
1-1© 2004 JMH Associates. All rights reserved.

Windows Application DevelopmentWindows Application DevelopmentWindows Application DevelopmentWindows Application Development

Chapter 7

Windows Thread Management

1-2© 2004 JMH Associates. All rights reserved.

Threads: Benefits and RisksThreads: Benefits and RisksThreads: Benefits and RisksThreads: Benefits and Risks

 Benefits
 Simpler program models
 Faster code – in many cases

 Exploit multiple processors
 Exploit inherent application parallelism

 Reliable, understandable, maintainable code

 Risks
 Slower performance – in some cases
 Potential defects

1-3© 2004 JMH Associates. All rights reserved.

ContentsContentsContentsContents

1. Process and Thread Overview

2. Thread Management

3. Waiting for Thread Termination

4. The C Library and Threads

1-4© 2004 JMH Associates. All rights reserved.

1. Process and Thread Overview1. Process and Thread Overview1. Process and Thread Overview1. Process and Thread Overview

 Threads in a process share data and code
 Each thread has its own stack for function calls
 Calling thread can pass an argument to a

thread at creation time
 This argument is on the stack

 Each thread can allocate its own Thread Local
Storage (TLS) indices and set TLS values

1-5© 2004 JMH Associates. All rights reserved.

Process and Thread OverviewProcess and Thread OverviewProcess and Thread OverviewProcess and Thread Overview

 Threads are scheduled and run independently
 The executive schedules threads
 Threads run asynchronously
 Threads can be preempted

 Or restarted at any time

1-6© 2004 JMH Associates. All rights reserved.

Processes and ThreadsProcesses and ThreadsProcesses and ThreadsProcesses and Threads
Process

Code

Global Variables

Process Heap

Process Resources
Open Files

Heaps…

Environment Block

...

Thread 1

Thread Local Storage

Stack

Thread N

Thread Local Storage

Stack

1-7© 2004 JMH Associates. All rights reserved.

Read File B

Single-Threaded Program Multithreaded Program

Read File A

Read File B

Reading File B
before

File A would give
the same results

Read File A

Wait for
Thread 1 and

Thread 2 to finish

Merge data
from both files

Thread 1

Thread 3

Thread 2

Thread 3

Merge data
from both files

Threads Performing Parallel TasksThreads Performing Parallel TasksThreads Performing Parallel TasksThreads Performing Parallel Tasks

1-8© 2004 JMH Associates. All rights reserved.

2. Thread Management2. Thread Management2. Thread Management2. Thread Management

 Creating a Thread
 The Thread Function
 Thread Termination
 Thread Exit Codes
 Thread Identities
 Suspending and

Resuming Threads

1-9© 2004 JMH Associates. All rights reserved.

Creating a Thread (1 of 6)Creating a Thread (1 of 6)Creating a Thread (1 of 6)Creating a Thread (1 of 6)

 Specify the thread’s start address within the
process’ code

 Specify the stack size, and the stack consumes
space within the process’ address space
 The stack cannot be expanded

1-10© 2004 JMH Associates. All rights reserved.

Creating a Thread (2 of 6)Creating a Thread (2 of 6)Creating a Thread (2 of 6)Creating a Thread (2 of 6)

 Specify a pointer to an argument for the thread
 Can be nearly anything
 Interpreted by the thread itself

 CreateThread returns a thread’s ID value
and its handle
 A NULL handle value indicates failure

1-11© 2004 JMH Associates. All rights reserved.

Creating a Thread (3 of 6)Creating a Thread (3 of 6)Creating a Thread (3 of 6)Creating a Thread (3 of 6)

HANDLE CreateThread (

LPSECURITY_ATTRIBUTES lpsa,

DWORD cbStack,

LPTHREAD_START_ROUTINE lpStartAddr,

LPVOID lpvThreadParm,

DWORD dwCreate,

LPDWORD lpIDThread)

1-12© 2004 JMH Associates. All rights reserved.

Creating a Thread (4 of 6)Creating a Thread (4 of 6)Creating a Thread (4 of 6)Creating a Thread (4 of 6)

 Parameters

lpsa
 Security attributes structure (use NULL)

cbStack
 Byte size for the new thread’s stack
 Use 0 to default to the primary thread’s stack

size (1 MB)

1-13© 2004 JMH Associates. All rights reserved.

Creating a Thread (5 of 6)Creating a Thread (5 of 6)Creating a Thread (5 of 6)Creating a Thread (5 of 6)

lpStartAddr
 Points to the function (within the calling

process) to be executed
 Accepts a single pointer argument and returns

a 32-bit DWORD exit code
 The thread can interpret the argument as a
DWORD or a pointer

lpThreadParm
 The pointer passed as the thread argument

1-14© 2004 JMH Associates. All rights reserved.

