
The Harrison-Rizzo-Ullman result

by
Michael Rothstein

Kent State University
given 11-30-2005

Overview
Access Control and the Access Control Matrix

Protection Systems

Turing Machines

Emulating a Turing Machine with a Protection
System

Undecidability Result

Policies and a decidable class of Protection
Systems

Access Control

● One issue in computer security is controlling
the set of allowed operations of different users
and programs on the computer's resources.

● We often need a procedure to tell us whether
a subject (user, program) has the right to
perform an operation on an object.

● We use a predicate a(subject,object,right)

Representing the access predicate

● The access
predicate, a[s,o] is
usually represented
as a 2-d matrix
called the
accessibility matrix.

● The entries in the
matrix are subsets of
the set of rights
representing the
allowed operations.

An example

● In this example, Joe
owns, can read, write
and execute File1 and
read File4;

● Sally owns File2 and
File4, can read all files
except File3, ...

● Though not shown,
subjects are also
objects, so that we can
also talk about the rights
a subject has over
another subject.

● The accessibility matrix does not remain
static; most of the time:
– New objects are created
– New subjects are added or created.
– Rights of subjects on objects are modified (e.g.

● chmod, changing permissions, etc.
● Need a model for this situation.

Protection Systems

A protection system consists of:
● A set of rights.
● An initial set of subjects, an initial set of

objects and an initial accessibility matrix,
called an initial Protection State

● A finite set of commands which consist of a
name which is invoked with a definite number
of parameters which can denote subjects or
objects.

Protection Systems (continued)

● These commands are interpreted as a sequence of
elementary commands executed on the parameters,
subject to the conjunction of the presence of certain rights
in the accessibility matrix.

● The elementary commands are:
 1) Enter right r into matrix entry a[s,o]
 2) Delete right r from matrix entry a[s,o]
 3) Create subject s (no rights added)
 4) Create object o (no rights added)
 5) Destroy subject s
 6) Destroy object o
 where s denotes a subject, o denotes an object and r

denotes a right.

Some Unix examples

Create a file(p,d,f):
(in directory d)
If w in a[p,d]
1) Create object f in d.
2) Enter own into a[p,f]
3) Enter r into a[p,f]
4) Enter w into a[p,f]

Create a process(p,q)
1) Create subject(q)
2) Enter own into

a[p,q]
3) Enter r into a[p,q]
4) Enter w into a[p,q]
5) Enter r into a[q,p]
6) Enter w into a[q,p]

What about safety?

● Given a protection system, we would like to
know whether “something unpleasant” may
happen.

● One way to define “something unpleasant” is to
say that a subject may not acquire a certain
right over an object. In that case we will say
that a “leak” has occurred.

● We shall see that we cannot determine whether
a leak will occur. For that, we turn to Turing
Machine theory.

A Turing Machine

● Is a model of computation, designed in the 1930's to
explore the limits of computers.

● It was designed to be simple in order to make
reasoning about it easier.

● It has approximately the same computational power of
any computer.

● Surprisingly, not all problems can be solved with a
Turing machine:

● The Halting problem, that is, designing a Turing
machine which will determine whether an arbitrary
Turing Machine, given an arbitrary input, will go into an
infinite loop, is impossible.

A Turing Machine

A Turing machine is:
1) A tape of rectangles

stretching to the right
indefinitely. Each rectangle
contains a symbol, most of
which are “blanks” □.

2) A read/write head that is
“looking” at one of the
rectangles and can be in one
of a finite number of “states”.

3) A transition function which
determines the computation
of the Turing Machine

Formal Definition of a Turing
Machine
A Turing Machine is completely specified by a sextuple

(Q,Σ,Γ,δ,q0,H) where
● Q is a set of states
● Σ is the input alphabet. It does not include the blank

symbol □.
● Γ is the working alphabet, which contains Σ and the

blank symbol □. It may contain other symbols.
● δ is the transition function (described on next slide)
● q0 is the starting state.
● H is the final, or halting, state.

The transition function δ

δ Is a function which maps a state and a symbol on the
tape to a triple consisting of
– The new state of the Turing Machine
– The symbol written on the tape (it may be the same

or a different symbol than the one before).
– Whether the head moves to the right or the left.

We will assume that the transition function has been
written in such a way that the head will not move off
the left side. The alternative is that, if the machine is
on the first rectangle and the action requires moving to
the left, the head will not move. Not really a restriction:
we will show later how to change one into the other.

A Turing Machine Computation

1) The input is placed on the tape, left justified; formatting may
be added.

