a normalized clusters’ size factor for the cost

function.

By using the cluster membership matrix in the cost

formula, we cause the regression coefficient matrix Φ to
be sparse. This is because the clustering coefficient φij

is only useful when Cik = Cjk = 1, i.e., both time
series i and j belong to the same cluster. We can see that
the decomposition problem is a combined integer (binary

membership matrix) and numerical (regression coefficients)

optimization problem. This problem is quite challenging

as it contains a large number of (N2 + NK) unknown
variables, where the cluster membership matrix contains

NK unknown variables and the regression coefficient matrix
has N2 unknown variables.

III. AN ITERATIVE OPTIMIZATION PROCEDURE

Our solution to the optimal decomposition problem em-

ploys the relaxation strategy, which generalizes the binary

membership matrix C to be a probabilistic membership ma-
trix. For each time series i, we relax the membership entry
Cik to be the probability of time series i in cluster k, i.e.,
Cik = p(k|i), (0 ≤ p(k|i) ≤ 1 and

∑

k p(k|i) = 1). This
relaxation allows us to treat both clustering and regression

numerically.

Specifically, our optimization procedure will optimize

the clustering membership matrix and regression coefficient

matrix in an alternating and iterative fashion (as illustrated

in Figure 1). To begin with, we apply an efficient algorithm

developed in [7] to extract the path-diagram from the pro-

vided time series data. Given this, two optimization steps



are iteratively employed to improve our objective function

until cost reaches a local minimum. In the first step, we

seek the optimal probabilistic membership matrix [p(k|i)]
where the regression coefficient matrix Φ = [φij ] is fixed.
The traditional Quasi-Newton method can be used to handle

it. In the second step, we optimize the regression coefficient

matrix assuming that [p(k|i)] is given. We formulate this
problem as a generalized ridge regression problem and solve

it using existing approaches. Next, we describe these two

steps in detail.

Step 1: Optimizing Probabilistic Membership Matrix.

In this step, we assume the regression coefficient matrix

is given and try to optimize the probabilistic membership

matrix to minimize the cost.

First, we incorporate constraints into the cost formula

using the Lagrange multiplier method:

F = cost +

N
∑

i=1

λi(

K
∑

k=1

p(k|i) − 1)

where λi is Lagrange multiplier for membership constraint
∑K

k=1 p(k|i) = 1. Then, we compute its derivatives with
respect to each entry p(r|s) of the membership matrix as
follows:

∂F

∂p(r|s)
=

L
X

t=1

(xs(t) −
N

X

j=1

φsjxj(t − 1)p(r|j))2

−2

N
X

i=1

p(r|i)φis

L
X

t=1

xs(t − 1)(xi(t) −
N

X

j=1

φijxj(t − 1)p(r|j))

+2β

N
X

i=1

p(r|i) + λs

where p(r|s) is the probability of vertex s being in cluster
r.
It is hard to get a closed form for each optimal p(r|s) as

there is no easy way to solve a set of quadratic equations

( ∂F
∂p(r|s) = 0). The classical Newton method can handle
this type of optimization problem. Let X be the vector of
variables (i.e. vector {p(k|i),λi} with NK + N elements

in our problem). The typical iterative update scheme is

expressed via gradient ∇f(X(n)) as follows:

X(n+1) = X(n) − [H(X(n))]−1∇f(X(n)) (3)

where X(n) is the estimated value of X in the n-th iter-
ation, and H(X) is the Hessian matrix. Specially, for our
optimization problem, H(X) is a (NK + N)× (NK + N)
square matrix.

Clearly, it is too costly to evaluate this Hessian matrix,

even if N and K are not very large. To deal with this

problem, we employ the Quasi-Newton method [12], which

seeks to approximate the Hessian matrix, by avoiding the

direct inversion of the Hessian matrix. In this method, we

focus on solving the following linear system:

H(n)(X(n+1) − X(n)) = ∇f(X(n))

If we substituteX with appropriate variables, we can express
the linear system of our problem as:

H
(n)

„

C(n+1) − C(n)

λ(n+1) − λ(n)

«

= ∇F (C(n)
, λ

(n))

Given this, we can apply another formula, such as the

Davidon-Fletcher-Powell (DFP) formula [12], to iteratively

update and approximate the Hessian matrix. Thus, the Quasi-

Newton method can help construct the probabilistic mem-

bership matrix which results in a local minimum of cost.

