
C6217_02 ii_CTP.ps 7/21/06 1:48 PM Page C6127_02

39

Algorithm Discovery and Design

2.1 Introduction
2.2 Representing Algorithms

2.2.1 Pseudocode
2.2.2 Sequential Operations
2.2.3 Conditional and Iterative Operations

2.3 Examples of Algorithmic Problem Solving
2.3.1 Example 1: Go Forth and Multiply
2.3.2 Example 2: Looking, Looking, Looking

L A B O R A T O R Y E X P E R I E N C E 2

2.3.3 Example 3: Big, Bigger, Biggest

L A B O R A T O R Y E X P E R I E N C E 3

2.3.4 Example 4: Meeting Your Match
2.4 Conclusion
E X E R C I S E S

C H A L L E N G E W O R K

F O R F U R T H E R R E A D I N G

CHAPTER 2

C5985_02_CTP.ps 7/21/06 1:48 PM Page 39C6217_02C6127_02

2.1 Introduction

Chapter 1 introduced algorithms and algorithmic problem solving, two of the
most fundamental concepts in computer science. Our introduction used exam-
ples drawn from everyday life, such as programming a VCR (Figure 1.1) and
washing your hair (Figure 1.3). While these are perfectly valid examples of
algorithms, they are not of much interest to computer scientists. This chapter
develops more fully the notions of algorithm and algorithmic problem solving
and applies these ideas to problems that are of interest to computer scientists:
searching lists, finding maxima and minima, and matching patterns.

2.2 Representing Algorithms

2.2.1 Pseudocode

Before presenting any algorithms, we must first make an important decision.
How should we represent them? What notation should we use to express our
algorithms so that they are clear, precise, and unambiguous?

One possibility is natural language, the language we speak and write in
our everyday lives. (In our case it is English, but it could be Spanish, Arabic,
Japanese, Swahili, or any language.) This is an obvious choice because it is the
language with which we are most familiar. If we use natural language, then our
algorithms read much the same as a term paper or an essay. For example, when
expressed in natural language, the addition algorithm in Figure 1.2 might look
something like the paragraph shown in Figure 2.1.

Comparing Figure 1.2 with Figure 2.1 illustrates the problems of using nat-
ural language to represent algorithms. Natural language can be extremely ver-
bose, causing the resulting algorithms to be rambling, unstructured, and hard
to follow. (Imagine reading 5, 10, or even 100 pages of text like Figure 2.1.) An
unstructured, “free-flowing” writing style may be wonderful for essays, but it
is horrible for algorithms. The lack of structure makes it difficult for the reader
to locate specific sections of the algorithm, because they are buried inside the
text. For example, on the eighth line of Figure 2.1 is the phrase,
“ . . . and begin the loop all over again.” To what part of the algorithm does
this refer? Without any clues to guide us, such as indentation, line numbering,
or highlighting, locating the beginning of that loop can be a daunting and
time-consuming task. (For the record, the beginning of the loop corresponds to
the sentence on the second line that starts, “When these initializations have

40 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:48 PM Page 40C6217_02C6127_02

been completed” It is certainly not easy to determine this from a casual
reading of the text.)

A second problem is that natural language is too “rich” in interpretation
and meaning. Natural language frequently relies on either context or a reader’s
experiences to give precise meaning to a word or phrase. This permits different
readers to interpret the same sentence in totally different ways. This may be
acceptable, even desirable, when writing poetry or fiction, but is disastrous
when writing algorithms that must always execute in the same way and pro-
duce identical results. We can see an example of this problem in the sentence
on lines 7 and 8 of Figure 2.1 that starts with “When you are finished with that
operation” When we are finished with which operation? It is not at all
clear from the text, and individuals may interpret the phrase that operation in
different ways, producing radically different behavior. Similarly, the statement
“Determine the shortest path between the source and destination” is ambigu-
ous until we know the precise meaning of the phrase “shortest path.” Does it
mean shortest in terms of travel time, distance, or something else?

Because natural languages are not sufficiently precise to represent algo-
rithms, we might be tempted to go to the other extreme. If we are ultimately
going to execute our algorithm on a computer, why not write it out as a com-
puter program using a high-level programming language such as C++ or
Java? If we adopt that approach, the addition algorithm of Figure 1.2 might
start out looking like the program fragment shown in Figure 2.2.

As an algorithmic design language, this notation is also seriously flawed.
During the initial phases of design, we should be thinking and writing at a
highly abstract level. Using a programming language to express our design
forces us to deal immediately with detailed language issues such as punctua-
tion, grammar, and syntax. For example, the algorithm in Figure 1.2 contains
an operation that says, “Set the value of carry to 0.” This is an easy statement
to understand. However, when translated into a language like C++ or Java,
that statement becomes

carry = 0;

Is this operation setting carry to 0 or asking if carry is equal to 0? Why does a
semicolon appear at the end of the line? Would the statement

Carry = 0;

mean the same thing? Similarly, what is meant by the cryptic statement
“int[] a = new int[100];”? These technical details clutter our thoughts, and at

2.2 Representing Algorithms LEVEL 1 41

Initially, set the value of the variable carry to 0 and the value of the variable i to 0.
When these initializations have been completed, begin looping as long as the value
of the variable i is less than or equal to (m – 1). First, add together the values of the
two digits ai and bi and the current value of the carry digit to get the result called ci.
Now check the value of ci to see whether it is greater than or equal to 10. If ci is
greater than or equal to 10, then reset the value of carry to 1 and reduce the value of
ci by 10; otherwise, set the value of carry to zero. When you are finished with that
operation, add 1 to i and begin the loop all over again. When the loop has completed
execution, set the leftmost digit of the result cm to the value of carry and print out the
final result, which consists of the digits cm cm-1 . . . c0. After printing the result, the
algorithm is finished, and it terminates.

The Addition Algorithm of
Figure 1.2 Expressed in Natural
Language

FIGURE 2.1

C5985_02_CTP.ps 7/21/06 1:48 PM Page 41C6217_02C6127_02

this point in the solution process are totally out of place. When creating
algorithms, a programmer should no more worry about semicolons and capital-
ization than a novelist should worry about typography and cover design when
writing the first draft!

If the two extremes of natural languages and high-level programming
languages are both less than ideal, what notation should we use? What is
the best way to represent the solutions shown in this chapter and the rest of
the book?

Most computer scientists use a notation called pseudocode to design
and represent algorithms. This is a set of English language constructs
designed to resemble statements in a programming language but that do not
actually run on a computer. Pseudocode represents a compromise between
the two extremes of natural and formal languages. It is simple, highly read-
able, and has virtually no grammatical rules. (In fact, pseudocode is some-
times called a programming language without any details.) However, because
it contains only statements that have a well-defined structure, it is easier to
visualize the organization of a pseudocode algorithm than one represented as
long, rambling natural-language paragraphs. In addition, because pseudocode
closely resembles many popular programming languages, the subsequent
translation of the algorithm into a computer program is relatively simple. The
algorithms shown in Figures 1.1, 1.2, and 1.3(a) and (b) are all written in
pseudocode.

In the following sections we will introduce a set of popular and easy-to-
understand constructs for the three types of algorithmic operations intro-
duced in Chapter 1: sequential, conditional, and iterative. Keep in mind,
however, that pseudocode is not a formal language with rigidly standardized
syntactic and semantic rules and regulations. On the contrary, it is an infor-
mal design notation used solely to express algorithms. If you do not like the
constructs presented in the next two sections, feel free to modify them or
select others that are more helpful to you. One of the nice features of
pseudocode is that you can adapt it to your own personal way of thinking and
problem solving.

42 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

{
int i, m, carry;
int[] a = new int[100];
int[] b = new int[100];
int[] c = new int[100];
m = Console.readInt();
for (int j = 0; j < = m-1; j++) {

a[j] = Console.readInt();
b[j] = Console.readInt();

}
carry = 0;
i = 0;
while (i < m) {

c[i] = a[i] + b[i] + carry;
if (c[i] > = 10)
.
.
.

The Beginning of the Addition
Algorithm of Figure 1.2
Expressed in a High-Level
Programming Language

FIGURE 2.2

C5985_02_CTP.ps 7/21/06 1:48 PM Page 42C6217_02C6127_02

2.2.2 Sequential Operations

Our pseudocode must include instructions to carry out the three basic sequen-
tial operations called computation, input, and output.

The instruction for performing a computation and saving the result looks
like the following. (Words and phrases inside quotation marks represent spe-
cific elements that you must insert when writing an algorithm.)

Set the value of “variable” to “arithmetic expression”

This operation evaluates the “arithmetic expression,” gets a result, and stores that
result in the “variable.” A variable is simply a named storage location that can
hold a data value. A variable is often compared to a mailbox into which one can
place a value and from which one can retrieve a value. Let’s look at an example.

Set the value of carry to 0

First, evaluate the arithmetic expression, which in this case is the constant
value 0. Then store that result in the variable called carry. If carry had a pre-
vious value, say 1, it is discarded and replaced by the new value 0. You can
visualize the result of this operation as follows:

carry

Here is another example:

Set the value of Area to (π r2)

Assuming that the variable r has been given a value by a previous instruction
in the algorithm, this statement evaluates the arithmetic expression π r2 to
produce a numerical result. This result is then stored in the variable called
Area. If r does not have a value, an error condition occurs, because this
instruction is not effectively computable, and it cannot be completed.

We can see additional examples of computational operations in steps 4, 6,
and 7 of the addition algorithm of Figure 1.2:

Step 4: Add the two digits ai and bi to the current value of carry to
get ci

Step 6: Add 1 to i, effectively moving one column to the left

Step 7: Set cm to the value of carry

Note that these three steps are not written in exactly the format just
described. If we had used that notation, they would have looked like this:

Step 4: Set the value of ci to (ai + bi + carry)

Step 6: Set the value of i to (i + 1)

Step 7: Set the value of cm to carry

However, in pseudocode it doesn’t matter exactly how you choose to write
your instructions as long as the intent is clear, effectively computable, and

0

2.2 Representing Algorithms LEVEL 1 43

C5985_02_CTP.ps 7/21/06 1:48 PM Page 43C6217_02C6127_02

unambiguous. At this point in the design of a solution, we do not really care
about the minor language differences between

Add a and b to get c

and

Set the value of c to (a + b)

Remember that pseudocode is not a precise set of notational rules to be mem-
orized and rigidly followed. It is a flexible notation that can be adjusted to fit
your own view about how best to express ideas and algorithms.

