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Chapter 7

Windows Thread Management



1-2© 2004 JMH Associates. All rights reserved.

Threads: Benefits and RisksThreads: Benefits and RisksThreads: Benefits and RisksThreads: Benefits and Risks

 Benefits
 Simpler program models
 Faster code – in many cases

 Exploit multiple processors
 Exploit inherent application parallelism

 Reliable, understandable, maintainable code

 Risks
 Slower performance – in some cases
 Potential defects
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1. Process and Thread Overview1. Process and Thread Overview1. Process and Thread Overview1. Process and Thread Overview

 Threads in a process share data and code
 Each thread has its own stack for function calls
 Calling thread can pass an argument to a 

thread at creation time
 This argument is on the stack

 Each thread can allocate its own Thread Local 
Storage (TLS) indices and set TLS values
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Process and Thread OverviewProcess and Thread OverviewProcess and Thread OverviewProcess and Thread Overview

 Threads are scheduled and run independently
 The executive schedules threads
 Threads run asynchronously
 Threads can be preempted

 Or restarted at any time
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2. Thread Management2. Thread Management2. Thread Management2. Thread Management

 Creating a Thread
 The Thread Function
 Thread Termination
 Thread Exit Codes
 Thread Identities
 Suspending and 

Resuming Threads
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Creating a Thread (1 of 6)Creating a Thread (1 of 6)Creating a Thread (1 of 6)Creating a Thread (1 of 6)

 Specify the thread’s start address within the 
process’ code

 Specify the stack size, and the stack consumes 
space within the process’ address space
 The stack cannot be expanded
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Creating a Thread (2 of 6)Creating a Thread (2 of 6)Creating a Thread (2 of 6)Creating a Thread (2 of 6)

 Specify a pointer to an argument for the thread
 Can be nearly anything
 Interpreted by the thread itself

 CreateThread returns a thread’s ID value 
and its handle
 A NULL handle value indicates failure



1-11© 2004 JMH Associates. All rights reserved.

Creating a Thread (3 of 6)Creating a Thread (3 of 6)Creating a Thread (3 of 6)Creating a Thread (3 of 6)

HANDLE CreateThread (

LPSECURITY_ATTRIBUTES lpsa,

DWORD cbStack,

LPTHREAD_START_ROUTINE lpStartAddr,

LPVOID lpvThreadParm,

DWORD dwCreate,

LPDWORD lpIDThread )
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Creating a Thread (4 of 6)Creating a Thread (4 of 6)Creating a Thread (4 of 6)Creating a Thread (4 of 6)

 Parameters

lpsa
 Security attributes structure (use NULL)

cbStack
 Byte size for the new thread’s stack
 Use 0 to default to the primary thread’s stack 

size (1 MB)
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Creating a Thread (5 of 6)Creating a Thread (5 of 6)Creating a Thread (5 of 6)Creating a Thread (5 of 6)

lpStartAddr
 Points to the function (within the calling 

process) to be executed
 Accepts a single pointer argument and returns 

a 32-bit DWORD exit code
 The thread can interpret the argument as a 
DWORD or a pointer

lpThreadParm
 The pointer passed as the thread argument
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Creating a Thread (6 of 6)Creating a Thread (6 of 6)Creating a Thread (6 of 6)Creating a Thread (6 of 6)

dwCreate
 If zero, the thread is immediately ready to run
 If CREATE_SUSPENDED, the new thread will be 

in the suspended state, requiring a  
ResumeThread function call to move the 
thread to the ready state

lpIDThread
 Points to a DWORD that receives the new 

thread’s identifier; NULL OK on W2000/NT
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The Thread FunctionThe Thread FunctionThe Thread FunctionThe Thread Function

DWORD WINAPI MyThreadFunc (

PVOID pThParam )

{ . . .

ExitThread (ExitCode);  /* OR */

return ExitCode;

}
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Thread Termination (1 of 3)Thread Termination (1 of 3)Thread Termination (1 of 3)Thread Termination (1 of 3)

 Threads are terminated by ExitProcess
 The process and all its threads terminate
 The exit code returned by the thread start 

function same as the process exit code
 Or a thread can simply return with its exit code
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Thread Termination (2 of 3)Thread Termination (2 of 3)Thread Termination (2 of 3)Thread Termination (2 of 3)

 ExitThread is the preferred technique
 The thread’s stack is deallocated on termination

VOID ExitThread (DWORD (dwExitCode)

 When the last thread in a process terminates, 
so does the process itself
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Thread Termination (3 of 3)Thread Termination (3 of 3)Thread Termination (3 of 3)Thread Termination (3 of 3)

 You can terminate a different thread with 
TerminateThread
 Dangerous: The thread’s stack and other 

resources will not be deallocated
 Better to let the thread terminate itself

 A thread will remain in the system until the last 
handle to it is closed (using CloseHandle)
 Then the thread will be deleted

 Any other thread can retrieve the exit code
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Thread Exit CodesThread Exit CodesThread Exit CodesThread Exit Codes