Step 2: Optimizing Regression Coefficient Matrix. In the

second step, we assume the probabilistic membership matrix

is fixed and try to optimize regression coefficient matrix Φ
in order to minimize the overall cost. As we will see, this

subproblem corresponds to a generalized ridge regression,

so we can obtain the closed form solution to optimize Φ
efficiently.

To simplify this optimization problem, we first observe

that each row of the regression coefficient matrix ΦT
i =

(φi1, · · · , φiN ) can be optimized independently. This is

because we can decompose the objective function (cost)

into several sub-objective functions Fi such that cost =
∑N

i=1 Fi, where

Fi =

K
∑

k=1

L
∑

t=1

(p(k|i)xi(t)−p(k|i)

N
∑

j=1

φijxj(t−1)p(k|j))2

+ α
N

∑

j=1

φ2
ij + β





K
∑

k=1

p(k|i)(2
N

∑

j=1

p(k|j) − p(k|i))



 (4)

Each Fi is uniquely determined by the corresponding row

ΦT
i , and can be solved independently. Moreover, the global

minimum of cost is achieved by each Fi obtaining its own

minimum.

Given this, we now focus on how to optimize

Fi directly. To better understand this problem, we

rewrite it in a matrix form. Let yk be the vector

(p(k|i)xi(1), p(k|i)xi(2), · · · , p(k|i)xi(L))T . LetXk be the

the matrix with L rows and N columns where its entry at
t-th row and j-th column is p(k|i)p(k|j)xj(t−1). Basically,
each row of Xk corresponds to a different time point, and

each column of Xk records a different time series. Using

these two vectors, we can rewrite Fi as follows:

Fi =

K
∑

k=1

(yk − XkΦT
i )T (yk − XkΦT

i ) + αΦT
i Φi + Mi (5)

where Mi is the last term in Eq. 4, which is constant with

regard to Φ. Note that if K = 1 (with only one cluster),
then we have the traditional ridge regression problem [13].

Lemma 1: The optimal Φi that minimizes Fi is

Φi = (

K
∑

k=1

XT
k Xk + αI)−1(

K
∑

k=1

XT
k yk)

where I is the identity matrix.



Proof Sketch: Simply by noting:

∂Fi

∂Φi

= −2

K
∑

k=1

XT
k (yk − XkΦi) + αΦi

∂2Fi

∂ΦiΦT
i

= −2

K
∑

k=1

XT
k Xk + α

Since ∂2Fi

∂ΦiΦT

i

> 0 (shrinkage coefficient α > 0), we set the

first derivative to zero,

K
∑

k=1

XT
k (yk − XkΦi) + αΦi = 0

and obtain our results. 2

Finally, we note that the matrix Xk of each Fi does

not need to contain N columns since the causality path-

diagram G = (V,E) is typically sparse. For each time series
i, there is only a small number of other variables which
will be its causal factors, and our regression coefficient

matrix will only consider those variables. Thus, we only

need to find φij for those causal variables. Given this, we

can see that each Xk typically has only a small number of

columns, making our method very efficient for computing

the regression coefficient matrix.

Overall Algorithm: The overall procedure to decompose

the path-diagram involving these two steps is sketched in

Algorithm 1. We start by initializing the membership matrix

P (Line 1). The initial membership assignment can be purely
random or utilize the knowledge of path-diagram structure

(for instance, by a spectral clustering on the path-diagram).

Then, we iteratively invoke the aforementioned two steps for

optimizing membership matrix P and coefficient matrix Φ
(Lines 3 and 4). We repeat them until some stop criteria is
satisfied, e.g., the improvement of the overall cost is very

small or a certain number of iterations is reached (Line

5). Following that, hard cluster assignments can be made
utilizing the optimal probabilistic membership (Line 6). A
basic method is to simply assign each time series i to its
most probable cluster k, i.e., k = argmaxrp(r|i). The key
building block of our procedure is the employment of steps

1 and 2 to optimize cost to a local minimum (as formally
stated in Theorem 1).