When writing arithmetic expressions, you can assume that the computing
agent executing your algorithm has all the capabilities of a typical calculator.
Therefore, it “knows” how to do all basic arithmetic operations such as +, -, 3,
÷, square root, absolute value, sine, cosine, and tangent. It also knows the
value of important constants such as π.

The remaining two sequential operations enable our computing agent to
communicate with “the outside world,” which means everything other than
the computing agent itself:

44 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Computing
agent

Outside
world

Output

Input

Input operations submit to the computing agent data values from the out-
side world that it may then use in later instructions. Output operations send
results from the computing agent to the outside world. When the computing
agent is a computer, communications with the outside world are done via the
input/output equipment available on a typical system (e.g., keyboard, screen,
mouse, printer, hard drive, CD). However, when designing algorithms, we gen-
erally do not concern ourselves with such details. We care only that data is
provided when we request it and that results are issued for presentation.

Our pseudocode instructions for input and output are expressed as follows:

Input: Get values for “variable”, “variable”, . . .

Output: Print the values of “variable”, “variable”, . . .

For example,

Get a value for r, the radius of the circle

When the algorithm reaches this input operation, it waits until someone or
something provides it with a value for the variable r. (In a computer, this may
be done by entering a value at the keyboard.) When the algorithm has
received and stored a value for r, it continues on to the next instruction.

Here is an example of an output operation:

Print the value of Area

C5985_02_CTP.ps 7/21/06 1:48 PM Page 44C6217_02C6127_02

Assuming that the algorithm has already computed the area of the circle, this
instruction says to display that value to the outside world. This display may
be on a screen or printed on paper by a printer.

Sometimes we use an output instruction to display a message in place of
the desired results. If, for example, the computing agent cannot complete a
computation because of an error condition, we might have it execute some-
thing like the following operation. (We will use ‘single quotes’ to enclose mes-
sages so as to distinguish them from such pseudocode constructs as “variable”
and “arithmetic expression,” which are enclosed in double quotes.)

Print the message ‘Sorry, no answers were computed.’

Using the three sequential operations—computation, input, and output—
we can now write some simple but useful algorithms. Figure 2.3 presents an
algorithm to compute the average miles per gallon on a trip, when given as
input the number of gallons used and the starting and ending mileage readings
on the odometer.

2.2 Representing Algorithms LEVEL 1 45

Write pseudocode versions of

1. An algorithm that gets three data values x, y, and z as input and
outputs the average of those three values.

2. An algorithm that gets the radius r of a circle as input. Its output is
both the circumference and the area of a circle of radius r.

3. An algorithm that gets the amount of electricity used in kilowatt-
hours and the cost of electricity per kilowatt-hour. Its output is the
total amount of the electric bill, including an 8% sales tax.

4. An algorithm that inputs your current credit card balance, the total
dollar amount of new purchases, and the total dollar amount of all
payments. The algorithm computes the new balance, which includes
a 12% interest charge on any unpaid balance.

5. An algorithm that is given the length and width, in feet, of a rec-
tangular carpet and determines its total cost given that the mater-
ial cost is $23/square yard.

PRACTICE PROBLEMS

Algorithm for Computing
Average Miles per Gallon

FIGURE 2.3
Average Miles per Gallon Algorithm (Version 1)

STEP OPERATION

1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage – starting mileage)
3 Set value of average miles per gallon to (distance driven ÷ gallons used)
4 Print the value of average miles per gallon
5 Stop

C5985_02_CTP.ps 7/21/06 1:48 PM Page 45C6217_02C6127_02

2.2.3 Conditional and Iterative Operations

The average miles per gallon algorithm in Figure 2.3 performs a set of opera-
tions once and then stops. It cannot select among alternative operations or
perform a block of instructions more than once. A purely sequential
algorithm of the type shown in Figure 2.3 is sometimes termed a straight-
line algorithm because it executes its instructions in a straight line from top
to bottom and then stops. Unfortunately, most real-world problems are not
straight-line. They involve nonsequential operations such as branching and
repetition.

To allow us to address these more interesting problems, our pseudocode
needs two additional statements to implement conditional and iterative oper-
ations. Together, these two types of operations are called control operations;
they allow us to alter the normal sequential flow of control in an algorithm. As
we saw in Chapter 1, control operations are an essential part of all but the very
simplest of algorithms.

Conditional statements are the “question-asking” operations of an algo-
rithm. They allow an algorithm to ask a question and to select the next oper-
ation to perform on the basis of the answer to that question. There are a
number of ways to phrase a question, but the most common conditional state-
ment is the if/then/else, which has the following format:

If “a true/false condition” is true then

first set of algorithmic operations

Else (or otherwise)

second set of algorithmic operations

The meaning of this statement is as follows:

1. Evaluate the true/false condition on the first line to determine
whether it is true or false.

2. If the condition is true, then do the first set of algorithmic operations
and skip the second set entirely.

3. If the condition is false, then skip the first set of operations and do
the second set.

4. Once the appropriate set of operations has been completed, continue
executing the algorithm with the operation that follows the
if/then/else instruction.

Figure 2.4 is a visual model of the execution of the if/then/else statement.
We evaluate the condition shown in the diamond. If the condition is true we
execute the sequence of operations labeled T1, T2, T3, If the condition is
false we execute the sequence labeled F1, F2, F3, In either case, however,
execution continues with statement S, which is the one that immediately fol-
lows the if/then/else.

Basically, the if/then/else statement allows you to select exactly one of
two alternatives—either/or, this or that. We saw an example of this state-
ment in step 5 of the addition algorithm of Figure 1.2. (The statement has
been reformatted slightly to highlight the two alternatives clearly, but it has
not been changed.)

46 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:48 PM Page 46C6217_02C6127_02

If (ci $ 10) then

Set the value of ci to (ci - 10)

Set the value of carry to 1

Else

Set the value of carry to 0

The condition (ci $ 10) can be only true or false. If it is true, then there
is a carry into the next column, and we must do the first set of instructions—
subtracting 10 from ci and setting carry to 1. If the condition is false, then
there is no carry —we skip over these two operations, and perform the second
block of operations, which simply sets the value of carry to 0.

2.2 Representing Algorithms LEVEL 1 47

The If/Then/Else Pseudocode
Statement

FIGURE 2.4

T1

T2

T3

F1

F2

F3

S

Boolean
condition

?

true false

C5985_02_CTP.ps 7/21/06 1:48 PM Page 47C6217_02C6127_02

Figure 2.5 shows another example of the if/then/else statement. It
extends the miles per gallon algorithm of Figure 2.3 to include a second line
of output stating whether you are getting good gas mileage. Good gas mileage
is defined as a value for average miles per gallon greater than 25.0 mpg.

The last algorithmic statement to be introduced allows us to implement a
loop—the repetition of a block of instructions. The real power of a computer
comes not from doing a calculation once but from doing it many, many times.
If, for example, we need to compute a single value of average miles per gallon,
it would be foolish to convert an algorithm like Figure 2.5 into a computer
program and execute it on a computer—it would be far faster to use a calcu-
lator, which could complete the job in a few seconds. However, if we need to
do the same computation 1,000,000 times, the power of a computer to repeti-
tively execute a block of statements becomes quite apparent. If each compu-
tation of average miles per gallon takes 5 seconds on a hand calculator, then
1 million of them would require about 2 months, not allowing for such luxu-
ries as sleeping and eating. Once the algorithm is developed and the program
written, a computer can carry out that same task in less than 1 second!

The first algorithmic statement that we will use to express the idea of
iteration, also called looping, is the while statement:

While (“a true/false condition”) do step i to step j

step i: operation

step i + 1: operation

.

.

.

step j: operation

This instruction initially evaluates the “true/false condition”—called the
continuation condition—to determine if it is true or false. If the condition is
true, all operations from step i to step j, inclusive, are executed. This block of
operations is called the loop body. (Operations within the loop body should be
indented so that it is clear to the reader of the algorithm which operations
belong inside the loop.) When the entire loop body has finished executing, the
algorithm again evaluates the continuation condition. If it is still true, then the
algorithm executes the entire loop body, statements i through j, again. This

48 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Average Miles per Gallon Algorithm (Version 2)

STEP OPERATION

1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage – starting mileage)
3 Set value of average miles per gallon to (distance driven ÷ gallons used)
4 Print the value of average miles per gallon
5 If average miles per gallon is greater than 25.0 then
6 Print the message ‘You are getting good gas mileage’

Else
7 Print the message ‘You are NOT getting good gas mileage’
8 Stop

Second Version of the Average
Miles per Gallon Algorithm

FIGURE 2.5

C5985_02_CTP.ps 7/21/06 1:49 PM Page 48C6217_02C6127_02

looping process continues until the continuation condition evaluates to false, at
which point execution of the loop body terminates and the algorithm proceeds
to the statement immediately following the loop—step j+1 in the previous dia-
gram. If for some reason the continuation condition never becomes false, then
we have violated one of the fundamental properties of an algorithm, and we
have the error, first mentioned in Chapter 1, called an infinite loop.

Figure 2.6 is a visual model of the execution of a While loop. The algo-
rithm first evaluates the continuation condition inside the diamond-shaped
symbol. If it is true then it executes the sequence of operations labeled S1, S2,
S3, . . ., which are the operations of the loop body. Then the algorithm
returns to the top of the loop and reevaluates the condition. If the condition
is false, then the loop has ended, and the algorithm continues executing with
the statement after the loop, the one labeled Sn in Figure 2.6.

2.2 Representing Algorithms LEVEL 1 49

Execution of the While Loop

FIGURE 2.6

S1

S2

S3

Sn

Continuation
condition

?

loop
body

true

false

C5985_02_CTP.ps 7/21/06 1:49 PM Page 49C6217_02C6127_02

Here is a simple example of a loop:

Step Operation

1 Set the value of count to 1
2 While (count # 100) do step 3 to step 5
3 Set square to (count x count)
4 Print the values of count and square
5 Add 1 to count

Step 1 initializes count to 1, the next operation determines that (count #

100), and then the loop body is executed, which in this case includes the
three statements in steps 3, 4, and 5. Those statements compute the value of
count squared (step 3) and print the value of both count and square (step 4).
The last operation inside the loop body (step 5) adds 1 to count so that it now
has the value 2. At the end of the loop the algorithm must determine whether
it should be executed again. Because count is 2, the continuation condition is
true, and the algorithm must perform the loop body again. Looking at the
entire loop, we can see that it will execute 100 times, producing the following
output, which is a table of numbers and their squares from 1 to 100.

1 1

2 4

3 9
.
.
.

100 10,000

At the end of the 100th pass through the loop, the value of count is incre-
mented in step 5 to 101. When the continuation condition is evaluated,
it is false (because 101 is not less than or equal to 100), and the loop
terminates.