BOOL GetExitCodeThread (

HANDLE hThread,

LPDWORD lpdwExitCode )

lpdwExitCode
 Contains the thread’s exit code
 It could be STILL_ACTIVE
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Thread Identities (1 of 2)Thread Identities (1 of 2)Thread Identities (1 of 2)Thread Identities (1 of 2)

 A thread has a permanent “ThreadId”

 A thread is usually accessed by HANDLE

 An ID can be converted to a HANDLE
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Thread Identities (2 of 2)Thread Identities (2 of 2)Thread Identities (2 of 2)Thread Identities (2 of 2)

HANDLE GetCurrentThread (VOID);

DWORD GetCurrentThreadId (VOID);

HANDLE OpenThread (

DWORD dwDesiredAccess,

BOOL InheritableHandle,

DWORD ThreadId );

/* >= Windows 2000 only */
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Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)Suspend & Resume Threads (1 of 2)

 Every thread has a suspend count
 A thread can execute only if this count is zero

 A thread can be created in the suspended 
state

 One thread can increment or decrement the 
suspend count of another:

DWORD ResumeThread (HANDLE hThread)
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Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)Suspend & Resume Threads (2 of 2)

DWORD SuspendThread (HANDLE hThread)

 Both functions return previous suspend count
 0xFFFFFFFF indicates failure

 Useful in preventing “race conditions”
 Do not allow threads to start until initialization is 

complete
 Unsafe for general synchronization
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3. Waiting for Thread Termination3. Waiting for Thread Termination3. Waiting for Thread Termination3. Waiting for Thread Termination

 Wait for a thread to terminate using general 
purpose wait functions

 WaitForSingleObject or 
WaitForMultipleObjects
 Using thread handles

 The wait functions wait for the thread handle to 
become signaled
 Thread handle is signaled when thread 

terminates
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Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)Waiting for Thread Termination (2 of 2)

 ExitThread and TerminateThread set the 
object to the signaled state
 Releasing all other threads waiting on the 

object

 ExitProcess sets the process’ state and all 
its threads’ states to signaled
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The Wait Functions (1 of 2)The Wait Functions (1 of 2)The Wait Functions (1 of 2)The Wait Functions (1 of 2)

DWORD WaitForSingleObject (

HANDLE hObject,

DWORD dwTimeOut )
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The Wait Functions (2 of 2)The Wait Functions (2 of 2)The Wait Functions (2 of 2)The Wait Functions (2 of 2)

DWORD WaitForMultipleObjects (

DWORD cObjects,

LPHANDLE lphObjects,

BOOL fWaitAll,

DWORD dwTimeOut )

 Return: The cause of the wait completion
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Wait Options (1 of 2)Wait Options (1 of 2)Wait Options (1 of 2)Wait Options (1 of 2)

 Specify either a single handle hObject

 Or an array of cObjects referenced by 
lphObjects

 cObjects should not exceed 
MAXIMUM_WAIT_OBJECTS - 64
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Wait Options (2 of 2)Wait Options (2 of 2)Wait Options (2 of 2)Wait Options (2 of 2)

 dwTimeOut is in milliseconds
 0 means the function returns immediately after 

testing the state of the specified objects
 Use INFINITE for no timeout

 Wait forever for a thread to terminate

 GetExitCodeThread
 Returns the thread exit code
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Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)Wait Function Return Values (1 of 3)

 fWaitAll
 If TRUE, wait for all threads to terminate

Possible return values are:
 WAIT_OBJECT_0

 The thread terminated (if calling 
WaitForMultipleObjects; fWaitAll set)
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Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)Wait Function Return Values (2 of 3)

 WAIT_OBJECT_0 + n

where 0 <= n < cObjects 
 Subtract WAIT_OBJECT_0 from the return value to 

determine which thread terminated when calling 
WaitForMultipleObjects with fWaitAll set

 WAIT_TIMEOUT
 Timeout period elapsed
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Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)Wait Function Return Values (3 of 3)

 WAIT_ABANDONED
 Not possible with thread handles

 WAIT_FAILED
 Call GetLastError for thread-specific error code
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4. The C Library and Threads4. The C Library and Threads4. The C Library and Threads4. The C Library and Threads

 Nearly all programs (and thread functions) use 
the C library

 But the normal C library is not “thread safe”

 The C function _beginthreadex has exactly 
the same parameters as CreateThread
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Using Using _beginthreadex_beginthreadex (1 of 3) (1 of 3)Using Using _beginthreadex_beginthreadex (1 of 3) (1 of 3)

 Cast the _beginthreadex return value to 
(HANDLE)

 Use _endthreadex in place of ExitThread

 #include <process.h>
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Using Using _beginthreadex_beginthreadex (2 of 3) (2 of 3)Using Using _beginthreadex_beginthreadex (2 of 3) (2 of 3)

 Set the multithreaded environment as follows:
 #define _MT in every source file before 
<windows.h>

 Link with LIBCMT.LIB
 Override the default library
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Using Using _beginthreadex_beginthreadex (3 of 3) (3 of 3)Using Using _beginthreadex_beginthreadex (3 of 3) (3 of 3)

 Preferred method using Visual C++
 From the menu bar:

 Build Settings — C/C++ Tab
 Code Generation category
 Select a multithreaded run-time library
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