
The Harrison-Rizzo-Ullman result

by
Michael Rothstein

Kent State University
given 11-30-2005



Overview
Access Control and the Access Control Matrix

Protection Systems

Turing Machines

Emulating a Turing Machine with a Protection      
System

Undecidability Result

Policies and a decidable class of Protection 
Systems



Access Control

● One issue in computer security is controlling 
the set of allowed operations of different users 
and programs on the computer's resources.

● We often need a procedure to tell us whether 
a subject (user, program) has the right to 
perform an operation on an object.

● We use a predicate a(subject,object,right)



Representing the access predicate

● The access 
predicate, a[s,o] is 
usually represented 
as a 2-d matrix 
called the 
accessibility matrix.

● The entries in the 
matrix are subsets of 
the set of rights 
representing the 
allowed operations.



An example

● In this example, Joe 
owns, can read, write 
and execute File1 and 
read File4;

● Sally owns File2 and 
File4, can read all files 
except File3, ...

● Though not shown, 
subjects are also 
objects, so that we can 
also talk about the rights 
a subject has over 
another subject.



 

● The accessibility matrix does not remain 
static; most of the time:
– New objects are created
– New subjects are added or created.
– Rights of subjects on objects are modified (e.g.

● chmod, changing permissions, etc.
● Need a model for this situation.



Protection Systems

A protection system consists of:
● A set of rights.
● An initial set of subjects, an initial set of 

objects and an initial accessibility matrix, 
called an initial Protection State

● A finite set of commands which consist of a 
name which is invoked with a definite number 
of parameters which can denote subjects or 
objects.



Protection Systems (continued)

● These commands are interpreted as a sequence of 
elementary commands executed on the parameters, 
subject to the conjunction of the presence of certain rights 
in the accessibility matrix.

● The elementary commands are:
   1) Enter right r into matrix entry a[s,o]
   2) Delete right r from matrix entry a[s,o]
   3) Create subject s   (no rights added)
   4) Create object o    (no rights added)
   5) Destroy subject s
   6) Destroy object o
  where s denotes a subject, o denotes an object and r 

denotes a right.



Some Unix examples

Create a file(p,d,f):
(in directory d)
If w in a[p,d]
1) Create object f in d.
2) Enter own into a[p,f]
3) Enter r into a[p,f]
4) Enter w into a[p,f]

Create a process(p,q)
1) Create subject(q)
2) Enter own into 

a[p,q]
3) Enter r into a[p,q]
4) Enter w into a[p,q]
5) Enter r into a[q,p]
6) Enter w into a[q,p]



What about safety?

● Given a protection system, we would like to 
know whether “something unpleasant” may 
happen.

● One way to define “something unpleasant” is to 
say that a subject may not acquire a certain 
right over an object. In that case we will say 
that a “leak” has occurred.

● We shall see that we cannot determine whether 
a leak will occur. For that, we turn to Turing 
Machine theory.



A Turing Machine

● Is a model of computation, designed in the 1930's to 
explore the limits of computers.

● It was designed to be simple in order to make 
reasoning about it easier.

● It has approximately the same computational power of 
any computer.

● Surprisingly, not all problems can be solved with a 
Turing machine:

● The Halting problem, that is, designing a Turing 
machine which will determine whether an arbitrary 
Turing Machine, given an arbitrary input, will go into an 
infinite loop, is impossible.



A Turing Machine

A Turing machine is:
1) A tape of rectangles 

stretching to the right 
indefinitely. Each rectangle  
contains a symbol, most of 
which are “blanks” □.

2) A read/write head that is 
“looking” at one of the 
rectangles and can be in one 
of a finite number of “states”.

3) A transition function which 
determines the computation 
of the Turing Machine



Formal Definition of a Turing 
Machine
A Turing Machine is completely specified by a sextuple 

(Q,Σ,Γ,δ,q0,H) where
● Q is a set of states
● Σ is the input alphabet. It does not include the blank 

symbol □.
● Γ is the working alphabet, which contains Σ and the 

blank symbol □. It may contain other symbols.
● δ is the transition function (described on next slide)
● q0 is the starting state.
● H is the final, or halting, state.



The transition function δ

δ Is a function which maps a state and a symbol on the 
tape to a triple consisting of
– The new state of the Turing Machine
– The symbol written on the tape (it may be the same 

or a different symbol than the one before).
– Whether the head moves to the right or the left.

We will assume that the transition function has been 
written in such a way that the head will not move off 
the left side.  The alternative is that, if the machine is 
on the first rectangle and the action requires moving to 
the left, the head will not move. Not really a restriction: 
we will show later how to change one into the other.