We can see additional examples of loop structures in steps 3 through 6
of Figure 1.2 and in steps 3 through 6 of Figure 1.3(a). Another example
is shown in Figure 2.7, which is yet another variation of the average
miles per gallon algorithm of Figures 2.3 and 2.5. In this modification,
after finishing one computation, the algorithm asks the user whether
to repeat this calculation again. It waits until it gets a Yes or No response
and repeats the entire algorithm until the response provided by the user
is No. (Note that the algorithm must initialize the value of response to
Yes, since the very first thing that the loop does is test the value of this
quantity.)

There are many variations of this particular looping construct in addition
to the While statement just described. For example, it is common to omit the
line numbers from algorithms and simply execute them in order, from top to
bottom. In that case we could use an End of Loop construct (or something
similar) to mark the end of the loop rather than explicitly stating which steps
are contained in the loop body. Using this approach, our loops would be writ-
ten something like this:

50 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:49 PM Page 50C6217_02C6127_02

While (“a true/false condition”) do

operation

.

.

.

operation

End of the loop

In this case, the loop body is delimited not by explicit step numbers but by
the two lines that read, “While . . .” and “End of the loop”.

This type of loop is called a pretest loop because the continuation condi-
tion is tested at the beginning of each pass through the loop, and therefore it is
possible for the loop body never to be executed. (This would happen if the con-
tinuation condition were initially false.) Sometimes this can be inconvenient, as
we see in Figure 2.7. In that algorithm we ask the user if they want to solve the
problem again, but we ask that at the very end of execution of the loop body.
Therefore, we had to give the variable called response a “dummy” value of Yes so
that the test would be meaningful when the loop was first entered.

Another variation of the looping structure is the posttest loop, which
also uses a true/false continuation condition to control execution of the loop.
However, the test is done at the end of the loop body, not the beginning. The
loop is typically expressed using the Do/While statement, which is usually
written as follows:

Do

operation

operation

.

.

.

While (“a true/false condition”)

2.2 Representing Algorithms LEVEL 1 51

Average Miles per Gallon Algorithm (Version 3)

STEP OPERATION

1 response = Yes
2 While (response = Yes) do steps 3 through 11
3 Get values for gallons used, starting mileage, ending mileage
4 Set value of distance driven to (ending mileage – starting mileage)
5 Set value of average miles per gallon to (distance driven ÷ gallons used)
6 Print the value of average miles per gallon
7 If average miles per gallon > 25.0 then
8 Print the message ‘You are getting good gas mileage’

Else
9 Print the message ‘You are NOT getting good gas mileage’

10 Print the message ‘Do you want to do this again? Enter Yes or No’
11 Get a new value for response from the user
12 Stop

Third Version of the Average
Miles per Gallon Algorithm

FIGURE 2.7

C5985_02_CTP.ps 7/21/06 1:49 PM Page 51C6217_02C6127_02

This type of iteration performs all the algorithmic operations contained in
the loop body before it evaluates the true/false condition specified at the end
of the loop. If this condition is false, the loop is terminated and execution
continues with the operation following the loop. If it is true, then the entire
loop body is executed again. Note that in the Do/While variation, the loop
body is always executed at least once, while the While loop can execute 0, 1,
or more times. Figure 2.8 diagrams the execution of the posttest Do/While
looping structure.

Figure 2.9 summarizes the algorithmic operations introduced in this sec-
tion. These operations represent the primitives of our computing agent.
These are the instructions that we assume our computing agent understands
and is capable of executing without further explanation or simplification. In
the next section we will use these operations to design algorithms that solve
some interesting and important problems.

52 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Execution of the Do/While
Posttest Loop

FIGURE 2.8

S1

S2

S3

Sn

Continuation
condition

loop
body

true

false

C5985_02_CTP.ps 7/21/06 1:49 PM Page 52C6217_02C6127_02

2.2 Representing Algorithms LEVEL 1 53

Although the set of algorithmic primitives shown in
Figure 2.9 may seem quite puny, it is anything but! In fact,
an important theorem in theoretical computer science
proves that the operations shown in Figure 2.9 are sufficient
to represent any valid algorithm. No matter how compli-
cated it may be, if a problem can be solved algorithmically,
it can be expressed using only the sequential, conditional,
and iterative operations just discussed. This includes not
only the simple addition algorithm of Figure 1.2 but also the

exceedingly complex algorithms needed to fly NASA’s space
shuttles, run the international telephone switching system,
and describe all the Internal Revenue Service’s tax rules and
regulations.

In many ways, building algorithms is akin to con-
structing essays or novels using only the 26 letters of the
English alphabet, plus a few punctuation symbols. Expres-
sive power does not always come from a huge set of prim-
itives. It can also arise from a small number of simple
building blocks combined in interesting ways. This is the
real secret of building algorithms.

From Little Primitives Mighty
Algorithms Do Grow

Summary of Pseudocode
Language Instructions

FIGURE 2.9
COMPUTATION:

Set the value of “variable” to “arithmetic expression”

INPUT/OUTPUT:

Get a value for “variable”, “variable”. . .
Print the value of “variable”, “variable”, . . .
Print the message ‘message’

CONDITIONAL:

If “a true/false condition” is true then
first set of algorithmic operations

Else
second set of algorithmic operations

ITERATIVE:

While (“a true/false condition”) do step i through step j
Step i: operation
.
.
.
Step j: operation

While (“a true/false condition”) do
operation
.
.
.
operation

End of the loop

Do
operation
operation
.
.
.

While (“a true/false condition”)

C5985_02_CTP.ps 7/21/06 1:49 PM Page 53C6217_02C6127_02

54 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

1. Write an if/then/else statement that sets the variable y to the
value 1 if x $ 0. If x , 0, then the statement should set y to the
value 2. (Assume x already has a value.)

2. Write an algorithm that gets as input three data values x, y, and z
and outputs the average of these values if the value of x is positive.
If the value of x is either zero or negative, your algorithm should
not compute the average but should print the error message ‘Bad
Data’ instead.

3. Write an algorithm that gets as input your current credit card bal-
ance, the total dollar amount of new purchases, and the total dollar
amount of all payments. The algorithm computes the new balance,
which this time includes an 8% interest charge on any unpaid bal-
ance below $100, 12% interest on any unpaid balance between $100
and $500, inclusive, and 16% on any unpaid balance above $500.

4. Write an algorithm that gets as input a single data value x and out-
puts the three values x2, sin x, and 1/x. This process is repeated
until the input value for x is equal to 999, at which time the algo-
rithm terminates.

5. Write an algorithm that inputs the length and width, in feet, of a
rectangular carpet and the price of the carpet in $/square yard. It
then determines if we can afford to purchase this carpet, given that
our total budget for carpeting is $500.

PRACTICE PROBLEMS

2.3 Examples of Algorithmic Problem Solving

2.3.1 Example 1: Go Forth and Multiply

Our first example of algorithmic problem solving addresses a problem origi-
nally posed in Chapter 1 (Exercise 9). That problem asked you to implement
an algorithm to multiply two numbers using repeated addition. This problem
can be formally expressed as follows:

Given 2 nonnegative integer values, a $ 0, b $ 0, compute and out-
put the product (a 3 b) using the technique of repeated addition.
That is, determine the value of the sum a + a + a + . . . + a (b times).

Obviously, we need to create a loop that executes exactly b times, with
each execution of the loop adding the value of a to a running total. These
operations will not make any sense (that is, they will not be effectively com-
putatable) until we have explicit values for a and b. So one of the first opera-
tions in our algorithm must be to input these two values

Get values for a and b

C5985_02_CTP.ps 7/21/06 1:49 PM Page 54C6217_02C6127_02

2.3 Examples of Algorithmic Problem Solving LEVEL 1 55

To create a loop that executes exactly b times, we create a counter, let’s
call it count, initialized to 0 and incremented by (increased by) 1 after each
pass through the loop. This means that when we have completed the loop
once the value of count is 1; when we have completed the loop twice the
value of count is 2, and so forth. Since we want to stop when we have com-
pleted the loop b times, we want to stop when (count = b). Therefore, the
condition for continuing execution of the loop is (count < b). Putting all
these pieces together produces the following algorithmic structure, which is
a loop that executes exactly b times as the variable count ranges from 0 up
to (b – 1).

Get values for a and b

Set the value of count to 0

While (count < b) do

… the rest of the loop body will go here …

Set the value of count to (count + 1)

End of loop

The purpose of the loop body is to add the value of a to a running total,
which we will call product. We express that operation in the following manner:

Set the value of product to (product + a)

This statement says the new value of product is to be reset to the current
value of product added to a.

What is the current value of product the first time this operation is
encountered? Unless we initialize it, it has no value, and this operation is not
effectively computable. Before starting the loop we must be sure to include
the following step:

Set the value of product to 0

Now our solution is starting to take shape. Here is what we have devel-
oped so far:

Get values for a and b

Set the value of count to 0

Set the value of product to 0

While (count < b) do

Set the value of product to (product + a)

Set the value of count to (count+1)

End of loop

There are only a few minor “tweaks” left to make this a correct solution to
our problem.

When the While loop completes we have computed the desired result,
namely (a 3 b), and stored it in product. However, we have not displayed that
result, and as it stands this algorithm produces no output. Remember from

C5985_02_CTP.ps 7/21/06 1:49 PM Page 55C6217_02C6127_02

Chapter 1 that one of the fundamental characteristics of an algorithm is that
it produces an observable result. In this case the desired result is the final
value of product, which we can display using our output primitive:

Print the value of product

The original statement of the problem said that the two inputs a and b
must satisfy the following conditions: a $ 0 and b $ 0. The above algorithm
works for positive values of a and b, but what happens when either a = 0 or
b = 0? Does it still function correctly?

If b = 0 there is no problem. If you look at the while loop, you see that it
continues executing so long as (count < b). The variable count is initialized to
0. If the input variable b also has the value 0 then the test (0 < 0) is initially
false, and the loop is never executed. The variable product keeps its initial
value of 0, and that is the output that is printed, which is the correct answer.

Now let’s look at what happens when a = 0 and b is any non-zero value,
say 5,386. Of course we know immediately that the correct result is 0, but the
algorithm does not. Instead, the loop will execute 5,386 times, the value of b,
each time adding the value of a, which is 0, to product. Since adding 0 to any-
thing has no effect, product remains at 0, and that is the output that is
printed. In this case we do get the right answer, and our algorithm does work
correctly. However, it gets that correct answer only after doing 5,386 unnec-
essary and time-wasting repetitions of the loop.

