Design and Analysis of Algorithms

Problem \#1
You are given a list of unique numbers that were sorted in ascending order but then rotated. For example, $[15,22,5,6,9,10]$. Write an $O(\log n)$ algorithm to find the "rotation point" which is the index of the smallest number in the list given that list does not contain any duplicates.

Problem \#2

Given two DNA sequences:
Sequence 1: " $A G G T A B$ "
Sequence 2: "GXTXAYB"
a) Construct a Longest Common Subsequence (LCS) table to find the maximum length and value.
b) Write the algorithm to find the Longest Common Subsequence (LCS)

Problem \#3

A network is represented as an undirected graph $G=(V, E)$; Where, V
representing computers in the network and E representing the connections between them. A malware infection is detected at time t_{0} in a node $v_{0} \in V$. At each time step t_{i+1}, the malware spreads to all computers directly connected to any infected computer. Write an algorithm to compute the minimum number of time steps T required for the malware to propagate to every node in the graph.

