S

Sentiment Analysis 1n
Unstructured text data

Presented By:
Priyanka Boppana
Gayatri Kakumanu
Prathima Paruchuri
Chaoyi Huang



Introduction

Sentiment Analysis

Identify and categorize the opinions expressed in a piece of text

Positive
Negative

Neutral
©
The Sentiment Analysis uses two approaches

Lexicon Based
Machine Learning



Problem Definition:

The most common way for people to do sentiment analysis today
i1s Lexicon-based method - by using word dictionary that contains
thousands of positive, negative and neutral words to give sentiment
score in different texts. This dictionary was generated manually by
people, as well as the tag on each words.

When we applied this method in unstructured text data, the
accuracy of sentiment analysis drop down significantly due to the
simple parameters




Machine Learning

Definition: Machine learning is the semi-automated extraction of
knowledge from data.

Main categories of machine learning:

Supervised Learning- Making predictions using data.
Unsupervised Learning - Extracting structure from data.



Objective:

Is to find out which method is more appropriate for a twitter based
unstructured text data between Lexicon-based analysis and some
machine learning methods.

Is to improve the accuracy of unstructured data by combining some
methods is the goal of our project.




Challenges

Tweets are highly Unstructured

@Listen to #Attention on_@AppleMusic’s Global Pop playlist!
http://apple.co/28 M5kC2

Lexical Variation

@USAirways @AmericanAir #OneHourOnHold, hattttttteeeeece
it.


https://twitter.com/hashtag/Attention?src=hash
https://twitter.com/AppleMusic
https://t.co/YptKwPvavr
https://t.co/YptKwPvavr
https://t.co/YptKwPvavr

Languages:

R language: Includes all tools necessary for web scraping,
familiarity and direct analysis of data.



Proposed Technique:

Data Collection

—¥ Data Preprocessing

——

Terms Frequency

——

Lexicon Approach

|y Random Forest

|

Result

Figure: Systematic procedure for Predicting the data




N

& o
.

3
Dataset &€

American Airline tweets positive sentiment only

contains 336 tweets

IMBD movie review

Labeled training set (25,000 rows containing an id, sentiment and text for each
review)

Unlabeled training set (50,000 rows containing an id and text for each review )
Test set (25,000 rows containing an id and text for each review)



Data-preprocessing

Convert all instances to lower cases
Removes urls

Removes punctuations

Removes numbers

Removes stopwords

Removes extra white spaces

N




Lexicon-based approach

Dataset: Tweets dataset contains positive sentiments only.

Dictionary: AFINN contains 2700 positive words and 4900 negative
words

Accuracy: 73%
Pro: Easy to use P — _—
Con: Huge overlap between two classes.

.............

Sentiment Score



Lexicon-based approach

Dataset: IMBD movie review
Dictionary: AFINN
Accuracy: 71%

Files Plots Packages Help Viewer

& Zoom | B Export - | @ "

“S- Publish ~
0.0
0.01
= as factor(sentiment)
e
E 0.010 |:|1
0.005-
0.000-
-100 0 100 200

afinn.rating



Naive Bayes and Unsupervised Learning

Approach: Naive Bayes
Accuracy: AUC =0.77516

Approach: Random Forest
Accuracy: AUC =0.7858



Solution

Building a Term frequency Matrix from Corpus (75000*213398)

Remove all the stop words and the words occur very infrequently

Now we have a more manageable 9,799 columns

> head{colnames{tf))
[1] "actual™ "alone™" "also" "another" "amyway " "attention"



Contd..

Create a word frequency data frame

word freqg

5779 movie 125307
3375 film 113054
6132 one 77447
5150 like 59147
4847 just 53132

3826 good 43279



Contd..

Now we are building features on words that occur
more often in positive review than in negative reviews.

word freqg.x freg.y diff
1235 movie 23668 18139 5529
146 bad 7089 1830 5259
826 great 2601 6204 3693
1008 just 10535 7098 3437
604 ewven 7604 4899 2705

2115 worst 2436 246 2190



Contd..

We use NDSI, which 1s the difference of frequencies normalized
by their sum. NDSI values are between 0 and 1 with higher values
indicating greater correlation with sentiment.

NDSI(E) = [n(t]0) — n(t|1) ] /NCE|0) + nlt]1)

We need to penalize infrequent words

NDSI(T) = In{t]0) — n(t )1/ N(T]0) + n{t|l) + 2w

alpha <- 2%%j

freg.all$ndsi <- abs{freq.all$fregq.x - freq.all$freq.y)
(freg.allifreg.x +
freg.allifreq.y +
2*alpha)

word freq.x freqg.y diff ndsi

2115 worst 2436 246 2190 0.7454050
2048 waste 1351 a4 1257 0.7389771
1411 poorly 620 0 620 0.7077626
1040 Tame 618 0 618 0O.7070938
141 awful 1441 159 1282 0.6907328

1187 mess 498 0 498 D.e604775



Contd..

Apply our unsupervised machine learning (Random forest)

AUC =0.9191



Conclusion and Future work X

Pros: Higher accuracy, work on large dataset, matrix 1s easy to
create

Con: Does not consider word meanings and similarities

Future:

Adding additional predictors to improve our predictions such as

topic modeling and Clustering.