Theorem 1: The cost of path-diagram decomposition con-

verges to a local minimum as we iteratively invoke steps 1
and 2.
Complexity Analysis: The complexity of our optimization

procedure is as follows. In the first step, optimizing the

probabilistic membership matrix, computing Eq. 3 and Hes-

sian matrix approximation each take O(N2
1 ) time, where

N1 = NK +N . If the number of iterations is k, optimizing
probabilistic membership can be completed in O(kN2

1 ) time.
In the second step, optimizing the regression coefficient ma-

trix, the highest computational cost is for matrix inversion.

Inversion of a matrix can be computed in O(R3
i ), where

Ri is the number of causal factors for the i-th time series

Algorithm 1 PathDiagramDecomposition(X ,G,K)

Parameter: X is the time series matrix
Parameter: G is the path diagram
Parameter: K is the number of clusters
1: initialize the membership matrix P ;
2: repeat
3: step 1: optimize probabilistic membership matrix P ;
4: step 2: optimize regression coefficient matrix Φ;
5: until stop criteria is satisfied;
6: assign each time series to appropriate cluster using probabilistic
membership matrix P ;

variable. The overall time complexity of the second step is

thus O(
∑N

i=1 R3
i ). Since the number of causal factors for

each variable is small, we can treat it as a constant for N
is large. Thus, the second step is much more efficient than

the first step. In next section, we develop novel methods to

speed up the computation process for the first step.

IV. A SCALABLE APPROACH FOR MEMBERSHIP

MATRIX OPTIMIZATION

According to the complexity analysis in the previous

section, optimizing the probabilistic membership matrix is

the computational bottleneck of our iterative optimization

procedure. The main issue is that the Quasi-Newton method

is very costly for a large number of variables. In this section,

we introduce a strategy which takes the variable dependence

relationship into consideration and optimizes each variable

(or a small number of variables) independently, assuming

the relationships are fixed. Identifying the subdivision of

variables that minimizes the final cost can be formulated

as a maximum weight independent set problem.

A. Covering Structure

Recall that the path diagram G indicates the causal

relationship between any two vertices. If (vi, vj) ∈ E, then
vi is potentially a causal factor of vj . This also corresponds

to φij in the regression coefficient matrix Φ being nonzero.
In addition, from our objective function, we observe that

membership p(k|i) relates to only its predecessors, succes-
sors and the predecessors of its successors in path diagram

G. The predecessors of vi correspond to those vertices in

G having an edge pointing to vi, and the successors of

vi correspond to those vertices that vi points to. In other

words, the predecessors of vi contribute to the prediction

of the i-th time series, and vj contributes to the prediction

of its successors. In order to describe the set of time series

variables (vertices) which vi directly relates to, we introduce

the covering structure of vi.

Definition 3: The covering structure of vertex vi is the

set of vertices in a path diagram consisting of vi’s predeces-

sors, its successors, and the predecessors of its successors

(see Figure 2(a)).

We say vj is independent of vi if vj is not in the covering

structure of vi. This independent relationship is symmetric,

that is, vj is independent of vi means vi is independent of

vj as well. In the following, we will see that if we assume



(a) (b)

Figure 2. Covering Structure of vi

the probabilistic membership for each vertex in the covering

structure of vi is fixed, then, we can find the optimal

probabilistic membership for vi, (p(1|i), · · · , p(K|i)), by
solving a set of simple linear equations.

Optimizing individual membership p(k|i) with respect
to the covering structure of vi: To see the relationship

between the membership function for a vertex vi and its

covering structure, we first decompose the cost function into

three parts (we omit the shrinkage term as it is a constant

during the membership optimization):

cost = Fi +
∑

j∈suc(vi)

Fj +
∑

j∈V \({vi}∪suc(vi))

Fj (6)

where Fi and Fj correspond to the prediction errors for

time series variables (vertices) vi and vj , respectively, and

suc(vi) is the immediate successors of vertex vi in the path

diagram. To find the optimal p(k|i), we perform the first
order derivative of the cost function.
Let yi be the vector (xi(1), xi(2), · · · , xi(L))T . Let xi

be the vector (xi(0), xi(1), · · · , xi(L− 1))T . Let Zk be the
matrix of size L×N where its entry at row t and column i
is xi(t−1)p(k|i). Given this, we can write the derivative as
follows (the derivative of the third term in Eq. 6 is zero):

