
Preliminary Examination April 2025

Data Structures and Fundamentals of Programming
Problem #1

In C++ implement a list/iterator using a generic double-linked-list that uses dynamic memory
allocation. The list must look like the following:

beginning -> X0 <->X2 <-> … <-> Xn <- ending

where X0 is the first node in the list and Xn is the last node in the list. Besides the class called
List, you will need class called dnode. Along with the class definition(s), you must
implement the following methods, using standard semantics, for List<T>:

 List() - Default constructor
 ~List() - Destructor
 List (const List<T>&) - Copy-constructor
 append (const T&) – appends an item at the end of the double-linked list
 remove (const T&) – removes a node with the item from the double-linked list
 dnode* <T> search (const T&)- finds/returns a node with the item from the

double-linked list
 dnode* <T> begin() – returns the first node of the list
 dnode* <T> end() – returns the last node of the list

Your implementation can NOT use STL or any other libraries (standard or otherwise).

Problem #2

In C++ implement a ternary tree abstract data type (ADT) that uses dynamic memory
allocation. Make it a tree of integers. Each node will have between 0 and 3 children (left,
middle, right). Along with the class definition(s), you must implement the following
methods for the class ternary:

 Default constructor
 Destructor – must be recursive or use a recursive method to delete all the nodes in a

tree.
 Copy-constructor – must be recursive or use a recursive method make a complete

copy of a tree.
 Preorder() – which prints out the entire tree using a preorder traversal. Must be

recursive.
 Postorder() – which prints out the entire tree using a postorder traversal. Must

be recursive.

Your implementation can NOT use STL or any other libraries (standard or otherwise).

Preliminary Examination April 2025

Problem #3

(a) Please first convert each of the following two infix expressions into a binary expression tree
and then give their postfix and prefix notations.

B * I + (N + A) / R * Y – E – X * P

P – R * E / (L – I) * (M – I) + N / A / R / Y

(Hint: draw an expression tree A+B is like this:

)

(b) Give the preorder, postorder, and inorder traversals of the tree below (use commas to separate
different nodes):

A B

+

