
Efficient Range Query Processing on Uncertain Data

Andrew Knight
Rochester Institute of Technology

Department of
Computer Science

Rochester, New York, USA
andyknig@gmail.com

Qi Yu
Rochester Institute of Technology

Department of
Information Sciences and Technologies

Rochester, New York, USA
qyu@it.rit.edu

Manjeet Rege
Rochester Institute of Technology

Department of
Computer Science

Rochester, New York, USA
mr@cs.rit.edu

Abstract

Uncertain data has emerged as a key data type in many
applications. New and efficient query processing techniques
need to be developed due to the inherent complexity of this
new type of data. In this paper, we investigate a special
type of query, range queries, on uncertain data. We propose
a threshold interval indexing structure that aims to balance
different time consuming factors to achieve an optimal over-
all query performance. Experimental results are presented
to justify the efficiency of the proposed query processing
technique.

1 Introduction

Uncertain data has been increasingly generated from a

great variety of applications, such as scientific measure-

ments, sensor networks, GPS, and mobile object tracking.

In contrast to certain data whose values are exact constants,

uncertain data take values that are described by probabil-

ity measures, most notably probability distribution func-

tions (PDFs). Due to the inherent complexity of uncer-

tain data, new techniques need to be developed in order

to efficiently process queries against this new type of data.

A set of novel indexing structures have been developed to

accelerate query processing. Representative ones include

threshold index [3,4], the U-tree [5], and 2D mapping tech-

niques [1, 3]. Most of these approaches assume that disk

I/Os are the dominating factor that determines the overall

query performance. Thus, the indexing structures are usu-

ally designed to optimize the number of disk I/Os. However,

uncertain data is inherently more complicated than certain

data. Computing a range query on uncertain data usually

involves complicated computations, which incur high CPU

cost. This makes disk I/Os no longer the solely dominat-

ing factor that determines the overall query performance.

Therefore, new indexing strategies need to be developed to

optimize the overall performance of range queries on uncer-

tain data.

Uncertain continuous data is usually modeled by PDFs.

Some PDFs, like the uniform PDF, may be very simple

to calculate. However, many widely used PDFs involve

complicated computations, such as multimodal probabil-

ity models for cluster analysis [6]. Computing a compli-

cated PDF may involve high computational cost. Numeri-

cal approaches, such as Monte Carlo integration, have been

exploited to improve the performance [5]. Riemann sum,

however, provides a better strategy for one-dimensional

cases. Even though Riemann sums can be faster than Monte

Carlo integrations, they still incur high computational cost.

Especially when a high computation accuracy is required,

probability calculations may take even longer than disk

I/Os. Therefore, the number of probability calculations

must also be considered if the distribution of the uncertain

data is complicated. In this case, the indexing strategy needs

to balance between disk I/Os and the CPU cost to achieve

an optimal overall query performance.

In this paper, we present a novel indexing strategy focus-

ing on one-dimensional uncertain continuous data, called

1

263IEEE IRI 2011, August 3-5, 2011, Las Vegas, Nevada, USA
978-1-4577-0966-1/11/$26.00 ©2011 IEEE

threshold interval indexing. It addresses the limitations of

existing indexing structures on uncertain data, particularly

for handling complicated PDFs, by treating uncertain ob-

jects as intervals and thereby leveraging interval tree tech-

niques. The proposed indexing structure is also inspired by

the optimized interval techniques from [2] to build a dy-

namic primary tree and store objects in nodes at different

levels depending on the objects’ sizes. The notion of us-

ing an interval tree to index uncertain data was suggested

by Cheng et al. in [3] but disregarded in favor of an R-tree

with extra probability limits called x-bounds. We assert that

x-bounds can just as easily be applied to interval trees to in-

dex uncertain data with special benefits.

The rest of the paper is organized as follows. Section 2

gives the problem statement and provides an overview of

previous research. Section 3 presents the threshold interval

index. Section 4 gives experimental results of our two in-

dexes versus the probability threshold index. Section 5 con-

cludes the paper by offering direction for future research.

2 Problem Statement and Related Work

In this section, we start by providing a formal problem

statement of range query on uncertain data. We then give

an overview of related works in this area.