∂cost

∂p(k|i)
=

∂Fi

∂p(k|i)
+

∂(
P

s∈suc(vi)
Fs)

∂p(k|i)
, where

∂Fi

∂p(k|i)
= 2p(k|i)(yT

i − ZkΦT
i )T (yT

i − ZkΦT
i ) + 2β

N
X

j=1

p(k|j),

∂(
P

s∈suc(vi)
Fs)

∂p(k|i)
= −2

X

s∈suc(vi)

p
2(k|s)φsi(y

T
s − ZkΦT

s )T
xi

Its second order derivative is clearly greater than zero.

∂2cost

∂p2(k|i)
= 2(yT

i − ZkΦT
i )T (yT

i − ZkΦT
i ) + 2β

+ 2
∑

s∈suc(vi)

p3(k|s)φ2
six

T
i xi > 0

Note that β > 0 because we want to minimize

β
∑K

k=1(
∑N

i=1 Cik)2 when
∑N

i=1 Cik for every k is equal.

Now we enhance the objective function to take the prob-

ability constraint
∑

k p(k|i) = 1 into consideration:

newcost = Fi +
∑

j∈suc(vi)

Fj +
∑

j 6∈{vi}∪suc(vi)

Fj

+
∑

i

λi(
∑

k

p(k|i) − 1) (7)

The derivative of the new objective function with respect to

each probabilistic membership p(k|i), (1 ≤ k ≤ K) is as
follows:

∂(newcost)

∂p(k|i)
=

∂Fi

∂p(k|i)
+

∂(
∑

s∈suc(vi)
Fs)

∂p(k|i)
+ λi

Note that each of those K equations is linear. If we include
the constraint equation

∑

k p(k|i) = 1, we get a linear
system with K + 1 equations of K + 1 variables: K
variables of p(k|i) and one Lagrange multiplier λi. Since

K is typically very small and each variable is related to

only a small number of causal factors (specified in the path

diagram), we can solve each such linear system in almost

constant time. For all the time series variables, we have

O(NK3) time complexity.

However, we cannot apply these simultaneously as they

all assume the probabilistic memberships of vertices in their

covering structure are fixed. Our strategy is to find a set of

vertices which can maximally optimize the overall cost, and

then adjust their probabilistic memberships together. We can

repeat this procedure until no improvement can be made.

Given this, our problem is to find a set of vertices which

maximally optimizes the overall cost, and are independent

of each other with respect to the covering structure, such

that no vertex appears in the covering structure of others.

B. Maximum Weight Independent Set Approach

In the following, we transform the problem of choosing

a set of vertices which can maximally optimize the overall

cost into a maximum weight independent set problem. The

intuition is that if a set of vertices are pairwise independent,

then their cost improvements can be simply added together

as their memberships do not rely on each other.

Given this, we introduce the cover graph by aggregating

all the covering structures together. Specifically, the cover

graph Gc = (V,Ec) is an undirected graph, where V is the
vertex set in the path diagram, and an edge (vi, vj) exists

if and only if vj is in the covering structure of vi or vice

versa. In other words, vi and vj are not independent. Then,

we assign a weight to each vertex vi in cover graph G as:

∆cost(vi) = cost − cost(vi)

where cost(vi) is the minimized cost after we optimize
the membership of vertex vi independently and cost is the
original one. Thus, we can see the problem of choosing a

set of vertices which can maximally optimize the overall

cost is an instance of the maximum weight independence

set problem. The maximum weight independent set (MWIS)

problem is one of the well-known and well-studied problems

in combinatorial optimization. While it has been proven to

be NP-hard, efficient heuristic algorithms exist [14], [15].

We can apply any of them here.