In Chapter 1 we stated that it is not only algorithmic correctness we are
after but efficiency and elegance as well. The algorithms designed and imple-
mented by computer scientists are intended to solve important real-world
problems, and they must accomplish that task in a correct and reasonably effi-
cient manner. Otherwise they are not of much use to their intended audience.

In this case we can eliminate those needless repetitions of the loop by
using our if/then/else conditional primitive. Right at the start of the algo-
rithm we ask if either a or b is equal to 0. If the answer is yes, we can imme-
diately set the result to 0 without requiring any further computations:

If (either a = 0 or b = 0) then

Set the value of product to 0

Else

… solve the problem as described above …

We will have much more to say about the critically important concepts of
algorithmic efficiency and elegance in Chapter 3.

This completes the development of our multiplication algorithm, and the
finished solution is shown in Figure 2.10.

This first example needed only 2 integer values, a and b, as input. That is
a bit unrealistic, as most interesting computational problems deal not with a
few numbers but with huge collections of data, such as lists of names,
sequences of characters, or sets of experimental data. In the following sec-
tions we will show examples of the types of processing—searching, reorder-
ing, comparing—often done on these large collections of information.

56 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:49 PM Page 56C6217_02C6127_02

2.3.2 Example 2: Looking, Looking, Looking

Finding a solution to a given problem is called algorithm discovery, and it is
the most challenging and creative part of the problem-solving process. We
developed an algorithm for a fairly simple problem (multiplication by repeated
addition) in Example 1. Discovering a correct and efficient algorithm to solve
a complicated problem can be difficult and can involve equal parts of intelli-
gence, hard work, past experience, technical skill, and plain good luck. In the
remaining examples, we will develop solutions to a range of problems to give
you more experience in working with algorithms. Studying these examples,
together with lots of practice, is by far the best way to learn creative problem
solving, just as experience and practice are the best ways to learn how to write
essays, hit a golf ball, or repair cars.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 57

Multiplication via Repeated Addition

Get values for a and b
If (either a = 0 or b = 0) then

Set the value of product to 0
Else

Set the value of count to 0
Set the value of product to 0
While (count < b) do

Set the value of product to (product + a)
Set the value of count to (count+1)

End of loop
Print the value of product
Stop

Algorithm for Multiplication via
Repeated Addition

FIGURE 2.10

1. Manually work through the algorithm in Figure 2.10 using the input
values a = 2, b = 4. After each completed pass through the loop,
write down the current value of the four variables a, b, count, and
product.

2. Describe exactly what would be output by the algorithm in Figure 2.10
for each of the following two cases, and state whether that output is
or is not correct:

case 1: a = –2, b = 4
case 2: a = 2, b = –4

3. If the algorithm of Figure 2.10 produced the wrong answer for either
case 1 or case 2 of question 2, explain exactly how you could fix the
algorithm so it works correctly and produces the correct answer.

PRACTICE PROBLEMS

C5985_02_CTP.ps 7/21/06 1:49 PM Page 57C6217_02C6127_02

The next problem we will solve was also mentioned in Chapter 1—locating
a particular person’s name in a telephone book. This is just the type of simple
and rather uninteresting repetitive task so well suited to computerization.
(Many large telephone companies have implemented such an application.
Most of us have dialed directory assistance and heard the desired telephone
number spoken in a computer-generated voice.)

Assume that we have a list of 10,000 names that we define as N1, N2, N3,
. . . , N10,000, along with the 10,000 telephone numbers of those individuals,
denoted as T1, T2, T3, . . . , T10,000. To simplify the problem, we initially
assume that all names in the book are unique and that the names need not be
in alphabetical order. Essentially what we have described is a nonalphabetized
telephone book of the following form:

Name Telephone Number

N1 T1

N2 T2

N3 T3

. .

. .

. .
N10,000 T10,000

Let’s create an algorithm that allows us to input the name of a specific
person, which we will denote as NAME. The algorithm will check to see if
NAME matches any of the 10,000 names contained in our telephone book. If
NAME matches the value Nj, where j is a value between 1 and 10,000, then the
output of our algorithm will be the telephone number of that person: the
value Tj. If NAME is not contained in our telephone book, then the output of
our algorithm will be the message “I am sorry but this name is not in the
directory.” This type of lookup algorithm has many additional uses. For exam-
ple, it could be used to locate the zip code of a particular city, the seat num-
ber of a specific airline passenger, or the room number of a hotel guest.

Because the names in our telephone book are not in alphabetical order,
there is no clever way to speed up the search. With a random collection of
names, there is no method more efficient than starting at the beginning and
looking at each name in the list, one at a time, until we either find the one we
are looking for or come to the end of the list. This rather simple and straight-
forward technique is called sequential search, and it is the standard algo-
rithm for searching an unordered list of values. For example, this is how we
would search a telephone book to see who lives at 123 Elm Street, because a
telephone book is not sorted by address. It is also the way that we look
through a shuffled deck of cards trying to locate one particular card. A first
attempt at designing a sequential search algorithm to solve our search prob-
lem might look something like Figure 2.11.

The solution shown in Figure 2.11 is extremely long. At 66 lines per page,
it would require about 150 pages to write out the 10,002 steps in the com-
pleted solution. It would also be unnecessarily slow. If we are lucky enough to
find NAME in the very first position of the telephone book, N1, then we get
the answer T1 almost immediately. However, the algorithm does not stop at
that point. Even though it has already found the correct answer, it foolishly
asks 9,999 more questions looking for NAME in positions N2, . . . , N10,000. Of

58 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

10,000 (name, phone number) pairs}

C5985_02_CTP.ps 7/21/06 1:49 PM Page 58C6217_02C6127_02

course, humans have enough “common sense” to know that when they find
the answer they are searching for, they can stop. However, we cannot assume
common sense in a computer system. On the contrary, a computer will
mechanically execute the entire algorithm from the first step to the last.

Not only is the algorithm excessively long and highly inefficient, it is also
wrong. If the desired NAME is not in the list, this algorithm simply stops (at
step 10,002) rather than providing the desired result, a message that the
name you requested is not in the directory. An algorithm is deemed correct
only when it produces the correct result for all possible cases.

The problem with this first attempt is that it does not use the powerful
algorithmic concept called iteration. Instead of writing an instruction 10,000
separate times, it is far better to write it only once and indicate that it is to
be repetitively executed 10,000 times, or however many times it takes to
obtain the answer. As you learned in the previous section, much of the power
of a computer comes from being able to perform a loop—the repetitive execu-
tion of a block of statements a large number of times. Virtually every algo-
rithm developed in this text contains at least one loop and most contain
many. (This is the difference between the two shampooing algorithms shown
in Figures 1.3(a) and (b). The algorithm in the former contains a loop; that in
the latter does not.)

The algorithm in Figure 2.12 shows how we might write a loop to imple-
ment the sequential search technique. It uses a variable called i as an index,
or pointer, into the list of all names. That is, Ni refers to the ith name in the
list. The algorithm then repeatedly executes a group of statements using dif-
ferent values of i. The variable i can be thought of as a “moving finger” scan-
ning the list of names and pointing to the one on which the algorithm is
currently working.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 59

First Attempt at Designing a
Sequential Search Algorithm

FIGURE 2.11
STEP OPERATION

1 Get values for NAME, N1, . . . , N10,000, and T1, . . . , T10,000

2 If NAME = N1 then print the value of T1

3 If NAME = N2 then print the value of T2

4 If NAME = N3 then print the value of T3

. .

. .

. .
10,000 If NAME = N9,999 then print the value of T9,999

10,001 If NAME = N10,000 then print the value of T10,000

10,002 Stop

Second Attempt at Designing a
Sequential Search Algorithm

FIGURE 2.12
STEP OPERATION

1 Get values for NAME, N1, . . . , N10,000, and T1, . . . ,T10,000

2 Set the value of i to 1 and set the value of Found to NO
3 While (Found = NO) do steps 4 through 7
4 If NAME is equal to the i th name on the list Ni then
5 Print the telephone number of that person, Ti

6 Set the value of Found to YES
Else (NAME is not equal to Ni)

7 Add 1 to the value of i
8 Stop

C5985_02_CTP.ps 7/21/06 1:49 PM Page 59C6217_02C6127_02

The first time through the loop, the value of the index i is 1, so the algo-
rithm checks to see whether NAME is equal to N1, the first name on the list. If
it is, then the algorithm writes out the result and sets Found to YES, which
causes the loop in steps 4 through 7 to terminate. If it is not the desired
NAME, then i is incremented by 1 (in step 7) so that it now has the value 2,
and the loop is executed again. The algorithm now checks (in step 4) to see
whether NAME is equal to N2, the second name on the list. In this way, the
algorithm uses the single conditional statement “If NAME is equal to the ith
name on the list . . .” to check up to 10,000 names. It executes that one line
over and over, each time with a different value of i. This is the advantage of
using iteration.

However, the attempt shown in Figure 2.12 is not yet a complete and cor-
rect algorithm because it still does not work correctly when the desired NAME
does not appear anywhere on the list. This final problem can be solved by ter-
minating the loop when the desired name is found or the end of the list is
reached. The algorithm can determine exactly what happened by checking the
value of Found when the loop terminates. If the value of Found is NO, then
the loop terminated because the index i exceeded 10,000, and we searched the
entire list without finding the desired NAME. The algorithm should then pro-
duce an appropriate message.

An iterative solution to the sequential search algorithm that incorporates
this feature is shown in Figure 2.13. The sequential search algorithm shown in
Figure 2.13 is a correct solution to our telephone book look up problem. It
meets all the requirements listed in Section 1.3.1: It is well ordered, each of the
operations is clearly defined and effectively computable, and it is certain to halt
with the desired result after a finite number of operations. (In Exercise 12 at the
end of this chapter you will develop a formal argument that proves that this
algorithm will always halt.) Furthermore, this algorithm requires only 10 steps,
rather than the 10,002 steps of the first attempt in Figure 2.11. As you can see,
not all algorithms are created equal.

Looking at the algorithm in Figure 2.13, our first thought may be that
this is not at all how people manually search a telephone book. When looking
for a particular telephone number, we would never turn to page 1, column 1,
and scan all names beginning with Aardvark, Alan. Certainly, a telephone
company in New York City would not be satisfied with the performance of a

60 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Sequential Search Algorithm

STEP OPERATION

1 Get values for NAME, N1, . . . , N10,000, and T1, . . . , T10,000

2 Set the value of i to 1 and set the value of Found to NO
3 While both (Found = NO) and (i # 10,000) do steps 4 through 7
4 If NAME is equal to the i th name on the list Ni then
5 Print the telephone number of that person, Ti

6 Set the value of Found to YES
Else (NAME is not equal to Ni)

7 Add 1 to the value of i
8 If (Found = NO) then
9 Print the message ‘Sorry, this name is not in the directory’

10 Stop

The Sequential Search
Algorithm

FIGURE 2.13

C5985_02_CTP.ps 7/21/06 1:50 PM Page 60C6217_02C6127_02

directory search algorithm that always began on page 1 of its 2,000-page tele-
phone book.