2.1 Problem Statement

Given a database table T , a query interval [a, b] for an

uncertain attribute e of an object ui, and a threshold proba-
bility τ , a range query returns all uncertain objects ui from

T for which Pr(ui.e ∈ [a, b]) ≥ τ .

Theoretically, an uncertain object could have more than

one uncertain attribute. However, for this paper, we focus

on indexing objects based on only one uncertain attribute.

2.2 External Interval Tree Index

Arge et al. [2] propose two optimal external interval tree

indexes. Interval trees are not specifically designed for han-

dling uncertain data, but one-dimensional uncertain objects

may be treated as intervals by using their PDF endpoints.

Both indexes use a primary tree for layout and secondary

structures to store the objects at each node, but one has a dy-

namic primary tree instead of a static one. Stabbing queries
are used to return results. However, the downfall of both

interval indexes is that if many uncertainty intervals over-

lap with the query interval’s endpoints, then few objects are

pruned from the search, and a lot of time is wasted in calcu-

lating probabilities.

2.3 Probability Threshold Index

The probability threshold index (PTI) [3] allows range

queries to prune more branches from searching than inter-

val indexes allow by using a one-dimensional R-tree as a

base tree with stricter boundaries called x-bounds. The PTI

has many advantages. It is an elegant solution, and it is

fairly easy to implement. The tree is dynamic as well. All

boundaries are calculated when objects are added. Multi-

ple x-bounds can be stored in each node, so queries can

choose the most appropriate bounds for its threshold. Re-

quired storage space for internal nodes is relatively small.

The PTI is not without weaknesses, however. The pri-

mary weakness pointed out by Cheng et al. is that differ-

ences in interval sizes will skew the balance of the tree [3].

Cheng et al. also do not provide an optimal rectangle layout

strategy for the PTI’s base tree, the R-tree. The best strat-

egy for any R-tree is to make MBRs as disjoint as possible.

When MBRs overlap too much, extra disk I/Os and proba-

bility calculations must be performed because fewer nodes

can be pruned. Adding new objects, especially objects of

vastly different interval lengths, exacerbate overlap. Sim-

ply put, sloppy R-trees are inefficient, but optimal R-trees

are very difficult to maintain.

When rectangles overlap, not all objects which fall com-

pletely within the query interval can be immediately ac-

cepted. Since MBRs might overlap, every node must be

checked. There is no exclusivity between node intervals.

Nodes may not be stored in any order if their intervals are

stretched. Objects might appear in the overlapping portions

of nodes, too. These compounding factors force probabil-

ity calculations on all objects in each unpruned node. This

wastes lots of time, especially when the query interval is

much larger in size than most uncertainty intervals.

2.4 2D Mapping Indexes

Cheng et al. first suggested 2D mapping techniques as

an alternative to the PTI for uniform PDFs [3]. Agarwal

et al. then expanded 2D mapping techniques to histogram

PDFs [1]. Histogram PDFs can easily be transformed into

linear piecewise threshold functions and stored as a set of

line segments. The structures of the indexes presented in [1]

manipulate the line segments. They are efficient for uniform

and histogram PDFs, but they are inapplicable for more

general PDFs. Furthermore, each index is rigidly based

upon one threshold value; separate indexes must be con-

structed for additional thresholds. This is starkly different

from the PTI, which can manage several threshold values in

one structure.

264

3 Processing Range Queries on Uncertain
Data

We now present the proposed range query process tech-

nique for uncertain data. The cornerstone is the threshold
interval index (TII). The TII is in essence a combination

of a dynamic external interval tree and the x-bounds struc-

ture used by PTI. This structure presents two key advan-

tages. The first advantage is that the structure intrinsically

and dynamically maintains balance all the time. The sec-

ond advantage is that the interval-based structure makes all

uncertain objects which fall entirely within the query inter-

val easy to find and, therefore, possible to add to the results

set without further calculation. The PTI does not allow this

because its MBRs might overlap. Furthermore, adding x-

bound avoids the interval index’s problem for when many

uncertainty intervals overlap the query interval.

3.1 TII Structure

The TII has a primary tree to manage interval endpoints.

