Unix Processes

Unix and Solaris Process

Structure
PID, UID PID, UID
Signal | hemory Signal | NMemory
dispatch Map dispatch Map
table table
Lwpl LWP2
Process
state .
g | |
File File
descriptors descriptors
200 B Ramarmurthy 17

Picture copied from
http://www.cse.buffalo.edu/~bina/cse421/spring00/lec4/

http://www.cs.kent.edu/~ruttan/sysprog/lectures/processes

Unix Processes

Component of a Process

eaddress space

ememory pages (usually 1Kbytes to 4Kbytes)

eusually virtual memory now - some pages may be on disk, some in memory
eaddress space contains program code, variables, process stack, other infomation
edata structures in kernel These contain information such as:

eprocess id (PID) and parent process id (PPID)

Unique number assigned by kernel. Assigns the next available PID. Treats this as a circular system, that is when
it reaches maximum number, starts again at 0.

Unix creates new process by spawning a copy of an existing (usually a shell or GUI) process using fork and
then substituting the text of another program using exec.

owner and group, real and effective - UID, EUID, GID, EGID. UID and EUID are the same except for setuid
programs. When a process is spawned its GID is set to that of parent.

priority and nice value. When the kernel schedules processes, the one with highest internal priority is chosen.
The is calculated from nice value, the CPU time consumed, and time the process has been ready (waiting to
run). The nice value can be set with nice.

controlling terminal

process group

current process state

process address space map

resources used

signal mask

http://www.cs.kent.edu/~ruttan/sysprog/processes

Unix Processes

Life Cycle of a Process:

Unix creates new process by spawning a copy of an existing process using fork and then
substituting the text of another program using exec. In UNIX, all processes such as a shell
or GUI creates, are children spawned by 1nit, PID 1. The shell or GUI directly or indirectly
spawn users processes.

Init plays another important role. Exiting processes call _exit and return an exit status. This
1s stored by the kernel until requested by the process's parent (using the wait system call).
The address space of the process is released and it uses no further CPU time. However it
still retains its identity (PID). This uses a slot in the process table but no other resources.
Problems arise if

e parent fails to call wait

eparent dies first - in this case init becomes the parent of the process and waits on it. (init
waits on all orphans.) Sometimes this does not happen and the processes remain in the
system as zombies. These appear with status Z or exiting.

I Processes

- pstree
- parent process

- child process
°* exec, execvp
» fork

I * Monitoring Process

I execC
EXEC(3) Linux Programmer's Manual EXEC(3)
NAME
execl, execlp, execle, execv, execvp - execute a file
SYNOPSIS

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char * const envp[]);
int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv|[]);

I How does a program execute a program

* program reads command line
I * program calls execvp

* main()
{ char *arglist[4];
arglist[0] = "Is";
arglist[1] = "-I";
arglist[2] = "/bin";
arglist[3] =0 ;

exéc\/p(|S , arglist);
printf("ls is done. bye\n");}

Fork

NAME
fork - create a child process
SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);
DESCRIPTION

fork creates a child process that differs from the parent process only

in its PID and PPID, and in the fact that resource utilizations are set

to 0. File locks and pending signals are not inherited.

Under Linux, fork is implemented using copy-on-write pages, so the only
penalty incurred by fork is the time and memory required to duplicate
the parent's page tables, and to create a unique task structure for the
child.

RETURN VALUE

On success, the PID of the child process is returned in the parent's
thread of execution, and a O 1s returned in the child's thread of exe-
cution. On failure, a -1 will be returned in the parent's context, no
child process will be created, and errno will be set appropriately.

getpid

NAME
getpid, getppid - get process 1dentification

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid returns the process ID of the current process. (This 1s often
used by routines that generate unique temporary file names.)

getppid returns the process ID of the parent of the current process.

fork

What does this fragment do?
printf(“mypid=%d\n”,getpid());
n=fork();
printf(“mypid=%d,n=%d\n”,getpid(),n);
What does this fragment do?
printf(“mypid=%d\n”,getpid());

fork();

fork();

fork();

printf(“mypid=%d\n”,getpid());

sleeping while child works:wait

NAME
wait - wait for process termination

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);

DESCRIPTION
The wait function suspends execution of the current process until a
child has exited, or until a signal is delivered whose action is to
terminate the current process or to call a signal handling function.
If a child has already exited by the time of the call (a so-called
"zombie" process), the function returns immediately. Any system
resources used by the child are freed.

sleeping while child works:wait

NAME
waitpid - wait for process termination

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *status, int options);

DESCRIPTION
The waitpid function suspends execution of the current process until a
child as specified by the pid argument has exited, or until a signal is
delivered whose action is to terminate the current process or to call a
signal handling function. If a child as requested by pid has already
exited by the time of the call (a so-called "zombie" process), the
function returns immediately. Any system resources used by the child
are freed.

I sleeping while child works:wait

The value of options 1s an OR of zero or more of the following con-

I stants:
WNOHANG
which means to return immediately if no child has exited.