2) The read/write head is placed on the leftmost rectangle in the
special “start” or initial state.

3) The transition function is repeatedly applied to the current
state of the read/write head and the symbol being examined
on the tape.

4) The computation halts if the read/write head gets placed in
the special “halt” state.

A Turing Machine Computation
An example: add 1 in Binary
● The following describes a machine that adds 1 in binary to the

number on the input tape. The number should be placed, least
significant bit first, on the tape.

● The symbols to be used are 0,1 (to represent the number) and
the special blank symbol denoted by □.

● There will be 2 states, denoted by W and H; W will be the start
state, H is the halt state.

● The transition function is given by:
δ(W,0) → (H,1,R) (If the leftmost digit is 0, changing it to 1 is all)
δ(W,1) → (W,0,R) (If we have a 1, 1+1 = 0, carry 1..)
δ(W,□) → (H,1,R) (If we carried to the end, write 1 and halt.)
Formally, this machine is given by:

({W,H},{0,1},{0,1,□},δ,W,H)
where δ is as defined above.

Adding 1 to 1011 with a Turing
Machine

Start; place the input
on the tape, least
significant bit to the
left.

Set the state of the
machine to the start
state W.

Adding 1 to 1011 with a Turing
Machine

Step 1: we use the
transition:

● δ(W,0) → (H,1,R)
● δ(W,1) → (W,0,R) ◄
● δ(W,□) → (H,1,R)

Adding 1 to 1011 with a Turing
Machine

Step 2: we use the
transition:

● δ(W,0) → (H,1,R)
● δ(W,1) → (W,0,R) ◄
● δ(W,□) → (H,1,R)

Adding 1 to 1011 with a Turing
Machine

Step 3: we use the
transition:

● δ(W,0) → (H,1,R) ◄
● δ(W,1) → (W,0,R)
● δ(W,□) → (H,1,R)

Adding 1 to 1011 with a Turing
Machine

Final result:
1100

The Undecidability of the Safety Problem

The goal of this part of the talk is to show that
determining safety of a general protection
system is undecidable.

One way to prove undecidability is to show that, if
there exists an algorithm for solving the
problem at hand, we can solve the halting
problem, which is known to be undecidable.

In order to do this, we must, given an arbitrary
Turing Machine, show how we can emulate its
computation with a protection system. But
first...

The machine will never move off
the left hand side.

● We mentioned above that we assume the
transition function has been defined in such a
way that the head never moves off the first
recatngle to the left.

The machine will never move off the
left hand side.
● In order to modify a machine where the head is not

allowed to move off the left, to a machine whose transition
function never moves off the left, we modify the original
machine as follows:
– Require that there be a special marker ╠ as the leftmost

symbol on the tape. The input is placed to its right.
– Modify the transition function δ by defining

δ(q,╠) → (q,╠,R)
 for all states q in Q. Thus, if the original transition

function tries to move off to the left, this transition
function moves it back again to the original first square.

Emulating a Turing Machine with a
Protection System
● A row in the accessibility matrix (i. e. the set of objects a given

subject can access) can be used to emulate a Turing Machine.
● For rights, we use one for each symbol in the Turing machine,

plus one right each for each state in the Turing machine.
● We will add two special rights “at end” and “not at end” which

will tell us whether the object in question is the rightmost.
● We will assume every command has an implicit parameter

which is a subject S.
● We will number the objects from left to right and denote them by

their number. The generic object will be denoted by n and
represents the rectangle being worked on by the Turing
Machine.

Emulating a Turing Machine with a
Protection System (continued)

Subject S will have the
following rights:

● Exactly one symbol right
over each object;

● One state right over exactly
one object (corresponding
to the space being worked
on by the Turing Machine).

● The state rights and the
symbol rights are disjoint.

● The “at end” right over the
rightmost object and

● the “not at end” right over all
other objects.

Commands in the emulated Turing
Machine

● Transitions of the form δ(q,s) → (q',s',L) get
emulated by:

if q in a[S,n] and s in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n-1]

Commands in the emulated Turing
Machine (continued)
● Transitions of the

form δ(q,s) → (q',s',R)
need:

if q in a[S,n] and s in
a[S,n] and not-at-end
in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n+1]

Commands in the emulated Turing
Machine (continued)
● Transitions of the

form δ(q,s) → (q',s',R)
need:

if q in a[S,n] and s in
a[S,n] and not-at-end
in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
enter s' into a[S,n]
enter q' into a[S,n+1]

They also need:
if q in a[S,n] and s in a[S,n]

and at-end in a[S,n] then
delete q from a[S,n]
delete s from a[S,n]
delete at-end from a[S,n]
enter not-at-end into a[S,n]
enter s' into a[S,n]
create object n+1
enter at-end into a[S,n+1]
enter q' into a[S,n+1]
enter □ into a[S,n+1]

In summary

● We have shown how to take any Turing
Machine and emulate its computation with the
actions in a protection system.