It also has secondary structures at internal nodes of the pri-

mary tree to store objects. When an object is added to the

index, the endpoints of its uncertainty interval are added to

the primary tree. Then, the object itself is added to the sec-

ondary structures of the appropriate tree node. Each object

is also assigned a unique id if it does not already have one.

X-bounds are stored for each internal node.

3.1.1 Primary Tree

The primary tree is a weight-balanced B-tree with branch-

ing parameter r > 4 and leaf parameter k > 0. The weight
of a node is the number of items (in this case, endpoints)

below it. All leaves are on level 0. All endpoints are stored

at the leaves, and internal nodes hold copied values of end-

points. The weight-balanced B-tree provides an effective

way to dynamically manage intervals and spread. Arge et.

al. describe this tree in detail, including time bounds, in [2].

3.1.2 Secondary Structures

Each internal node v represents an interval Iv , which spans

all interval endpoints represented by children of v. Thus,

the c children of v (for 1
4r ≤ c ≤ 4r) naturally partition Iv

into subintervals called slabs [2]. Each slab is denoted by

Ivi
(for 1 ≤ i ≤ c), and a contiguous region of slabs, such

as Iv2
Iv3

Iv4
, is called a multislab [2]. All slab boundaries

within Iv are stored in v. Note that Ivi
is the interval for the

child node vi.
An uncertain object is stored at v if its uncertainty inter-

val falls entirely within Iv but overlaps one or more bound-

aries of any child node’s Ivi
. (A leaf stores uncertain ob-

jects whose PDF endpoints are contained completely within

v

v
1

v
2

v
3

I
v1

I
v2

I
v3

Figure 1: A node v with three child nodes. The dotted lines

denote slab boundaries. Note how objects are only stored

within intervals which can completely contain them.

the leaf’s interval endpoints.) Each object is stored at ex-

actly one node in the tree, as shown in Figure 1. Let Uv

denote the set of uncertain objects stored in v. In the ex-

ternal dynamic interval index, these objects are stored in

secondary structures called slab lists [2], partitioned by the

slab boundaries. However, only two secondary structures

are needed per node for the TII because range queries (de-

scribed later in this section) work slightly differently than

stabbing queries. The left endpoint list stores all uncertain

objects in increasing order of their uncertainty intervals’ left

endpoints. The right endpoint list stores all uncertain ob-

jects in increasing order of their uncertainty intervals’ right

endpoints. This is drastically simpler than the optimal ex-

ternal interval tree, which requires a secondary structure for

each multislab [2]. If the uncertain objects hold extra data

or large PDFs, it might be advantageous to store only un-

certainty interval boundary points and object references in

the two lists. The actual objects can be stored in a third

structure to avoid duplication.

3.1.3 Applying X-bounds

X-bounds were introduced as part of the probability thresh-

old index [3] and can easily be applied to the TII.

Definition 1 An x-bound is a pair of values (Lx, Rx) for a
continuous PDF f(s) with uncertainty domain [L,R] such
that

x =

Lx∫

L

f(s)ds =

R∫

Rx

f(s)ds (1)

Lx is the left x-bound, and Rx is the right x-bound. Since

the domain of f(s) is [L,R], Lx and Rx are unique. Note

that x is a probability value, meaning 0 ≤ x ≤ 1. For ex-

ample, if x = 0.25, then there is a 25% chance that the ob-

ject’s value appears in the interval [L,L0.25]. Furthermore,

there would be a 25% chance it appears in [R0.25, R] and

a 50% chance it appears in [L0.25, R0.25]. Note also that if

x > 0.5, then Rx < Lx.

265

Le
ft

0.
25

R
ig

ht
 0

.2
5

Figure 2: A node with x-bounds and objects. X-bounds are

calculated for each node based on uncertain objects’ PDFs.

The left and right 0.25-bounds are tighter than the MBR.

