
Huffman Code Computer Science Society
Programming Contest
Fall 2008

We know that characters are represented in binary using fixed-length codes (e.g. 7-bit ASCII
or 16-bit UNICODE). Since some characters occur in text morefrequently than others, can’t we
save bits in the long run if we use shorter codes for frequent characters and longer codes for
infrequent characters? Yes; however, if one character’s code is a prefix of another character’s code
(e.g.a=010, b=01011, c=11), there’s potential ambiguity about where one character ends and the
next starts in a string (e.g. whether01011 encodes the stringb or the stringac). If character codes
areprefix-free—no code is a prefix of any other code—then no such ambiguity occurs. In 1952,
David Huffman discovered an algorithm for producing variable-length prefix-free character codes
of minimum average length, based on the frequency of characters in input text.

A Huffman treeis a binary tree whose leaves are labeled by characters, and whose subtrees have
weights representing character frequencies. TheHuffman codeof a character labeling a leaf is
obtained by traversing the path from the root to the leaf, writing 0 or 1 when traversing a left or
right branch, respectively. To create a Huffman tree from input text, initialize a set containing one-
node (i.e. single-leaf) trees for each distinct character in the input text, with weight equal to the
frequency of that character in the text. As long as there is more than one tree in the set, repeatedly
do the following:

1. Remove the smallest treet1 and next smallest treet2 from the set. Compare trees numerically
by weight; if the weights are equal, compare them alphabetically by least character labeling
a leaf.

2. Construct a new treet with left subtreet1, right subtreet2, and weight equal to the sum of
the weights oft1 andt2.

3. Addt to the set.

The resulting Huffman tree has a leaf for each distinct character in the input text, from which the
characters’ Huffman codes can be obtained.

Input Format

The input text consists of a stream of ASCII characters. Onlythe graphical characters (with
ASCII codes between 32 and 126 inclusive) are counted; all others (e.g. tabs, newlines and carriage
returns) are ignored.

Output Format

Produce a Huffman code for each graphical ASCII character, based on the frequency they
occur in the input text. Output a line containing the character, its Huffman code, and its frequency
in parentheses. Sort the lines of output alphabetically by Huffman code.



Input Sample

Mississippi has a number of
repeated letters.

Output Sample

i 000 (4)
l 00100 (1)
m 00101 (1)
n 00110 (1)
o 00111 (1)
010 (5)

u 01100 (1)
. 011010 (1)
M 011011 (1)
a 0111 (3)
e 100 (6)
p 1010 (3)
r 1011 (3)
s 110 (6)
t 1110 (3)
b 111100 (1)
d 111101 (1)
f 111110 (1)
h 111111 (1)