Putting the probability constraint together with newcost
(Eq. 7), we reformulate it as a linear combination of inde-



pendent vertices:

newcost′ =
∑

i∈Vs

(Fi +
∑

j∈suc(vi)

Fj) +
∑

j 6∈Vs∪suc(Vs)

Fj

+
∑

i∈Vs

λi(
∑

k

p(k|i) − 1)

where Vs is a set of independent vertices. Note that because

they are independent, their first order derivatives still form

a linear system. It consists of |Vs| × (K + 1) equations
for |Vs| × (K + 1) variables, i.e., |Vs| × K variables of

p(k|i) and |Vs| Lagrange multipliers λi for probability con-

straints. Thus, we can apply efficient linear solvers, such as

the Cholesky Factorization-based Minimum Degree method

[16], to find the optimal membership assignment for all the

vertices in Vs.

The sketch of our MWIS-based membership optimization

scheme is outlined in Algorithm 2. For each vertex in the

cover graph, we calculate its cost improvement and take it

as vertex weight (Line 2 to 5). Then, a set of independent

vertices in terms of covering structure is updated in order

to maximally improve the cost objective function (Line

6 to 7). Finally, we repeat this process until the overall

cost converges or certain stop criteria are satisfied (Line

8). Clearly, the cost function is monotonically reduced
by successively invoking membership optimization of the

independent set; therefore, it converges to a local minimum.

Algorithm 2 MembershipOptimization(Gc,P )

Parameter: Gc is the Cover Graph; P is the Membership Matrix
1: repeat
2: for all Time series variable v ∈ V (Gc) do
3: optimize membership of v (i.e. Pv) by fixing the mem-

bership of its covering structure;
4: assign v with weight based on improvement of cost;
5: end for
6: find a maximum weight independent set IS;
7: update probabilistic membership of vertices in IS;
8: until stop criteria is satisfied
9: return optimized membership matrix P and improved cost

V. EXPERIMENTAL EVALUATION

In this section, we validate the accuracy and usefulness

of our proposed approaches for temporal graphical modeling

decomposition. First, we perform this validation on synthetic

data with a known ground truth. Then we apply our ap-

proaches to analysis of real-world GDP data.

We apply our two methods for experimental evaluation:

1) iterative optimization based on the Quasi-Newton method

(newton); 2) iterative optimization based on the MWIS

method (mwis) where each vertex is updated. For purposes

of comparison, two benchmarks are also used. The first

benchmark (denoted as Cor Ncut), uses the Pearson Cor-

relation test to generate interaction relationships among dif-

ferent variables, then Ncut [17] is employed for clustering;

The second benchmark (denoted as Dcut), applies directed

spectral clustering [18] for path diagram decomposition. We

implemented all algorithms using Matlab. All experiments

were performed on an AMD 2.0 GHz dual-core Opteron

with 4GB RAM.

A. Synthetic Data

Synthetic data generator: In order to evaluate the decom-

position (clustering) accuracy of our approaches, we utilize

the following synthetic data generator which can specify the

ground truth. Basically, the time series data are generated

from a approximate block diagonal regression coefficient

matrix, in two steps. In the first step, a community-based

graph is constructed based on the method described in [19].

This graph is used as the underlying path diagram for time

series data generation in the second step. Here, we can

specify separate average vertex degrees for intra-community

connections (denoted as Zin) and inter-community con-

nections (denoted as Zout). In the second step, we apply

the method introduced in [2] to obtain the time series

data. Initially, each edge of the underlying path diagram

is assigned a randomly generated weight as its regression

coefficient. In addition, we skew the random values so that

the regression coefficients for the intra-community pairs are

generally larger than those for the inter-community pairs.

Next, we repeatedly apply the path diagram’s edge weights

to generate time series data. In terms of matrix operations,

the next time step’s data is obtained by multiplying the

regression coefficient matrix with the current time step’s data

vector and then adding a Gaussian noise vector with mean

of zero. The process is essentially the same as the vector

autoregression process described in Sec II-A, if the history

length T = 1.

Decomposition Accuracy: An accurate decomposition

(clustering) is one where the clusters generated by the

algorithm closely correspond to the known true clusters.

