Air Hockey

Computer Science Society Programming Contest Winter 2006

An air hockey table is a level rectangular table whereon a circular puck levitates on a cushion of air. If propelled forward, the puck slides with little friction, rebounding off vertical walls that meet the table's edges. In this problem, we assume there is no friction-puck speed is constant once moving-and rebounds are perfect-happening instantaneously and having equal angles of incidence and exit. Given a table's length and width, and a puck's radius, initial position and initial velocity, compute the position of the puck at given times.

Input Format

The first line contains two positive integers-the length l (along the x-axis) and width w (along the y-axis) of the table (in mm) -separated by a blank. The second line contains a positive integer-the radius r of the puck (in mm). The third line contains two positive integers-the initial velocity (v_{x}, v_{y}) of the puck (in $\mathrm{mm} / \mathrm{sec}$), as a vector. The fourth line contains two positive integers-the initial position (x_{0}, y_{0}) of the center of the puck. The fifth line contains a positive integer-the duration d of the observation period (in seconds). You can assume the puck fits on the table; i.e. $r \leqslant x_{0} \leqslant l-r$ and $r \leqslant y_{0} \leqslant w-r$.

Output Format

The first three lines echo the length l, width w, radius r and initial velocity $\left(v_{x}, v_{y}\right)$, formatted as shown in the output sample below. The remaining $d+1$ lines report the position $\left(x_{t}, y_{t}\right)$ of the puck after $t=0,1,2, \ldots, d$ seconds, formatted as shown in the output sample below.

Input Sample

```
650490
40
5070
100 100
1 5
```


Output Sample

```
    table: 650 mm long by 490 mm wide
    puck: 40 mm radius
velocity: (50 mm/sec, 70 mm/sec)
t=0 secs: (100, 100)
t=1 secs: (150, 170)
t=2 secs: (200, 240)
t=3 secs: (250, 310)
t=4 secs: (300, 380)
t=5 secs: (350, 450)
t=6 secs: (400, 380)
t=7 secs: (450, 310)
t=8 secs: (500, 240)
t=9 secs: (550, 170)
t=10 secs: (600, 100)
t=11 secs: (570, 50)
t=12 secs: (520, 120)
t=13 secs: (470, 190)
t=14 secs: (420, 260)
t=15 secs: (370, 330)
```