Because our telephone book was not alphabetized, we really had no
choice in the design of a search algorithm. However, in real life we can do
much better than sequential search, because telephone books are alphabet-
ized, and we can exploit this fact during the search process. For example, we
know that M is about halfway through the alphabet, so when looking for the
name Samuel Miller, we open the telephone book somewhere in the middle
rather than to the first page. We then see exactly where we are by looking at
the first letter of the names on the current page, and then we move forward or
backward toward names beginning with M. This approach allows us to find the
desired name much more quickly than searching sequentially beginning with
the letter A.

This use of different search techniques points out a very important con-
cept in the design of algorithms:

The selection of an algorithm to solve a problem is greatly influenced by the
way the data for that problem are organized.

An algorithm is a method for processing some data to produce a result, and the
way the data are organized has an enormous influence both on the algorithm
we select and on how speedily that algorithm can produce the desired result.

In Chapter 3 we will expand on the concept of the efficiency and quality
of algorithms, and we will present an algorithm for searching alphabetized
telephone books that is far superior to the one shown in Figure 2.13.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 61

Computer science is an empirical discipline as well as a
theoretical one. Learning comes not just from reading
about concepts like algorithms, but manipulating and
observing them as well. The laboratory manual for this text
includes laboratory exercises that enable you to engage
the ideas and concepts presented on these pages.
Laboratory Experience 2 introduces the concept of algo-
rithm animation, in which you can observe an algorithm
being executed and watch as data values are dynamically
transformed into final results. Here is an example of the
type of output produced by this Laboratory Experience.

Bringing an algorithm to life in this way can help you
understand what the algorithm does and how it works. The
first animation that you will work with is the sequential
search algorithm shown in Figure 2.13. The laboratory
software allows you to create a list of data values, and to
watch as the algorithm searches this list to determine
whether a special target value occurs.

We strongly encourage you to work through these lab-
oratory experiences to deepen your understanding of the
ideas presented in this and following chapters.

LABORATORY
EXPERIENCE 2

C5985_02_CTP.ps 7/21/06 1:50 PM Page 61C6217_02C6127_02

2.3.3 Example 3: Big, Bigger, Biggest

The third algorithm we will develop is similar to the sequential search in
Figure 2.13 in that it also searches a list of values. However, this time the
algorithm will search not for a particular value supplied by the user but for
the numerically largest value in a list of numbers. This type of “find largest”
algorithm could be used to answer a number of important questions. (With
only a single trivial change, the same algorithm also finds the smallest value,
so a better name for it might be “find extreme values.”) For example, given a
list of examinations, which student received the highest (or lowest) score?
Given a list of annual salaries, which employee earns the most (or least)
money? Given a list of grocery prices from different stores, where should I
shop to find the lowest price? All these questions could be answered by exe-
cuting this type of algorithm.

In addition to being important in its own right, such an algorithm can
also be used as a “building block” for the construction of solutions to other
problems. For example, the Find Largest algorithm that we will develop could
be used to implement a sorting algorithm that puts an unordered list of num-
bers in ascending order. (Find and remove the largest item in list A and move
it to the last position of list B. Now repeat these operations, each time moving
the largest remaining number in A to the last unfilled slot of list B. We will
develop and write this algorithm in Chapter 3.)

The use of a “building-block” component is a very important concept in
computer science. The examples in this chapter may lead you to believe that
every algorithm you write must be built from only the most elementary and
basic of primitives—the sequential, conditional, and iterative operations
shown in Figure 2.9. However, once an algorithm has been developed, it may
itself be used in the construction of other, more complex algorithms, just as
we will use “find largest” in the design of a sorting algorithm. This is similar
to what a builder does when constructing a home from prefabricated units
rather than bricks and boards. Our problem-solving task need not always
begin at the beginning but can instead build on ideas and results that have
come before. Every algorithm that we create becomes, in a sense, a primitive
operation of our computing agent and can be used as part of the solution to
other problems. That is why a collection of useful algorithms, called a library,
is such an important tool in the design and development of algorithms.

Formally, the problem we will be solving in this section is defined as follows:

Given a value n $ 1 and a list containing exactly n unique numbers
called A1, A2, . . . , An, find and print out both the largest value in the
list and the position in the list where that largest value occurred.

For example, if our list contained the five values

19, 41, 12, 63, 22 (n = 5)

then our algorithm should locate the largest value, 63, and print that value
together with the fact that it occurred in the fourth position of the list. (Note:
Our definition of the problem states that all numbers in the list are unique, so
there can be only a single occurrence of the largest number. Exercise 15 at the
end of the chapter asks how our algorithm would behave if the numbers in the
list were not unique and the largest number could occur two or more times.)

62 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:50 PM Page 62C6217_02C6127_02

When faced with a problem statement like the one just given, how do we
go about creating a solution? What strategies can we employ to discover a cor-
rect and efficient answer to the problem? One way to begin is to ask ourselves
how the same problem might be solved by hand. If we can understand and
explain how we would approach the problem manually, we might be able to
express that solution as a formal algorithm.

For example, suppose we were given a pile of papers, each of which con-
tains a single number, and were asked to locate the largest number in the pile?
(The following diagrams assume the papers contain the five values 19, 41, 12,
63, and 22.)

2.3 Examples of Algorithmic Problem Solving LEVEL 1 63

19

The pile

We might start off by saying that the first number in the pile (the top
one) is the largest one that we have seen so far and then putting it off to the
side where we are keeping the largest value.

19
41

The pile The largest so far

Now we compare the top number in the pile with the one that we have called
the largest one so far. In this case, the top number in the pile, 41, is larger than
our current largest, 19, so we make it the new largest. To do this, we throw the
value 19 into the wastebasket (or, better, into the recycle bin) and put the
number 41 off to the side, because it is the largest value encountered so far.

41 The previous largest so far12

The pile The largest so far

We now repeat this comparison operation, asking whether the number on top
of the pile is larger than the largest value seen so far, now 41. This time the
value on top of the pile, 12, is not larger, so we do not want to save it. We sim-
ply throw it away and move on to the next number in the pile.

C5985_02_CTP.ps 7/21/06 1:50 PM Page 63C6217_02C6127_02

This compare-and-save-or-discard process continues until our original pile of
numbers is empty, at which time the largest so far is the largest value in the
entire list.

Let’s see how we can convert this informal, pictorial solution into a for-
mal algorithm that is built from the primitive operations shown in Figure 2.9.

We certainly cannot begin to search a list for a largest value until we have
a list to search. Therefore, our first operation must be to get a value for n, the
size of the list, followed by values for the n-element list A1, A2, . . . , An. This
can be done using our input primitive:

Get a value for n, the size of the list

Get values for A1, A2, . . . , An, the list to be searched

Now that we have the data, we can begin to implement a solution.
Our informal description of the algorithm stated that we should begin by

calling the first item in the list, A1, the largest value so far. (We know that
this operation is meaningful since we stated that the list must always have at
least one element.) We can express this formally as

Set the value of largest so far to A1

Our solution must also determine where that largest value occurs. To remem-
ber this value, let’s create a variable called location to keep track of the posi-
tion in the list where the largest value occurs. Because we have initialized
largest so far to the first element in the list, we should initialize location to 1.

Set the value of location to 1

We are now ready to begin looking through the remaining items in list A
to find the largest one. However, if we write something like the following
instruction:

If the second item in the list is greater than largest so far then . . .

we will have made exactly the same mistake that occurred in the initial ver-
sion of the sequential search algorithm shown in Figure 2.11. This instruction
explicitly checks only the second item of the list. We would need to rewrite
that statement to check the third item, the fourth item, and so on. Again, we
are failing to use the idea of iteration, where we repetitively execute a loop as
many times as it takes to produce the desired result.

To solve this problem let’s use the same technique used in the sequential
search algorithm. Let’s not talk about the second, third, fourth, . . . item in
the list but about the ith item in the list, where i is a variable that takes on

64 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

41
The value 12,
which was not used63

The pile The largest so far

C5985_02_CTP.ps 7/21/06 1:50 PM Page 64C6217_02C6127_02

different values during the execution of the algorithm. Using this idea, a
statement such as

If Ai > largest so far then . . .

can be executed with different values for i. This allows us to check all n values
in the list with a single statement. Initially, i should be given the value 2,
because the first item in the list was automatically set to the largest value.
Therefore, we want to begin our search with the second item in the list.

.

.

.

Set the value of i to 2
.
.
.

If Ai > largest so far then . . .

What operations should appear after the word then? A check of our earlier dia-
grams shows that the algorithm must reset the values of both largest so far
and location.

If Ai > largest so far then

Set largest so far to Ai

Set location to i

If Ai is not larger than largest so far, then we do not want the algorithm
to do anything. To indicate this, the if/then instruction can include an else
clause that looks something like

Else

Don’t do anything at all to largest so far and location

This is certainly correct, but instructions that tell us not to do anything are
usually omitted from an algorithm because they do not carry any meaningful
information.

Whether the algorithm resets the values of largest so far and location, it
needs to move on to the next item in the list. Our algorithm refers to Ai, the
ith item in the list, so it can move to the next item by simply adding 1 to the
value of i and repeating the if/then statement. The outline of this iteration
can be sketched as follows:

If Ai > largest so far then

Set largest so far to Ai

Set location to i

Add 1 to the value of i
.
.
.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 65

C5985_02_CTP.ps 7/21/06 1:50 PM Page 65C6217_02C6127_02

However, we do not want the loop to repeat forever. (Remember that one of
the properties of an algorithm is that it must eventually halt.) What stops this
iterative process? When does the algorithm display an answer and terminate
execution?

The conditional operation “If Ai > largest so far then . . .” is meaningful
only if Ai represents an actual element of list A. Because A contains n elements
numbered 1 to n, the value of i must be in the range 1 to n. If i > n, then the
loop has searched the entire list, and it is finished. The algorithm can now
print the values of both largest so far and location. Using our looping primi-
tive, we can describe this iteration as follows:

While (i # n) do

If Ai > largest so far then

Set largest so far to Ai

Set location to i

Add 1 to the value of i

End of the loop

We have now developed all the pieces of the algorithm and can finally put
them together. Figure 2.14 shows the completed Find Largest algorithm. Note
that the steps are not numbered. This omission is quite common, especially as
algorithms get larger and more complex.