To measure and compare accuracy, we apply a technique

developed for cluster ensembles [20]. Let B = (U, V ) be the
complete bipartite graph where each vertex in U corresponds
to each cluster generated by a clustering algorithm, and each

vertex in V corresponds to a true cluster. Moreover, for
each edge (ui, vj), we assign a weight, equal to the size
of the intersection set for the two clusters corresponding

to ui and vj . Thus, the clustering accuracy computation is

transformed to finding a maximum bipartite matching for

B. We accumulate the sum of weights of all edges in this
matching. The ratio of this sum over the total number of

variables in the data is the clustering accuracy.

We evaluate the decomposition accuracy of our ap-

proaches using two groups of time series datasets. The first

group is on a small number of time series variables (on the

order of tens). The second group is on a relatively large

number of time series variables (on the order of hundreds).

Results for a small number of time series variables: The

experimental results are shown in Table 1. Each experiment

is parameterized by the number of variables for the time

series data (#V ars) and the number of communities (K).



#Vars
Zout = 0.1 × #V ars/K

Cor Ncut Dcut newton mwis

10 0.7 0.6 1 1

20 0.8 1 1 1

30 0.63 0.7 1 0.87

40 0.725 0.8 1 0.975

50 0.66 0.72 1 0.98

Zout = 0.2 × #V ars/K
10 0.7 0.6 0.8 0.8

20 0.8 0.8 1 0.95

30 0.63 0.57 0.93 0.87

40 0.58 0.48 1 0.975

50 0.5 0.54 0.94 0.8

Zout = 0.3 × #V ars/K
10 0.7 0.8 1 1

20 0.75 0.55 0.9 0.85

30 0.6 0.6 0.9 0.83

40 0.58 0.4 0.68 0.65

50 0.6 0.34 0.68 0.66

Table I
CLUSTERING ACCURACY ON SMALL DATASETS

For these tests, we varied the average number of inter-

community connections (Zout = 0.1 × #V ars/K, Zout =
0.2×#V ars/K and Zout = 0.3×#V ars/K), while fixing
the average number of intra-community connections to be

Zin = 0.5 × #V ars/K. Note that #V ars/K represents

the number of vertices in each community. For each set

of Z values, we made five datasets, varying #V ars from
10 to 50. The vertices in each dataset were decomposed
into different numbers of communities, ranging from 2 to 5

communities.

As we can see, newton consistently obtains the best

clustering accuracy among all four algorithms. Overall, the

clustering accuracy of newton is better than benchmarks

Cor Ncut and Dcut by an average of 27.2% and 32%,
respectively. In addition, mwis is better than Cor Ncut and

Dcut by an average of 23.9% and 28.8%, respectively.
These results show that traditional spectral clustering Dcut

cannot accurately decompose even relatively small set of

time series. In contrast, both of our methods perform well,

with 100% accuracy in several cases.

In addition, Cor Ncut and Dcut, which also employ spec-

tral clustering, are faster than others in terms of clustering

time, especially in Matlab which has been highly optimized

for matrix computation. As for our two algorithms, mwis

takes from 2 seconds to 10 minutes for each dataset, while

newton needs only 1 to 69 seconds to finish. As expected,

newton is the best on datasets with a small number of

variables.

Results for a large number of time series variables: In

the second experiment, we generated the times series data

with the number of vertices ranging from 100 to 800, while

fixing the average number per vertex of intra-community

connections Zin = 30, and the average for inter-community
connection Zout = 20. The community-based path diagrams
in these datasets contain from 2 to 8 communities. As

we expected, newton was computationally inefficient, even

crashing Matlab in some instances.
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Figure 3. Clustering accuracy on large datasets

Figure 3 shows the clustering accuracy of large-scale

datasets. Here, the clustering accuracy of mwis is better

than that of Cor Ncut by an average of 30.1%. From the
figure, we can see our mwis is significantly better than

the benchmark Dcut, outperforming it by approximately

52.5% clustering accuracy. It is interesting to observe that
the clustering accuracy of both Cor Ncut and Dcut tend to

decrease as the number of variables increases. However, our

algorithm mwis maintains good performance on all large-

scale datasets. Moreover, mwis was able to achieve their

accuracy even with a limited number of iterations.