The notion of x-bounds can be applied to tree nodes as

well as to PDFs, as seen in Figure 2. The left x-bound for a

node is the minimum left x-bound of all child nodes and ob-

jects, and the right x-bound is the maximum right x-bound

of all child nodes and objects. Specifically, for a node v, left

and right x-bounds are calculated for Iv . A child node’s x-

bounds must be considered when calculating v’s x-bounds:

a child node might have tighter x-bounds than any of the

uncertain objects stored at v. The interval Iv accounts for

all uncertain objects stored at v and in any child nodes of

v, and so should the x-bounds. The x-bounds for v’s slabs

are given by the x-bounds on v’s child nodes. All of v’s x-

bounds are stored in v’s parent. In this way, the interval Iv
is analogous to a minimum bounding rectangle in an R-tree,

and intervals are tightened by x-bounds in the same way as

MBRs are tightened in the PTI [3]. X-bounds for more than

one probability x can be stored as well.

3.2 Range Query Evaluation

Evaluating range queries for objects in [a, b] with a

threshold τ on the TII is like evaluating stabbing queries

on a regular interval tree. Two stabs are executed for each

endpoint of the query interval: a left stab and a right stab.

The nature of the query forces these stabs to be performed

slightly differently from how they are described in [2]. Once

the stabs are made, a series of grabs can be performed for all

objects in between. This is called the stab ’n grab search.

3.2.1 The Left Stab

The left stab is the most complicated part of the stab ’n grab

search. The search starts at the root node and continues

down one path through child nodes until it hits the leaf con-

taining the closest x-bound to a within its boundaries. This

leaf is called the left boundary leaf. X-bounds are used to

prune this search. If a node’s right x-bound is less than a
or if a node’s left x-bound is greater than b, then the node

can be pruned, because the probability that any of its objects

falls within the query interval must be less than the query’s

Figure 3: A left stab is denoted by the thick black line. The

light gray nodes are visited by the stab. The white nodes

are not visited. The dark gray node is pruned based on x-

bounds.

threshold. Objects are checked at nodes along the stab to

see if they belong to the result set.

Before moving to the next child node, the uncertain ob-

jects stored in secondary structures at the current node must

be investigated, because their uncertainty intervals may

overlap the query interval. If they overlap the query inter-

val, then they might be valid query results. Between the sec-

ondary structures, only the right endpoint list is needed. A

quick binary search can be performed to find which objects

fall within the query interval. Any object whose right end-

point is less than a can be disregarded. Any object whose

both endpoints are within the query interval is added to the

result set automatically. Otherwise, a probability calcula-

tion must be performed using the object’s PDF to determine

if it meets the threshold probability. The same strategy ap-

plies for the left boundary leaf. All valid objects are added

to the result set.

3.2.2 The Right Stab

The right stab is analogous to the left stab, except it

searches with b instead of a. The leaf found at the bot-

tom of the stab is called the right boundary leaf. X-bound

pruning is performed for the rightmost child nodes, not the

leftmost. The process for searching the secondary structures

is the same as in the left stab, except “left” and “right” are

switched wherever mentioned. Furthermore, nodes visited

during the left stab can be skipped during the right stab,

because the process for investigating uncertain objects ac-

counts for both endpoints of the uncertainty interval. This

is why references to visited nodes are stored during the left

stab.

3.2.3 The Grabs

The two stabs find the two boundary leaves and some uncer-

tain objects in the result set. The remaining objects to inves-

tigate reside in the nodes between the two boundary leaves.

Thankfully, all objects in between can be added to the re-

sult set without any probability calculations. Remember,

intervals for nodes on the same level do not overlap, so all

266

left stab right stab

Figure 4: A stab ’n grab query. The light gray nodes are

visited during the stabs, and the dark gray nodes are visited

during the grabs. Note how grabbed nodes fall completely

within the query interval.

objects stored at nodes between the boundary leaves must

fall entirely within the query. The most effective way to

grab all of these uncertain objects is to perform a post-order

tree traversal starting at the left boundary leaf and ending at

the right boundary leaf, skipping each node that has already

been visited. No extra searching needs to be done on the

secondary structures. Figure 4 illustrates a full stab ’n grab

query.

3.2.4 Time Bounds

A range query can be answered within the following time

bounds using the stab ’n grab search:

Theorem 1 Let I be a TII storing N uncertain objects,
whose primary tree has branching parameter r and leaf pa-
rameter k. Assume any calculation on an uncertain object’s
PDF takes O(d) time. A range query Q with query inter-
val [a, b] and threshold τ can return all T uncertain objects
stored in I which fall within the query interval with proba-
bility p ≥ τ in O(kd logr(N/k) + T/k) time.