66 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Find Largest Algorithm

Get a value for n, the size of the list
Get values for A1, A2, . . . , An, the list to be searched
Set the value of largest so far to A1

Set the value of location to 1
Set the value of i to 2
While (i # n) do

If Ai > largest so far then
Set largest so far to Ai

Set location to i
Add 1 to the value of i

End of the loop
Print out the values of largest so far and location
Stop

Algorithm to Find the Largest
Value in a List

FIGURE 2.14

1. Modify the algorithm of Figure 2.14 so that it finds the smallest
value in a list rather than the largest. Describe exactly what
changes were necessary.

2. Describe exactly what would happen to the algorithm in Figure 2.14
if you tried to apply it to an empty list of length n = 0. Describe
exactly how you could fix this problem.

3. Describe exactly what happens to the algorithm in Figure 2.14 when
it is presented with a list with exactly one item, i.e., n = 1.

PRACTICE PROBLEMS

C5985_02_CTP.ps 7/21/06 1:50 PM Page 66C6217_02C6127_02

2.3 Examples of Algorithmic Problem Solving LEVEL 1 67

Like Laboratory Experience 2, this laboratory also uses ani-
mation to help you better understand the concept of algo-
rithm design and execution. It presents an animation of
the Find Largest algorithm discussed in the text and shown
in Figure 2.14. An example of what you will see on the
screen when you run this lab is shown here.

This laboratory experience allows you to create a list
of data and watch as the algorithm attempts to determine
the largest numerical value contained in that list. You will
be able to observe dynamic changes to the variables index,
location, and maximum, and will be able to see how values
are set and discarded as the algorithm executes. Like the
previous laboratory experience, it is intended to give you a
deeper understanding of how this algorithm works by
allowing you to observe its behavior.

LABORATORY
EXPERIENCE 3

2.3.4 Example 4: Meeting Your Match

The last algorithm we develop in this chapter solves a common problem in
computer science called pattern matching. For example, imagine that you
have a collection of Civil War data files that you wish to use as resource mate-
rial for an article on Abraham Lincoln. Your first step would probably be to
search these files to locate every occurrence of the text patterns “Abraham
Lincoln,” “A. Lincoln,” and “Lincoln.” The process of searching for a special
pattern of symbols within a larger collection of information is called pattern
matching. Most good word processors provide this service as a menu item
called Find or something similar. Furthermore, most Web search engines try to
match your search keys to the keywords that appear on a Web page.

Pattern matching can be applied to almost any kind of information, includ-
ing graphics, sound, and pictures. For example, an important medical application
of pattern matching is to input an X-ray or CT scan image into a computer and
then have the computer search for special patterns, such as dark spots, which
represent conditions that should be brought to the attention of a physician. This
can help speed up the interpretation of X-rays and avoid the problem of human
error caused by fatigue or oversight. (Computers do not get tired or bored!)

One of the most interesting and exciting applications of pattern matching
is assisting microbiologists and geneticists studying and mapping the human
genome, the basis for all human life. The human genome is composed of a

C5985_02_CTP.ps 7/21/06 1:50 PM Page 67C6217_02C6127_02

sequence of approximately 3.5 billion nucleotides, each of which can be one of
only four different chemical compounds. These compounds (adenine, cytosine,
thymine, guanine), are usually referred to by the first letter of their chemical
names: A, C, T, and G. Thus, the basis for our existence can be rendered in a
very large “text file” written in a four-letter alphabet.

. . . T C G G A C T A A C A T C G G G A T C G A G A T G . . .

Sequences of these nucleotides are called genes. There are about 25,000 genes
in the human genome, and they determine virtually all of our physical
characteristics—sex, race, eye color, hair color, and height, to name just a few.
Genes are also an important factor in the occurrence of certain diseases. A
missing or flawed nucleotide can result in one of a number of serious genetic
disorders, such as Down syndrome or Tay-Sachs disease. To help find a cure for
these diseases, researchers are attempting to map the entire human genome—
to locate individual genes that, when exhibiting a certain defect, cause a spe-
cific malady. A gene is typically composed of thousands of nucleotides, and
researchers generally do not know the entire sequence. However, they may
know what a small portion of the gene—say, a few hundred nucleotides—
looks like. Therefore, to search for one particular gene, they must match the
sequence of nucleotides that they do know, called a probe, against the entire
3.5 billion-element genome to locate every occurrence of that probe. From this
matching information, researchers hope to be able to isolate specific genes.
For example,

Genome: . . . T C A G G C T A A T C G T A G G . . .

Probe: T A A T C a match

When a match is found, researchers examine the nucleotides located before
and after the probe to see whether they have located the desired gene and, if
so, to see whether the gene is defective. Physicians hope someday to be able
to “clip out” a bad sequence and insert in its place a correct sequence.

This application of pattern matching dispels any notion that the algorithms
discussed here—sequential search (Figure 2.13), Find Largest (Figure 2.14), and
pattern matching—are nothing more than academic exercises that serve as
examples for introductory classes but have absolutely no role in solving real-
world problems. The algorithms that we have presented (or will present) are
important, either in their own right or as building blocks for algorithms used by
physical scientists, mathematicians, engineers, and social scientists.

Let’s formally define the pattern-matching problem as follows:

You will be given some text composed of n characters that will be
referred to as T1 T2 . . . Tn. You will also be given a pattern of m char-
acters, m # n, that will be represented as P1 P2 . . . Pm. The algorithm
must locate every occurrence of the pattern within the text. The out-
put of the algorithm is the location in the text where each match
occurred. For this problem, the location of a match is defined to be
the index position in the text where the match begins.

For example, if our text is the phrase “to be or not to be, that is the question”
and the pattern for which we are searching is the word to, then our algorithm
produces the following output:

68 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:50 PM Page 68C6217_02C6127_02

Text: to be or not to be, that is the question

Pattern: to

Output: Match starting at position 1.

Text: to be or not to be, that is the question

Pattern: to

Output: Match starting at position 14. (The t is in position 14,
including blanks.)

The pattern-matching algorithm that we will implement is composed of
two parts. In the first part, the pattern is aligned under a specific position of
the text, and the algorithm determines whether there is a match at that given
position. The second part of the algorithm “slides” the entire pattern ahead
one character position. Assuming that we have not gone beyond the end of
the text, the algorithm returns to the first part to check for a match at this
new position. Pictorially, this algorithm can be represented as follows:

Repeat the following two steps.

STEP 1: The matching process: T1 T2 T3 T4 T5 …

P1 P2 P3

STEP 2: The slide forward: T1 T2 T3 T4 T5 …

1-character slide � P1 P2 P3

The algorithm involves repetition of these two steps beginning at position 1
of the text and continuing until the pattern has slid off the right hand end of
the text.

A first draft of an algorithm that implements these ideas is shown in
Figure 2.15, in which not all of the operations are expressed in terms of the
basic algorithmic primitives of Figure 2.9. While statements like “Set k,
the starting location for the attempted match, to 1” and “Print the value of
k, the starting location of the match” are just fine, the instructions “Attempt
to match every character in the pattern beginning at position k of the text”
and, “Keep going until we have fallen off the end of the text” are certainly not
primitives. On the contrary, they are both high-level operations that, if writ-
ten out using only the operations in Figure 2.9, would expand into many
instructions.

Is it okay to use high-level statements like this in our algorithm?
Wouldn’t their use violate the requirement stated in Chapter 1 that algorithms
be constructed only from unambiguous operations that can be directly exe-
cuted by our computing agent?

In fact it is perfectly acceptable, and quite useful, to use high-level state-
ments like this during the initial phase of the algorithm design process. When
starting to design an algorithm, we may not want to think only in terms of ele-
mentary operations such as input, computation, output, conditional, and itera-
tion. Instead, we may want to express our proposed solution in terms of high-level

2.3 Examples of Algorithmic Problem Solving LEVEL 1 69

C5985_02_CTP.ps 7/21/06 1:50 PM Page 69C6217_02C6127_02

and broadly defined operations that represent dozens or even hundreds of primi-
tive instructions. Here are some examples of these higher-level constructs:

• Sort the entire list into ascending order.

• Attempt to match the entire pattern against the text.

• Find a root of the equation.

Using instructions like these in an algorithm allows us to postpone worrying about
how to implement that operation and lets us focus instead on other aspects of the
problem. Eventually, we will come back to these statements and either express
them in terms of our available primitives or use existing “building block” algo-
rithms taken from a program library. However, we can do this at our convenience.

The use of high-level instructions during the design process is an example of
one of the most important intellectual tools in computer science—abstraction.
Abstraction refers to the separation of the high-level view of an entity or an oper-
ation from the low-level details of its implementation. It is abstraction that allows
us to understand and intellectually manage any large, complex system, whether it
is a mammoth corporation, a complex piece of machinery, or an intricate and very
detailed algorithm. For example, the president of General Motors views the com-
pany in terms of its major corporate divisions and very high-level policy issues,
not in terms of every worker, every supplier, and every car. Attempting to manage
the company at that level of detail would drown the president in a sea of detail.

In computer science we frequently use abstraction because of the com-
plexity of hardware and software. For example, abstraction allows us to view
the hardware component called “memory” as a single, indivisible high-level
entity without paying heed to the billions of electronic devices that go into
constructing a memory unit. (Chapter 4 examines how computer memories are
built, and it makes extensive use of abstraction.) In algorithm design and
software development, we use abstraction whenever we think of an operation
at a high level, and temporarily ignore how we might actually implement that
operation. This allows us to decide which details to address now and which to
postpone. Viewing an operation at a high level of abstraction and fleshing out
the details of its implementation at a later time constitute an important com-
puter science problem-solving strategy called top-down design.

Ultimately, however, we have to describe how each of these high-level
abstractions can be represented using the available algorithmic primitives.
The fifth line of the first draft of the pattern-matching algorithm shown in
Figure 2.15 reads

70 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Get values for n and m, the size of the text and the pattern, respectively
Get values for both the text T1 T2 . . . Tn and the pattern P1 P2 . . . Pm

Set k, the starting location for the attempted match, to 1
Keep going until we have fallen off the end of the text

Attempt to match every character in the pattern beginning at
position k of the text (this is step 1 from the previous page)

If there was a match then
Print the value of k, the starting location of the match

Add 1 to k, which slides the pattern forward one position (this is step 2)
End of the loop
Stop

First Draft of the Pattern-
Matching Algorithm

FIGURE 2.15

C5985_02_CTP.ps 7/21/06 1:50 PM Page 70C6217_02C6127_02

Attempt to match every character in the pattern beginning at position k of
the text.