B. Real Data

To validate our approaches in a real-world application, we

use global economic data to seek temporal country-country

dependencies. Our dataset consists of GDP (gross domestic

product) for 192 countries, as collected by the USDA
(http://www.ers.usda.gov/Data/Macroeconomics/). The time

series data for each country is its annual GDP growth rate

over the period from 1969 to 2007. We subdivide the time

range into four time periods of approximately 10 years

each: 1969-1979, 1980-1989, 1990-1999, and 1998-2007.

We apply theMWIS-based decomposition approach to top-
down hierarchical bipartitioning down to 6 or 7 partitions,

to group countries into interdependent groups. Our results

exhibit meaningful, sometimes fascinating clusterings.

Most notable is how the grouping of the Soviet Republics

changes across the four time periods. In period 1 (1970s),

the top partition separates out Russia and 21 other nations,

indicating that the most significant division at the global

level is to separate out these economies from the rest of

the world. Most of the 22 are either Soviet Republics (8),

other communist states (5), or received strong Soviet support

(3 - Angola, Uganda, Ethiopia). The remaining countries,

in the Middle East or Africa, found the 1970s to be an

unsettling time. None of these 22 nations were Western

capitalist nations.

In the 1980s, the top partition separates out Russia

again, but with only 11 peers, including Soviet-occupied

Afghanistan. The smaller size may indicate that some com-

munist state economies were beginning to interact more with

the rest of the world and less within the communist bloc.
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Figure 4. GDP Growth Rate Time Series

After Period 2, this high-level communist bloc is gone. In

Period 3, Russia is in a 4th tier group of 31 mixed nations.

In Period 4, it is again in a 4th tier group, this time with

capitalist countries Japan and Australia.

Note that these clusterings are different from what would

have been obained if one ignored the temporal dependence

and merely tried to match similar patterns of GDP growth.

Using ordinary trajectory matching, the top-level Soviet

partitions in periods 1 and 2 would not have formed, because

these states did not all share the same growth pattern.

Another interesting observation relates to shifting patterns

of dependence and independence among four key entities:

The United States, Russia, China, and Western Europe.

The U.S. always shows close temporal ties with Canada,

and at least part of Europe. It is also always maximally

separated from Russia. However, China and Japan change

their affiliation with each time period. A final observation

is the changing balance of cluster sizes, as indicated by the

link thicknesses. This can provide some new insight into

shifting balances of power.

VI. RELATED WORK

Causal modeling or identification of causal relationships

have been an area of active scientific research [21], [22].

Traditionally, inference about cause-effect relationships is

commonly based on the concept of Granger causality, first

proposed by Clive Granger [4] in 1969. Recently, several

researchers have combined the notion of Granger causality

with graphical models [23], [24] to visualize the cause-

effect interactions for multivariate time series data[25], [5].

However, to the best of our knowledge, no effort has been

made to try to simplify and to derive a global view of a

temporal causal model. As we argued, this is clearly very

important for understanding the interactions among the time

series variables.

Our work is also related to time series clustering, which

has been extensively studied in the data mining and machine

learning communities [8], [9], [10], [11]. What differentiates

our work from the existing work is that we focus on the

interaction of time series variables. Existing time series

clustering methods do not assume that time series interaction

is relevant. Instead, they focus on deriving distance measures

or probabilistic models to capture the similarity between

time series. Basically, their goal is to group similar time

series into a cluster. However, the goal here is to cluster

time series through their causal relationships. As a simple

example, two identical time series would not be Granger-

causal of one another (adding one time series will not

improve the prediction of the time series for itself). Thus,

we are not compelling to put them together into the same

component.

VII. CONCLUSION

In summary, we have formulated a novel objective func-

tion for the decomposition problem in temporal graphical

models. We then introduced an iterative optimization ap-

proach utilizing the Quasi-Newton method and generalized

ridge regression to minimize the objective function. To

improve the efficiency of the Quasi-Newton method on

datasets with a large number of variables, we employ a

maximum weight independent set-based approach. Our ex-

periments on synthetic data demonstrate the effectiveness of



our approaches, in terms of clustering accuracy. In addition,

our tests on real GDP data uncover interesting relationships

among countries. In this work, we only consider non-

overlapping clusters. However, many real-world datasets

have inherently overlapping clusters. We plan to investigate

this problem in the future.
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