WUNTRACED
which means to also return for children which are stopped (but
not traced), and whose status has not been reported. Status for
traced children which are stopped 1s provided also without this
option.

sleeping while child works:wait

The value of pid can be one of

< -1 which means to wait for any child process whose process group ID

1s equal to the absolute value of pid.

-1 which means to wait for any child process; this is the same
behaviour which wait exhibits.

0 which means to wait for any child process whose process group ID

1s equal to that of the calling process.

>0 which means to wait for the child whose process ID is equal to the
value of pid

I Components of a Process, /proc

PROC(5) Linux Programmer's Manual PROC(5)

I NAME
proc - process information pseudo-filesystem

DESCRIPTION
The proc filesystem is a pseudo-filesystem which is used as an inter-
face to kernel data structures. It is commonly mounted at /proc. Most
of it 1s read-only, but some files allow kernel variables to be
changed.

Components of a Process, /proc

/proc/[number]/stat
Status information about the process. This is used by ps(1). It is defined in /usr/src/linux/fs/proc/array.c.
The fields, in order, with their proper scanf(3) format specifiers, are:
pid %d The process id.
comm %s
The filename of the executable, in parentheses. This is
visible whether or not the executable is swapped out.
state %c
One character from the string "RSDZTW" where R is run-
ning, S is sleeping in an interruptible wait, D is wait-
ing in uninterruptible disk sleep, Z is zombie, T is
traced or stopped (on a signal), and W is paging.
ppid %d
The PID of the parent.
pgrp %d
The process group ID of the process.
session %d
The session ID of the process.
tty_nr %d
The tty the process uses.

tpgid %d

process Iinfo system calls

chdir(path)

fchdir(fd)

getcwd()

ctermid()

Return the filename corresponding to the controlling terminal of the
process.

getegid()

Return the effective group 1d of the current process. This corresponds to
the “set 1d' bit on the file being executed in the current process.
geteuld()

Return the current process' effective user 1d.

I process info system calls

getgid()
Return the real group 1d of the current process.
I getgroups()
Return list of supplemental group 1ds associated with the current
process.
getlogin()
Return the name of the user logged in on the controlling terminal
of the process.
getpgid(pid)
Return the process group 1d of the process with process 1d pid.

getpgrp()
Return the 1d of the current process group.

process Iinfo system calls

getpid()

Return the current process 1d.

getppid()

Return the parent's process id..

getuid()

Return the current process' user 1d..

getenv(varname)

Return the value of the environment variable varname.
putenv(string)

Set the environment variable as defined by string.

process info system calls

setegid(egid)

Set the current process' effective group 1d.

seteuid(euid)

Set the current process's effective user 1d. Availability: Unix.
setgid(gid)

Set the current process' group 1d. Availability: Unix.
setgroups(size, list)

Set the list of supplemental group 1ds associated with the current
process to whose store in list

setpgrp(pid, pgid)

Sets the process group ID of the process specified by pid to pgid.

I process info system calls

setreuid(ruid, euid)
Set the current process's real and effective user 1ds.
I setregid(gid, egid)
Set the current process's real and effective group 1ds.
getsid(pid)
Returns the session ID of the calling process for process pif.
setsid()
Run a program in a new session
setuid(uid)
Set the current process' user 1d.

Environ

#include <unistd.h>
extern char **environ;
int main(int agrc, char **argv)({
char **a;
a=environ;
printf("Starting myenviron, my environment variables are:\n");
while (*a){
printf("\t%s\n", *a);
a++;

3

I sysinfo

NAME
sysinfo - returns information on overall system statistics

SYNOPSIS
#include <sys/sysinfo.h>

int sysinfo(struct sysinfo *info);

DESCRIPTION
Until Linux 2.3.16, sysinfo used to return information in the following
structure:

sysconf

NAME
I sysconf - Get configuration information at runtime

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
POSIX allows an application to test at compile- or run-time whether
certain options are supported, or what the value 1s of certain config-
urable constants or limits.

Studying Windows Internals

Look at www.sysinternals.com
*Process Explorer

eHandle

eListDLLs

*Pstools

*Regmon

http://www.sysinternals.com/

OVERVIEW

A Windows process contains its own independent virtual
address space with both code and data

Each process contains one or more independently executed
threads

The Windows thread is the basic executable unit
A process can

e Create new threads within the processes

« Create new, independent processes

« Manage communication and synchronization between
these objects

For now we consider only a single thread within a process

http://www.cs.kent.edu/~ruttan/sysprog/lectures/examples

Windows PROCESSES HAVE

One or more threads

Virtual address space which is distinct from other
processes’ address spaces

e Except for shared memory-mapped files
One or more code segments
One or more data segments containing global variables

Environment strings with environment variable
Information

The process heap
Resources such as open handles and other heaps

THREADS

Share the code, global variables, environment strings and
resources in a process

Are independently scheduled
Have a stack for procedure calls, interrupts, etc.

