A sequence $x_{1} x_{2} \ldots x_{m}$ is a subsequence of $y_{1} y_{2} \ldots y_{n}$ if $m \leqslant n$ and

$$
x_{1}=y_{k_{1}}, x_{2}=y_{k_{2}}, \ldots, x_{m}=y_{k_{m}}, \text { where } 1 \leqslant k_{1}<k_{2}<\cdots<k_{m} \leqslant n .
$$

In this problem, you are given two strings $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$, and must count the number of ways in which x appears as a subsequence of y, i.e. the number of distinct index sequences $k_{1}, k_{2}, \ldots, k_{m}$ that satisfy the definition of subsequence above. For example, "cat" appears as a subsequence of "chant" in exactly one way, and "ram" appears as a subsequence of "programming" in four ways.

Input Format

Each line of input contains two nonempty strings of lowercase letters x and y, separated by one or more blanks.

Output Format

For each line of input, report the number of ways in which x appears as a subsequence of y, as shown in the output sample below.

Input Sample

```
cat chant
ram programming
cob cocbcob
jog mygojobe
contest contest
fragtastic frag
aa aaaa
aaaa aaaaaaaa
aaaaaa aaaaaaaaaaaa
```


Output Sample

```
1 "cat" in "chant"
4 "ram" in "programming"
5 "cob" in "cocbcob"
0 "jog" in "mygojobe"
1 "contest" in "contest"
0 "fragtastic" in "frag"
6 "aa" in "aaaa"
70 "aaaa" in "aaaaaaaa"
924 "aaaaaa" in "aaaaaaaaaaaa"
```