Creating a Thread (6 of 6)Creating a Thread (6 of 6)Creating a Thread (6 of 6)Creating a Thread (6 of 6)

dwCreate
 If zero, the thread is immediately ready to run
 If CREATE_SUSPENDED, the new thread will be

in the suspended state, requiring a
ResumeThread function call to move the
thread to the ready state

lpIDThread
 Points to a DWORD that receives the new

thread’s identifier; NULL OK on W2000/NT

1-15© 2004 JMH Associates. All rights reserved.

The Thread FunctionThe Thread FunctionThe Thread FunctionThe Thread Function

DWORD WINAPI MyThreadFunc (

PVOID pThParam)

{ . . .

ExitThread (ExitCode); /* OR */

return ExitCode;

}

1-16© 2004 JMH Associates. All rights reserved.

Thread Termination (1 of 3)Thread Termination (1 of 3)Thread Termination (1 of 3)Thread Termination (1 of 3)

 Threads are terminated by ExitProcess
 The process and all its threads terminate
 The exit code returned by the thread start

function same as the process exit code
 Or a thread can simply return with its exit code

1-17© 2004 JMH Associates. All rights reserved.

Thread Termination (2 of 3)Thread Termination (2 of 3)Thread Termination (2 of 3)Thread Termination (2 of 3)

 ExitThread is the preferred technique
 The thread’s stack is deallocated on termination

VOID ExitThread (DWORD (dwExitCode)

 When the last thread in a process terminates,
so does the process itself

1-18© 2004 JMH Associates. All rights reserved.

Thread Termination (3 of 3)Thread Termination (3 of 3)Thread Termination (3 of 3)Thread Termination (3 of 3)

 You can terminate a different thread with
TerminateThread
 Dangerous: The thread’s stack and other

resources will not be deallocated
 Better to let the thread terminate itself

 A thread will remain in the system until the last
handle to it is closed (using CloseHandle)
 Then the thread will be deleted

 Any other thread can retrieve the exit code

1-19© 2004 JMH Associates. All rights reserved.

Thread Exit CodesThread Exit CodesThread Exit CodesThread Exit Codes

BOOL GetExitCodeThread (

HANDLE hThread,

LPDWORD lpdwExitCode)

lpdwExitCode
 Contains the thread’s exit code
 It could be STILL_ACTIVE

1-20© 2004 JMH Associates. All rights reserved.

Thread Identities (1 of 2)Thread Identities (1 of 2)Thread Identities (1 of 2)Thread Identities (1 of 2)

 A thread has a permanent “ThreadId”

 A thread is usually accessed by HANDLE

 An ID can be converted to a HANDLE

1-21© 2004 JMH Associates. All rights reserved.

Thread Identities (2 of 2)Thread Identities (2 of 2)Thread Identities (2 of 2)Thread Identities (2 of 2)

HANDLE GetCurrentThread (VOID);

DWORD GetCurrentThreadId (VOID);

HANDLE OpenThread (

DWORD dwDesiredAccess,

BOOL InheritableHandle,

DWORD ThreadId);

/* >= Windows 2000 only */

1-22© 2004 JMH Associates. All rights reserved.

Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)

 Every thread has a suspend count
 A thread can execute only if this count is zero

 A thread can be created in the suspended
state

 One thread can increment or decrement the
suspend count of another:

DWORD ResumeThread (HANDLE hThread)

1-23© 2004 JMH Associates. All rights reserved.

Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)

DWORD SuspendThread (HANDLE hThread)

 Both functions return previous suspend count
 0xFFFFFFFF indicates failure

 Useful in preventing “race conditions”
 Do not allow threads to start until initialization is

complete
 Unsafe for general synchronization

1-24© 2004 JMH Associates. All rights reserved.

3. Waiting for Thread Termination3. Waiting for Thread Termination3. Waiting for Thread Termination3. Waiting for Thread Termination

 Wait for a thread to terminate using general
purpose wait functions

 WaitForSingleObject or
WaitForMultipleObjects
 Using thread handles

 The wait functions wait for the thread handle to
become signaled
 Thread handle is signaled when thread

terminates

1-25© 2004 JMH Associates. All rights reserved.

Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)

 ExitThread and TerminateThread set the
object to the signaled state
 Releasing all other threads waiting on the

object

 ExitProcess sets the process’ state and all
its threads’ states to signaled

1-26© 2004 JMH Associates. All rights reserved.

The Wait Functions (1 of 2)The Wait Functions (1 of 2)The Wait Functions (1 of 2)The Wait Functions (1 of 2)

DWORD WaitForSingleObject (

HANDLE hObject,

DWORD dwTimeOut)

1-27© 2004 JMH Associates. All rights reserved.