A Turing Machine Computation

1) The input is placed on the tape, left justified; formatting may 
be added.

2) The read/write head is placed on the leftmost rectangle in the 
special “start” or initial state.

3) The transition function is repeatedly applied to the current 
state of the read/write head and the symbol being examined 
on the tape.

4) The computation halts if the read/write head gets placed in 
the special “halt” state.



A Turing Machine Computation
An example: add 1 in Binary
● The following describes a machine that adds 1 in binary to the 

number on the input tape. The number should be placed, least 
significant bit first, on the tape.

● The symbols to be used are 0,1 (to represent the number) and 
the special blank symbol denoted by □.

● There will be 2 states, denoted by W and H; W will be the start 
state, H is the halt state.

● The transition function is given by:
δ(W,0) → (H,1,R)   (If the leftmost digit is 0, changing it to 1 is all)
δ(W,1) → (W,0,R)  (If we have a 1, 1+1 = 0, carry 1..)
δ(W,□) → (H,1,R)   (If we carried to the end, write 1 and halt.)
Formally, this machine is given by:

({W,H},{0,1},{0,1,□},δ,W,H)
where δ is as defined above.



Adding 1 to 1011 with a Turing 
Machine

Start; place the input 
on the tape, least 
significant bit to the 
left.

Set the state of the 
machine to the start 
state W.



Adding 1 to 1011 with a Turing 
Machine

Step 1: we use the 
transition:

● δ(W,0) → (H,1,R)
● δ(W,1) → (W,0,R) ◄
● δ(W,□) → (H,1,R)



Adding 1 to 1011 with a Turing 
Machine

Step 2: we use the 
transition:

● δ(W,0) → (H,1,R)
● δ(W,1) → (W,0,R) ◄
● δ(W,□) → (H,1,R)



Adding 1 to 1011 with a Turing 
Machine

Step 3: we use the 
transition:

● δ(W,0) → (H,1,R) ◄
● δ(W,1) → (W,0,R)
● δ(W,□) → (H,1,R)



Adding 1 to 1011 with a Turing 
Machine

Final result:
1100



 

The Undecidability of the Safety Problem



 

The goal of this part of the talk is to show that 
determining safety of a general protection 
system is undecidable.

One way to prove undecidability is to show that, if 
there exists an algorithm for solving the 
problem at hand, we can solve the halting 
problem, which is known to be undecidable.

In order to do this, we must, given an arbitrary 
Turing Machine, show how we can emulate its 
computation with a protection system. But 
first...



The machine will never move off 
the left hand side.

● We mentioned above that we assume the 
transition function has been defined in such a 
way that the head never moves off the first 
recatngle to the left.



The machine will never move off the 
left hand side.
● In order to modify a machine where the head is not 

allowed to move off the left, to a machine whose transition 
function never moves off the left, we modify the original 
machine as follows:
– Require that there be a special marker ╠ as the leftmost 

symbol on the tape. The input is placed to its right.
– Modify the transition function δ by defining

δ(q,╠) → (q,╠,R)
   for all states q in Q. Thus, if the original transition 

function tries to move off to the left, this transition 
function moves it back again to the original first square.



Emulating a Turing Machine with a 
Protection System
● A row in the accessibility matrix (i. e. the set of objects a given 

subject can access) can be used to emulate a Turing Machine.
● For rights, we use one for each symbol in the Turing machine, 

plus one right each for each state in the Turing machine.
● We will add two special rights “at end” and “not at end” which 

will tell us whether the object in question is the rightmost.
● We will assume every command has an implicit  parameter 

which is a subject S.
● We will number the objects from left to right and denote them by 

their number. The generic object will be denoted by n and 
represents the rectangle being worked on by the Turing 
Machine.



Emulating a Turing Machine with a 
Protection System (continued)

Subject S will have the 
following rights:

● Exactly one symbol right 
over each object;

● One state right over exactly 
one object (corresponding 
to the space being worked 
on by the Turing Machine).

● The state rights and the 
symbol rights are disjoint.

● The “at end” right over the 
rightmost object and

● the “not at end” right over all 
other objects.



Commands in the emulated Turing 
Machine

● Transitions of the form δ(q,s) → (q',s',L) get 
emulated by:

if q in a[S,n] and s in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n-1]

    



Commands in the emulated Turing 
Machine (continued)
● Transitions of the 

form δ(q,s) → (q',s',R) 
need:

if q in a[S,n] and s in 
a[S,n] and not-at-end 
in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n+1]

   



Commands in the emulated Turing 
Machine (continued)
● Transitions of the 

form δ(q,s) → (q',s',R) 
need:

if q in a[S,n] and s in 
a[S,n] and not-at-end 
in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n+1]

They also need:
if q in a[S,n] and s in a[S,n] 

and at-end in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
delete at-end from a[S,n]
enter not-at-end into a[S,n]
enter s' into a[S,n]
create object n+1
enter at-end into a[S,n+1]
enter q' into a[S,n+1]
enter □ into a[S,n+1] 



In summary

● We have shown how to take any Turing 
Machine and emulate its computation with the 
actions in a protection system.