● Since we cannot tell whether a Turing
machine will halt, we cannot tell either
whether a protection system will leak a right
“H”.

● Therefore, the problem of telling whether a
protection system “is safe” is undecidable.

In summary

● We have shown how to take any Turing
Machine and emulate its computation with the
actions in a protection system.

● Since we cannot tell whether a Turing
machine will halt, we cannot tell either
whether a protection system will leak a right
“H”.

● Therefore, the problem of telling whether a
protection system “is safe” is undecidable.

● But wait....

● We CAN tell when we are going to leak a
given right.

● Why can't we just check?
● We can even generalize....

Policies

● Intuitively, a policy is a statement which states
the operations that are and are not allowed.

● Formally,
A policy is a recursive mapping P from the set of

subjects, the set of objects and the set of rights into
the boolean set {true, false}

● Given the above definition, we can define a
protection system to be safe if:
for all subjects s, all objects o and all rights r:

r is in a[s,o] implies P(s,o,r)

Policies: An example

This definition is a generalization of the concept
we used in the first part of this talk: we can
define, for all objects o, P(S,o,H) is false,
otherwise, for all subjects s≠S, all objects and
all rights r, P(s,o,r) is true.

P-Protection Systems

Definition: A P-protection system consists of:
● A set of rights Ř.
● A set of potential objects Ŏ, a set of potential

subjects Š and a policy P mapping
Š X Ŏ X Ř → {true, false}

● Initial subsets O of Ŏ, S of Š and an initial
accessibility matrix a[S,O]. As before, we will
call configuration states to triples consisting of a
subset of Š, a subset of Ŏ and an accessibility
matrix. Thus the initial triple will be called an
initial protection state.

Definition of P-Protection Systems
(continued)

● A finite set of commands which consist of a
name, invoked with a definite number of
parameters which can be subjects or objects.

● An interpretation of these commands which
are procedures built up from boolean
predicates checking rights in either the
accessibility matrix or the policy, and six
elementary operations (in next slide)

Definition of P-Protection Systems
(continued)

● The elementary operations are (where s
denotes a subject, o denotes an object and r
denotes a right):
– If P(s,o,r) enter r into a[s,o]
– Delete right r from a[s,o]
– Create subject s (from Š) (no rights added to a)
– Create object o (from Ŏ) (no rights added to a)
– Destroy s
– Destroy o

Definition:

Let (Ř,Š,Ŏ,P,S,O,a,C) be a P-protection
system, (S',O',a') a protection state in the
protection system. Then (S',O',a') will be
called safe if, for all s in S', o in O' and right r
in Ř, r in a'(s,o) implies P(s',o',r).

The main result of this talk

● Let (Ř,Š,Ŏ,P,S,O,a,C) be a P-protection
system. Then, if (S,O,a) is safe, any
configuration reached by any sequence of
commands executed on the initial
configuration will be safe.

● The proof follows by induction on the
elementary commands executed:

Induction step of the proof:

● Only command adding a right.
– If P(s,o,r) enter r into a[s,o]

● Only adds right if allowed by the policy.
● The remaining commands do not add rights:

– Delete right r from a[s,o]
– Create subject s (from Š) (no rights added to a)
– Create object o (from Ŏ) (no rights added to a)
– Destroy s
– Destroy o

Conclusions

● We have shown a stricter version of the
Harrison-Ruzzo-Ullman theorem (1976)

● We have shown that the undecidability can be
resolved by being careful: check against
policy at every possible problematic step.

Directions for future work

● Main efforts for future work will be setting up
criteria for policies which preserve the security
triad of confidentiality, integrity and availability.

Directions for future work

● Main efforts for future work will be setting up
criteria for policies which preserve the security
triad of confidentiality, integrity and availability.

● Main emphasis, at present, is concentrating on
information flow.

Information Flow

● Controlling Information Flow preserves
confidentiality by controlling what subjects
have access to information: information which
should not be divulged is kept among subjects
allowed to use it.

● Controlling information flow also preserves
Integrity by guaranteeing that “tainted”
information doesn't “contaminate” good
information.

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