The Wait Functions (2 of 2)The Wait Functions (2 of 2)The Wait Functions (2 of 2)The Wait Functions (2 of 2)

DWORD WaitForMultipleObjects (

DWORD cObjects,

LPHANDLE lphObjects,

BOOL fWaitAll,

DWORD dwTimeOut)

 Return: The cause of the wait completion

1-28© 2004 JMH Associates. All rights reserved.

Wait Options (1 of 2)Wait Options (1 of 2)Wait Options (1 of 2)Wait Options (1 of 2)

 Specify either a single handle hObject

 Or an array of cObjects referenced by
lphObjects

 cObjects should not exceed
MAXIMUM_WAIT_OBJECTS - 64

1-29© 2004 JMH Associates. All rights reserved.

Wait Options (2 of 2)Wait Options (2 of 2)Wait Options (2 of 2)Wait Options (2 of 2)

 dwTimeOut is in milliseconds
 0 means the function returns immediately after

testing the state of the specified objects
 Use INFINITE for no timeout

 Wait forever for a thread to terminate

 GetExitCodeThread
 Returns the thread exit code

1-30© 2004 JMH Associates. All rights reserved.

Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)

 fWaitAll
 If TRUE, wait for all threads to terminate

Possible return values are:
 WAIT_OBJECT_0

 The thread terminated (if calling
WaitForMultipleObjects; fWaitAll set)

1-31© 2004 JMH Associates. All rights reserved.

Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)

 WAIT_OBJECT_0 + n

where 0 <= n < cObjects
 Subtract WAIT_OBJECT_0 from the return value to

determine which thread terminated when calling
WaitForMultipleObjects with fWaitAll set

 WAIT_TIMEOUT
 Timeout period elapsed

1-32© 2004 JMH Associates. All rights reserved.

Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)

 WAIT_ABANDONED
 Not possible with thread handles

 WAIT_FAILED
 Call GetLastError for thread-specific error code

1-33© 2004 JMH Associates. All rights reserved.

4. The C Library and Threads4. The C Library and Threads4. The C Library and Threads4. The C Library and Threads

 Nearly all programs (and thread functions) use
the C library

 But the normal C library is not “thread safe”

 The C function _beginthreadex has exactly
the same parameters as CreateThread

1-34© 2004 JMH Associates. All rights reserved.

Using Using _beginthreadex_beginthreadex (1 of 3) (1 of 3)Using Using _beginthreadex_beginthreadex (1 of 3) (1 of 3)

 Cast the _beginthreadex return value to
(HANDLE)

 Use _endthreadex in place of ExitThread

 #include <process.h>

1-35© 2004 JMH Associates. All rights reserved.

Using Using _beginthreadex_beginthreadex (2 of 3) (2 of 3)Using Using _beginthreadex_beginthreadex (2 of 3) (2 of 3)

 Set the multithreaded environment as follows:
 #define _MT in every source file before
<windows.h>

 Link with LIBCMT.LIB
 Override the default library

1-36© 2004 JMH Associates. All rights reserved.

Using Using _beginthreadex_beginthreadex (3 of 3) (3 of 3)Using Using _beginthreadex_beginthreadex (3 of 3) (3 of 3)

 Preferred method using Visual C++
 From the menu bar:

 Build Settings — C/C++ Tab
 Code Generation category
 Select a multithreaded run-time library

	Windows Application Development
	Threads: Benefits and Risks
	Contents
	1. Process and Thread Overview
	Process and Thread Overview
	Processes and Threads
	Threads Performing Parallel Tasks
	2. Thread Management
	Creating a Thread (1 of 6)
	Creating a Thread (2 of 6)
	Creating a Thread (3 of 6)
	Creating a Thread (4 of 6)
	Creating a Thread (5 of 6)
	Creating a Thread (6 of 6)
	The Thread Function
	Thread Termination (1 of 3)
	Thread Termination (2 of 3)
	Thread Termination (3 of 3)
	Thread Exit Codes
	Thread Identities (1 of 2)
	Thread Identities (2 of 2)
	Suspend & Resume Threads (1 of 2)
	Suspend & Resume Threads (2 of 2)
	3. Waiting for Thread Termination
	Waiting for Thread Termination (2 of 2)
	The Wait Functions (1 of 2)
	The Wait Functions (2 of 2)
	Wait Options (1 of 2)
	Wait Options (2 of 2)
	Wait Function Return Values (1 of 3)
	Wait Function Return Values (2 of 3)
	Wait Function Return Values (3 of 3)
	4. The C Library and Threads
	Using _beginthreadex (1 of 3)
	Using _beginthreadex (2 of 3)
	Using _beginthreadex (3 of 3)