When this statement is reached, the pattern is aligned under the text begin-
ning with the kth character. Pictorially, we are in the following situation:

Text: T1 T2 T3 . . . Tk Tk+1Tk+2 . . . Tk+(m-1) . . .

Pattern: P1 P2 P3 . . . Pm

The algorithm must now perform the following comparisons:

Compare P1 to Tk

Compare P2 to Tk+1

Compare P3 to Tk+2
.
.
.

Compare Pm to Tk+(m-1)

If the members of every single one of these pairs are equal, then there is a
match. However, if even one pair is not equal, then there is no match, and the
algorithm can immediately cease making comparisons at this location. Thus,
we must construct a loop that executes until one of two things happens—it
has either completed m successful comparisons (i.e., we have matched the
entire pattern) or it has detected a mismatch. When either of these conditions
occurs the algorithm stops; however, if neither condition has occurred, the
algorithm must keep going. Algorithmically, this iteration can be expressed in
the following way. (Remember that k is the starting location in the text.)

Set the value of i to 1

Set the value of Mismatch to NO

While both (i # m) and (Mismatch = NO)

If Pi ≠ Tk+(i-1) then

Set Mismatch to YES

Else

Increment i by 1 (to move to the next character)

End of the loop

When the loop has finished, we can determine whether there has been a
match by examining the current value of the variable Mismatch. If Mismatch is
YES, then there was not a match because at least one of the characters was out
of place. If Mismatch is NO, then every character in the pattern matched its
corresponding character in the text, and there is a match.

If Mismatch = NO then

Print the message ‘There is a match at position’

Print the value of k

2.3 Examples of Algorithmic Problem Solving LEVEL 1 71

C5985_02_CTP.ps 7/21/06 1:50 PM Page 71C6217_02C6127_02

Regardless of whether there was a match at position k, we must add 1 to k to
begin searching for a match at the next position. This is the “sliding forward”
step diagrammed earlier.

The final high-level statement in Figure 2.15 that needs to be expanded is
the loop on line 4.

Keep going until we have fallen off the end of the text

What does it mean to “fall off the end of the text”? Where is the last possible
place that a match can occur? To answer these questions, let’s draw a diagram
in which the last character of the pattern, Pm, lines up directly under Tn, the
last character of the text.

Text: T1 T2 T3 . . . Tn-m+1 … Tn-2 Tn-1 Tn

Pattern: P1 … Pm-2 Pm-1 Pm

This diagram illustrates that the last possible place a match could occur is
when the first character of the pattern is aligned under the character at posi-
tion Tn-m+1 of the text, because Pm is aligned under Tn, Pm-1 is under Tn-1, Pm-2
is aligned under Tn-2, etc. Thus, P1, which can be written as Pm-(m-1), is aligned
under Tn-(m-1), which is Tn-m+1. If we tried to slide the pattern forward any fur-
ther, we would truly “fall off” the right hand end of the text. Therefore, our
loop must terminate when k, the starting point for the match, strictly exceeds
the value of n-m+1. We can express this as follows:

While (k # (n - m+1)) do

Now we have all the pieces of our algorithm in place. We have expressed
every statement in Figure 2.15 in terms of our basic algorithmic primitives and
are ready to put it all together. The final draft of the pattern-matching algo-
rithm is shown in Figure 2.16.

72 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Pattern-Matching Algorithm

Get values for n and m, the size of the text and the pattern, respectively
Get values for both the text T1 T2 … Tn and the pattern P1 P2 … Pm

Set k, the starting location for the attempted match, to 1
While (k # (n - m +1)) do

Set the value of i to 1
Set the value of Mismatch to NO
While both (i # m) and (Mismatch = NO) do

If Pi ≠ Tk+(i-1) then
Set Mismatch to YES

Else
Increment i by 1 (to move to the next character)

End of the loop
If Mismatch = NO then

Print the message ‘There is a match at position’
Print the value of k

Increment k by 1
End of the loop
Stop, we are finished

Final Draft of the Pattern-
Matching Algorithm

FIGURE 2.16

C5985_02_CTP.ps 7/21/06 1:50 PM Page 72C6217_02C6127_02

2.4 Conclusion LEVEL 1 73

1. Consider the following “telephone book.”

Name Number

Smith 555-1212
Jones 834-6543
Adams 921-5281
Doe 327-8900

Trace the sequential search algorithm of Figure 2.13 using each of
the following NAMEs and show the output produced.

a. Adams
b. Schneider

2. Consider the following list of seven data values.

22, 18, 23, 17, 25, 30, 2

Trace the Find Largest algorithm of Figure 2.14 and show the output
produced.

3. Consider the following text.

Text: A man and a woman

Trace the pattern-matching algorithm of Figure 2.16 using the
2-character pattern ‘an’ and show the output produced.

4. Explain exactly what would happen to the algorithm of Figure 2.16
if m, the length of the pattern, were greater than n, the length of
the text.

PRACTICE PROBLEMS

2.4 Conclusion

You have now had a chance to see the step-by-step design and development of
some interesting, nontrivial algorithms. You have also been introduced to a
number of important concepts related to problem solving, including algorithm
design and discovery, pseudocode, control statements, iteration, libraries,
abstraction, and top-down design. However, this by no means marks the end
of our discussion of algorithms. The development of a correct solution to a
problem is only the first step in creating a useful solution.

Designing a technically correct algorithm to solve a given problem is only
part of what computer scientists do. They also must ensure that they have created
an efficient algorithm that generates results quickly enough for its intended users.
Chapter 1 described a brute force chess algorithm that would, at least theoreti-
cally, play perfect chess but that would be unusable because it would take millions
of centuries to make its first move. Similarly, a directory assistance program that
takes 10 minutes to locate a telephone number would be of little or no use. A
caller would surely hang up long before the answer was found. This practical

C5985_02_CTP.ps 7/21/06 1:50 PM Page 73C6217_02C6127_02

concern for efficiency and usefulness, in addition to correctness, is one of the
hallmarks of computer science.

Therefore, after developing a correct algorithm, we must analyze it thor-
oughly and study its efficiency properties and operating characteristics. We
must ask ourselves how quickly it will give us the desired results and whether
it is better than other algorithms that solve the same problem. This analysis,
which is the central topic of Chapter 3, enables us to create algorithms that
are not only correct, but elegant, efficient, and useful as well.

74 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:50 PM Page 74C6217_02C6127_02

1. Write pseudocode instructions to carry out each of the
following computational operations.
a. Determine the area of a triangle given values for the

base b and the height h.
b. Compute the interest earned in 1 year given the start-

ing account balance B and the annual interest rate I
and assuming simple interest, that is, no compounding.
Also determine the final balance at the end of the year.

c. Determine the flying time between two cities given
the mileage M between them and the average speed of
the airplane.

2. Using only the sequential operations described in
Section 2.2.2, write an algorithm that gets values for
the starting account balance B, annual interest rate I,
and annual service charge S. Your algorithm should out-
put the amount of interest earned during the year and
the final account balance at the end of the year. Assume
that interest is compounded monthly and the service
charge is deducted once, at the end of the year.

3. Using only the sequential operations described in
Section 2.2.2, write an algorithm that gets four numbers
corresponding to scores received on three semester tests
and a final examination. Your algorithm should compute
and display the average of all four tests, weighting the
final exam twice as heavily as a regular test.

4. Write an algorithm that gets the price for item A plus the
quantity purchased. The algorithm prints the total cost,
including a 6% sales tax.

5. Write an if/then/else primitive to do each of the follow-
ing operations.
a. Compute and display the value x ÷ y if the value of y is

not 0. If y does have the value 0, then display the
message ‘Unable to perform the division.’

b. Compute the area and circumference of a circle given
the radius r if the radius is greater than or equal to 1.0;
otherwise, you should compute only the circumference.

6. Modify the algorithm of Exercise 2 to include the annual
service charge only if the starting account balance at the
beginning of the year is less than $1,000. If it is greater
than or equal to $1,000, then there is no annual service
charge.

7. Write an algorithm that uses a loop (1) to input 10 pairs
of numbers, where each pair represents the score of a foot-
ball game with the Computer State University (CSU) score
listed first, and (2) for each pair of numbers, determine
whether CSU won or lost. After reading in these 10 pairs of
values, print out the won/lost/tie record of CSU. In
addition, if this record is a perfect 10-0, then print out the
message ‘Congratulations on your undefeated season.’

8. Modify the test-averaging algorithm of Exercise 3 so that it
reads in 15 test scores rather than 4. There are 14 regular
tests and a final examination, which counts twice as much
as a regular test. Use a loop to input and sum the scores.

9. Modify the sales computation algorithm of Exercise 4 so
that after finishing the computation for one item, it
starts on the computation for the next. This iterative
process is repeated until the total cost exceeds $1000.

10. Write an algorithm that is given your electric meter read-
ings (in kilowatt-hours) at the beginning and end of each
month of the year. The algorithm determines your annual
cost of electricity on the basis of a charge of 6 cents per
kilowatt-hour for the first 1,000 kilowatt-hours of each
month and 8 cents per kilowatt-hour beyond 1,000. After
printing out your total annual charge, the algorithm also
determines whether you used less than 500 kilowatt-
hours for the entire year and, if so, prints out a message
thanking you for conserving electricity.

11. Develop an algorithm to compute gross pay. The inputs
to your algorithm are the hours worked per week and the
hourly pay rate. The rule for determining gross pay is to
pay the regular pay rate for all hours worked up to 40,
time-and-a-half for all hours over 40 up to 54, and dou-
ble time for all hours over 54. Compute and display the
value for gross pay using this rule. After displaying one
value, ask the user whether he or she wants to do
another computation. Repeat the entire set of operations
until the user says no.

12. Develop a formal argument that “proves” that the
sequential search algorithm shown in Figure 2.13 cannot
have an infinite loop; that is, prove that it will always
stop after a finite number of operations.

13. Modify the sequential search algorithm of Figure 2.13 so
that it works correctly even if the names in the directory
are not unique, that is, if the desired name occurs more
than once. Your modified algorithm should find every
occurrence of NAME in the directory and print out the tele-
phone number corresponding to every match. In addition,
after all the numbers have been displayed, your algorithm
should print out how many occurrences of NAME were
located. For example, if NAME occurred three times, the
output of the algorithm might look something like this:

528-5638

922-7874

488-2020

A total of three occurrences were located.

