Computer Operating Systems

Problem \#1

Consider three process, all arriving at time zero, with total execution time of 10,20 and 40 units respectively. Each process spends the first 20% of execution time doing I/O, the next 65% of time doing computation, and the last 15% of time doing I/O again. The operating system uses a shortest remaining compute time first scheduling algorithm and schedules a new process either when the running process gets blocked on I/O or when the running process finishes its compute burst. Assume that all I/O operations can be overlapped as much as possible. What percentage of CPU time/utilization remains idle?

Problem \#2

Let $\mathrm{m}[0] \ldots \mathrm{m}[4]$ be mutexes (binary semaphores) and $\mathrm{P}[0] \ldots \mathrm{P}[4]$ be processes. Suppose each process $\mathrm{P}[\mathrm{i}]$ executes the following:

$$
\begin{aligned}
& \text { wait(m[i]); } \\
& \text { wait(m[(i+1) } \bmod 4]) \text {; } \\
& \text {............. } \\
& \text { release(m[i]); } \\
& \text { release(m[(i+1) mod 4]); }
\end{aligned}
$$

Will this cause a deadlock? Please explain your answer.

Problem \#3

Consider six memory partitions of size $200 \mathrm{~KB}, 400 \mathrm{~KB}, 600 \mathrm{~KB}, 500 \mathrm{~KB}, 300 \mathrm{~KB}$ and 250 KB . These partitions need to be allocated to four processes of sizes 357 KB, 210 KB, 468 KB and 491 KB in that order. Perform the allocation of processes using-

- First Fit Algorithm
- Best Fit Algorithm
- Worst Fit Algorithm