● Since we cannot tell whether a Turing 
machine will halt, we cannot tell either 
whether a protection system will leak a right 
“H”.

● Therefore, the problem of telling whether a 
protection system “is safe” is undecidable.



In summary

● We have shown how to take any Turing 
Machine and emulate its computation with the 
actions in a protection system.

● Since we cannot tell whether a Turing 
machine will halt, we cannot tell either 
whether a protection system will leak a right 
“H”.

● Therefore, the problem of telling whether a 
protection system “is safe” is undecidable.

● But wait....



  

● We CAN tell when we are going to leak a 
given right.

● Why can't we just check?
● We can even generalize.... 



Policies

● Intuitively, a policy is a statement which states 
the operations that are and are not allowed.

● Formally,
A policy is a recursive mapping P from the set of 

subjects, the set of objects and the set of rights into 
the boolean set {true, false}

● Given the above definition, we can define a 
protection system to be safe if:
for all subjects s, all objects o and all rights r:

r is in a[s,o] implies P(s,o,r)



Policies: An example

This definition is a generalization of the concept 
we used in the first part of this talk: we can 
define, for all objects o, P(S,o,H) is false, 
otherwise, for all subjects s≠S, all objects and 
all rights r, P(s,o,r) is true.



P-Protection Systems

Definition: A P-protection system consists of:
● A set of rights Ř.
● A set of potential objects Ŏ, a set of potential 

subjects Š and a policy P mapping 
Š X Ŏ X Ř → {true, false}

● Initial subsets O of Ŏ, S of Š and an initial 
accessibility matrix a[S,O]. As before, we will 
call configuration states to triples consisting of a 
subset of Š, a subset of Ŏ and an accessibility 
matrix. Thus the initial triple will be called an 
initial protection state.



Definition of P-Protection Systems 
(continued)

● A finite set of commands which consist of a 
name, invoked with a definite number of 
parameters which can be subjects or objects.

● An interpretation of these commands which 
are procedures built up from boolean 
predicates checking rights in either the 
accessibility matrix or the policy, and six 
elementary operations (in next slide)



Definition of P-Protection Systems 
(continued)

● The elementary operations are (where s 
denotes a subject, o denotes an object and r 
denotes a right):
– If P(s,o,r) enter r into a[s,o]
– Delete right r from a[s,o]
– Create subject s (from Š)  (no rights added to a)
– Create object o (from Ŏ)   (no rights added to a)
– Destroy s
– Destroy o



Definition:

Let (Ř,Š,Ŏ,P,S,O,a,C) be a P-protection 
system, (S',O',a') a protection state in the 
protection system. Then (S',O',a') will be 
called safe if, for all s in S', o in O' and right r 
in Ř, r in a'(s,o) implies P(s',o',r). 



The main result of this talk

● Let (Ř,Š,Ŏ,P,S,O,a,C) be a P-protection 
system. Then, if (S,O,a) is safe, any 
configuration reached by any sequence of 
commands executed on the initial 
configuration will be safe.

● The proof follows by induction on the 
elementary commands executed:



Induction step of the proof:

● Only command adding a right.
– If P(s,o,r) enter r into a[s,o]

● Only adds right if allowed by the policy.
● The remaining commands do not add rights:

– Delete right r from a[s,o]
– Create subject s (from Š)  (no rights added to a)
– Create object o (from Ŏ)   (no rights added to a)
– Destroy s
– Destroy o



Conclusions

● We have shown a stricter version of the 
Harrison-Ruzzo-Ullman theorem (1976)

● We have shown that the undecidability can be 
resolved by being careful: check against 
policy at every possible problematic step.



Directions for future work

● Main efforts for future work will be setting up 
criteria for policies which preserve the security 
triad of confidentiality, integrity and availability.



Directions for future work

● Main efforts for future work will be setting up 
criteria for policies which preserve the security 
triad of confidentiality, integrity and availability.

● Main emphasis, at present, is concentrating on 
information flow.



Information Flow

● Controlling Information Flow preserves 
confidentiality by controlling what subjects 
have access to information: information which 
should not be divulged is kept among subjects 
allowed to use it.

● Controlling information flow also preserves 
Integrity by guaranteeing that “tainted” 
information doesn't “contaminate” good 
information.



 

     Questions?
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