Exercises LEVEL 1 75

E X E R C I S E S

C5985_02_CTP.ps 7/21/06 1:51 PM Page 75C6217_02C6127_02

14. Use the Find Largest algorithm of Figure 2.14 to help you
develop an algorithm to find the median value in a list
containing N unique numbers. The median of N numbers
is defined as the value in the list in which approximately
half the values are larger than it and half the values are
smaller than it. For example, consider the following list
of seven numbers.

26, 50, 83, 44, 91, 20, 55

The median value is 50 because three values (20, 26, and
44) are smaller and three values (55, 83, and 91) are
larger. If N is an even value, then the number of values
larger than the median will be one greater than the num-
ber of values smaller than the median.

15. With regard to the Find Largest algorithm of Figure 2.14,
if the numbers in our list were not unique and therefore
the largest number could occur more than once, would
the algorithm find the first occurrence? The last occur-
rence? Every occurrence? Explain precisely how this algo-
rithm would behave when presented with this new
condition.

16. On the sixth line of the Find Largest algorithm of
Figure 2.14 there is an instruction that reads,

While (i # n) do

Explain exactly what would happen if we changed that
instruction to read as follows:
a. While (i $ n) do
b. While (i < n) do
c. While (i = n) do

17. On the seventh line of the Find Largest algorithm of
Figure 2.14 is an instruction that reads,

If Ai > largest so far then . . .

Explain exactly what would happen if we changed that
instruction to read as follows:
a. If Ai $ largest so far then . . .
b. If Ai < largest so far then . . .

Looking back over your answers to the previous two
questions, what do they say about the importance of
using the correct relational operation (,, =, ., $, #, B)
when writing out either an iterative or conditional algo-
rithmic primitive?

18. a. Refer to the pattern-matching algorithm in Figure 2.16.
What is the output of the algorithm as it currently
stands if our text is

Text: We must band together and handle adversity
and we search for the pattern “and”?

b. How could we modify the algorithm so that it finds
only the complete word and rather than the occur-
rence of the character sequence a, n, and d that are
contained within another word, such as band?

19. Refer to the pattern-matching algorithm in Figure 2.16.
Explain how the algorithm would behave if we acciden-
tally omitted the statement on line 16 that says,

Increment k by 1

20. Design an algorithm that is given a positive integer N
and determines whether N is a prime number, that is,
not evenly divisible by any value other than 1 and
itself. The output of your algorithm is either the mes-
sage “not prime,” along with a factor of N, or the
message “prime.”

21. Write an algorithm that generates a Caesar cipher—a
secret message in which each letter is replaced by the
one that is k letters ahead of it in the alphabet, in a
circular fashion. For example, if k = 5, then the letter a
would be replaced by the letter f, and the letter x would
be replaced by the letter c. (We’ll talk more about
the Caesar cipher and other encryption algorithms in
Chapter 13.) The input to your algorithm is the text to
be encoded, ending with the special symbol “$”, and
the value k. (You may assume that, except for the spe-
cial ending character, the text contains only the 26 let-
ters a . . . z.) The output of your algorithm is the
encoded text.

22. Design and implement an algorithm that is given as input
an integer value k $ 0 and a list of k numbers N1, N2, . . . ,
Nk. Your algorithm should reverse the order of the numbers
in the list. That is, if the original list contained:

N1 = 5, N2 = 13, N3 = 8, N4 = 27, N5 = 10 (k = 5)

then when your algorithm has completed, the values
stored in the list will be:

N1 = 10, N2 = 27, N3 = 8, N4 = 13, N5 = 5

23. Design and implement an algorithm that gets as input a
list of k integer values N1, N2, . . . , Nk as well as a spe-
cial value SUM. Your algorithm must locate a pair of val-
ues in the list N that sum to the value SUM. For example,
if your list of values is 3, 8, 13, 2, 17, 18, 10, and the
value of SUM is 20, then your algorithm would output
either the two values (2, 18) or (3, 17). If your algo-
rithm cannot find any pair of values that sum to the
value SUM, then it should print out the message ‘Sorry,
there is no such pair of values.’

76 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

C5985_02_CTP.ps 7/21/06 1:51 PM Page 76C6217_02C6127_02

1. Design an algorithm to find the root of a function f(x),
where the root is defined as a point x such that f(x) = 0.
Pictorially, the root of a function is the point where the
graph of that function crosses the x-axis.

Your algorithm should operate as follows. Initially it will
be given three values:

1. A starting point for the search
2. A step size
3. The accuracy desired

Your algorithm should begin at the specified starting point
and begin to “walk up” the x-axis in units of step size.
After taking a step, it should ask the question “Have I
passed a root?” It can determine the answer to this ques-
tion by seeing whether the sign of the function has
changed from the previous point to the current point.
(Note that below the axis the sign of f(x) is negative;
above the axis it is positive. If it crosses the x-axis, it must
change sign.) If the algorithm has not passed a root, it
should keep walking up the x-axis until it does. Pictorially,

When the algorithm passes a root, it must do two
things. First, it changes the sign of step size so that it
starts walking in the reverse direction, because it is now
past the root. Second, it multiplies step size by 0.1, so
our steps are 1/10 as big as they were before. We now
repeat the operation described above, walking down the
x-axis until we pass the root.

Again, the algorithm changes the sign of step size
to reverse direction and reduces it to 1/10 its previous
size. As the diagrams show, we are slowly zeroing in on
the root—going past it, turning around, going past it,
turning around, and so forth. This iterative process stops
when the algorithm passes a root and the step size is
smaller than the desired accuracy. It has now bracketed
the root within an interval that is smaller than the accu-
racy we want. At this point it should print out the mid-
point of the interval and terminate.

There are many special cases that this algorithm
must deal with, but in your solution you may disregard
them. Assume that you will always encounter a root in
your “travels” along the x-axis. After creating a solution,
you may wish to look at some of these special cases,
such as a function that has no real roots, a starting point
that is to the right of all the roots, and two roots so
close together that they fall within the same step.

2. One of the most important and widely used classes of algo-
rithms in computer science is sorting, the process of
putting a list of elements into a predefined order, usually
numeric or alphabetic. There are many different sorting
algorithms, and we will look at some of them in Chapter 3.
One of the simplest sorting algorithms is called selection
sort, and it can be implemented using the tools that you
have learned in this chapter. It is also one of the easiest
to understand as it mimics how we often sort collections
of values when we must do it by hand.

Assume that we are given a list named A, containing
eight values that we want to sort into ascending order,
from smallest to largest:

A: 23 18 66 9 21 90 32 4

Position: 1 2 3 4 5 6 7 8

We first look for the largest value contained in positions
1 to 8 of list A. We can do this using something like the

Challenge Work LEVEL 1 77

C H A L L E N G E WO R K

y
f(x)

x

Root

y f(x)

x

Step
size

1 2 3

Starting point

Direction of search

y f(x)

x

New step size

1 2

7 6 5 4

3

{

Turnaround
point

Direction of search

C5985_02_CTP.ps 7/21/06 1:51 PM Page 77C6217_02C6127_02

Find Largest algorithm that appears in Figure 2.14. In
this case the largest value is 90, and it appears in posi-
tion 6. Since this is the largest value in A, we swap it
with the value in position 8 so that it is in its correct
place at the back of the list. The list is now partially
sorted from position 8 to position 8:

A: 23 18 66 9 21 4 32 90

Position: 1 2 3 4 5 6 7 8

We now search the array for the second largest value.
Since we know that the largest value is contained in
position 8, we need to search only positions 1 to 7 of list
A to find the second largest value. In this case the sec-
ond largest value is 66, and it appears in position 3. We
now swap the value in position 3 with the value in posi-
tion 7 to get the second largest value into its correct
location. This produces the following:

A: 23 18 32 9 21 4 66 90

Position: 1 2 3 4 5 6 7 8

The list is now partially sorted from position 7 to position 8,
with those two locations holding the two largest values. The
next search goes from position 1 to position 6 of list A, this
time trying to locate the third largest value, and we swap
that value with the number in position 6. After repeating

this process 7 times, the list is completely sorted. (That is
because if the last 7 items are in their correct place, the
item in position 1 must also be in its correct place.)

Using the Find Largest algorithm shown in Figure 2.14
(which may have to be slightly modified) and the primitive
pseudocode operations listed in Figure 2.9, implement the
selection sort algorithm that we have just described.
Assume that n, the size of the list, and the n-element list A
are input to your algorithm. The output of your algorithm
should be the sorted list.

3. Most people are familiar with the work of the great math-
ematicians of ancient Greece and Rome, such as
Archimedes, Euclid, Pythagoras, and Plato. However, a
great deal of important work in arithmetic, geometry,
algebra, number theory, and logic was carried out by
scholars working in Egypt, Persia, India, and China. For
example, the concept of zero was first developed in
India, and positional numbering systems (like our own
decimal system) were developed and used in China,
India, and the Middle East long before they made their
way to Europe. Read about the work of some mathemati-
cian (such as Al-Khowarizmi) from these or other places,
and write a paper describing his or her contributions to
mathematics, logic, and (ultimately) computer science.

78 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

F O R F U R T H E R R E A D I N G

The classic text on algorithms is the three-volume series by Donald Knuth:

Knuth, D. The Art of Computer Programming, 3 vols. Reading, MA: Addison Wesley, 1997–1998.

Volume 1: Fundamental Algorithms, 3rd ed., 1997.

Volume 2: Seminumerical Algorithms, 3rd ed., 1998.

Volume 3: Sorting and Searching, 2nd ed., 1998.

The following books provide additional information about the design of algorithms to
solve a wide range of interesting problems.

Baase, S., and Van Gelder, A., Computer Algorithms: Introduction to Design and Analysis, 3rd ed.
Reading, MA: Addison Wesley, 2000.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C. Introduction to Algorithms, 2nd ed. New
York: McGraw-Hill, 2002.

Harel, D. Algorithmics: The Spirit of Computing, 2nd ed. Reading, MA: Addison Wesley, 1992.

Michalewicz, Z., and Fogel, D. How to Solve It: Modern Heuristics. Amsterdam: Springer-Verlag, 1999.

Skiena, S. The Algorithm Design Manual. New York: Telos Press, 1997.

The following is an excellent introduction to algorithm design using the control of the
motions and actions of a toy robot as a basis for teaching algorithmic problem solving.

Pattis, R.; Roberts, J.; and Stehlik, M. Karel the Robot: A Gentle Introduction to the Art of Program-
ming, 2nd ed. New York: Wiley, 1994.

C5985_02_CTP.ps 7/21/06 1:51 PM Page 78C6217_02C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 79C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 80C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 81C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 82C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 83C6127_02

C6217_02_CTP.ps 7/21/06 1:48 PM Page 84C6127_02

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