Have Thread Local Storage (TLS)—pointers giving each
thread the ability to allocate storage to create its own unigue
data environment

Have an argument (on the stack) from the creating thread
e Can also be unique for each thread

Have a context structure, maintained by the kernel, with
machine register values

A PROCESS AND ITS THREADS

Global Variables

Proces§ Resources
Open Files, Heaps

Environment Block

Thread 1 Thread N

TLS R TLS
Stack Stack

PROCESS CREATION

BOOL CreateProcess (LPCTSTR lpImageName,

LPTSTR 1lpCommandLi1ne,

LPSECURITY ATTRIBUTES lpsaProcess,
LPSECURITY_ATTRIBUTES lpsaThread,

BOOL bInheritHandles, DWORD dwCreate
LPVOID 1 vEnv1ronment LPCTSTR lpCurDlr
LPSTARTUPINFO lﬁSlStartInfo
LPPROCESS_INFORMATION lppiProcInfo)

Return: True only If the process and thread are

successfully created

PROCESS CREATION

Parameters

1pImageName — Specifies the executable
program

1pcommandLine — Specifies the command line
arguments

lpsaProcess — POINts to the process security
attribute structure

lpsaThread — Points to the thread security
attribute structure

- (NULL implies default security)

I PROCESS CREATION

iIndicate that the new process can inherit
handles from the parent

- Individual handles must still be specified as
Inheritable

— A typical use Is to redirect standard 1/O — there
are numerous examples in the lab exercises

I bInheritHandles — ThIS IS a “master switch” to

I PROCESS CREATION

dwcreate — Combines flags, including:

— CREATE_SUSPENDED — The primary thread is In

a suspended state and will only run when
ResumeThread is called

- DETACHED_PROCESS — Creates a process
without a console

— CREATE_NEW_ CONSOLE — Gives the new
process a console

- (These two are mutually exclusive. If neither is set, the

process inherits the parent’s console.)

- CREATE_NEW_PROCESS_GROUP — Specifies
that the new process Is the root of a new process group

PROCESS CREATION

1pvEnvironment — POINtS t0 an environment b

ock for

the new process. If nuLL, the parent’s environment

Is used. Contains name/value strings, suc
search path.

1 as

1pcurpir — Drive and directory for the new process

- If NULL, parent’s Is used)

lpsistartinfo — Main window appearance for the

NEW Process

lppiProcInfo — Structure to contain the returned
process and thread handles and identification

I PROCESS CREATION

tyﬁedef struct _PROCESS_INFORMATION {
ANDLE hProcess;

HANDLE hThread;

DWORD derocessId

DWORD dwThreadId;

} PROCESS INFORMATION;

Processes and threads need both handles and IDs
- ID Is unique to the object for its lifetime in all processes
- There may be several handles for a given process

- Handles are used with many general-purpose
functions

PROCESS CREATION

¥ pedef struct _STARTUPINFO {
*%ots of information controlling the window
DWORD dwFlags;
HANDLE hStdInput;
HANDLE hStdOut ut;
HANDLE hStdError
} STARTUPINFO;

— Setting these handles before creating the
process is a common way to redirect the new
process’ standard 1/O

- Set dwFlags to STARTF_USESTDHANDLES to
enable redirection

- Use GetStartupInfo (&StartupInfo) to
fill In the structure from the parent’s values

PROCESS CREATION

lpImageName and lpCommandLine combine to form the
executable image name. The rules for
determining the command line are:

- 1pImageName, if not NULL, Is the name of the
executable

- Otherwise, executable is the first token In
lpCommandLine

A process written in C can obtain command line
entries with argc/argv

There IS a cetcommandLine function

I PROCESS CREATION

Rules for 1pimageName:

- If L pImageName is not NULL, it specifies the
executable module. Use full path name, or use a
partial name and the current drive and directory
will be used. You must include the file
extension.

- If IpImageName is NULL, the first white-space
delimited token in LI pCommandL1ne Is the
program name. If no extension is specified,

. EXE Is assumed.

PROCESS CREATION

If the name does not contain a full directory
path, the search sequence Is:
— The directory of the current process’ image

— The current directory

- The Windows system directory, which you can
retrieve with GetSystemDirectory

- The Windows directory, which you can retrieve
with GetWindowsDirectory

- The directories as specified in the environment
variable PATH

PROCESS CREATION

HANDLE GetCurrentProcess (VOID)
I - Return: a “pseudo handle” which is not inheritable

— Can be used whenever a process needs its own
handle

DWORD GetCurrentProcessId (VOID)
— Return: The process ID of the current process

PROCESS CREATION

typedef struct SECURITY_ATTRIBUTES {
DWORD nLength;
LPVOID l1lpSecurityDescriptor;
BOOL bInheritHandle;

} SECURITY_ATTRIBUTES;

The binheritHandle flag determines whether the
child processes can inherit this specific handle
- By default, a handle is not inheritable
- bInheritHandle should be set to TRUE

- Parent communicates inheritable handle values
to child with IPC or by assigning an handle to
standard I/O

* Typically in the STARTUPINFO structure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

