Design and Analysis of Algorithms

Question #1:

Let A[1...n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an *inversion* of A.

- List the five inversions of the array A[2, 3, 8, 6, 1].
- Give an algorithm that determines the number of inversions in any permutations of n elements in A in $O(n \log n)$ time. Explain the analysis of runtime.

Question #2:

Suppose you have one machine and n jobs, a_1, \ldots, a_n . Each job a_j has processing time t_j , profit p_j , and deadline d_j . The machine can only process one job at a time and that job must run uninterruptedly until completion. If job a_j is completed by deadline d_j , you receive profit p_j , but if it is completed after, you receive nothing. Assuming all processing times are integers between 1 and n and $d_j \ge t_j$ for all jobs, give an algorithm for computing the maximum profit you can make. What is the run time of your algorithm? Justify the run time.

Question #3:

Suppose that a graph G has a minimum spanning tree (MST) already computed. What is the runtime complexity of updating the MST if you add a new vertex and incident edges to G? Justify the complexity.