4 Experimental Results

This section presents an evaluation of our experimental

results. We use the probability threshold index as a bench-

mark against which to test the proposed threshold interval

index. The PTI used is a “practical” PTI in that objects were

removed and replaced to introduce a small level of skew.

The purpose for testing these twp indexes is to compare

their range query performance. Performance is measured

by three primary metrics: number of disk I/Os, number of

probability calculations, and runtime (in milliseconds).

Four different performance tests are run. Each test builds

the indexes from a common data set and runs range queries

on each index. Descriptions are given in Table 1. Datasets

are generated synthetically. Uncertain objects contain two

attributes: an id and a PDF. The PDF interval is deter-

mined randomly based on test parameters, given in Ta-

ble 2. X-bounds are calculated for the probability values

Table 1: Performance Tests

Test Description

Same object uncertainty intervals have the same length

Different object uncertainty intervals have different length

Dense many objects overlap

Sparse objects are spaced out

Table 2: Test Parameters

Parameter Same Different Dense Sparse

Num Objects 10000 10000 10000 10000

Min Object Value 0 0 0 0

Max Object Value 10000 10000 1000 1000000

Min PDF Length 100 50 1 1

Max PDF Length 100 500 100 10

{0.1, 0.3, 0.5, 0.7, 0.9} on each index. The block size is

4096 bytes.

Each test is run with two types of PDFs. Just like for

previous tests against the PTI, one PDF used is a uniform

PDF [3]. The second PDF is the multimodal Gaussian dis-

tribution with four peaks, which is significantly more com-

plicated. Each PDF can be stored by left and right endpoints

and can be stretched to the appropriate interval length. All

probability calculations are performed by using Riemann

sums. 1000 rectangles are used for each Riemann sum to

keep the average error margin around 0.1%. Range queries

must also be generated. For each test, 100 queries are gen-

erated. Each query interval is random within a given do-

main. Each query is run against each index, and results

for all queries are tabulated aggregately. The probability

threshold used is τ = 0.3.

The Same, Different, Dense, and Sparse tests all

test the spread of uncertain objects. Figures 5 gives results

for these tests. It is clear that object spread and size sig-

nificantly affects performance. All indexes have worse per-

formance for objects of different lengths and for densely

clustered objects. What is interesting is the difference in

performance metrics. The PTI uses fewer disk I/Os than

the TII. Although for objects of the same size the PTI is

comparable for uniform PDFs, the TII generally use about

1.5 to 2 times as many disk I/Os. The PTI is far surpassed,

however, in regards to the number of probability calcula-

tions. Threshold indexes typically use only half to a third of

the number of calculations as the PTI. This number is most

staggering for sparse indexes: the TII makes relatively no

calculations. This is expected due to the extra pruning done

267

(a) Disk I/Os for Uniform PDFs (b) Disk I/Os for Multimodal PDFs

(c) Uniform PDF Calculations (d) Multimodal PDF Calculations

(e) Runtime for Uniform PDFs (f) Runtime for Multimodal PDFs

Figure 5: Performance results for Same, Different,

Dense, and Sparse tests.

by the TII’s stab ’n grab query. Overall, the total runtime

favors threshold indexes for complicated probability func-

tions.

The trends between uniform and multimodal PDFs are

generally the same for disk I/Os and probability calcula-

tions. This is not too surprising, because PDF shape has

only a small affect on index structure. The major differ-

ence is in total runtime, as seen in Figures 5e and 5f. Since

the multimodal PDF is more complicated, calculations take

longer. Thus, the margin by which the TII outperforms the

PTI is much larger for multimodal PDFs than for uniform

PDFs.

5 Conclusion

In this paper, we present threshold interval indexing, a

new strategy for indexing complicated uncertain continu-

ous data of one dimension. The key advantage of threshold

interval indexing over existing strategies, such as the prob-

ability threshold index, is that it handles complicated PDFs

much more efficiently because it handles balance better with

its intervals. Although our paper focuses on range queries,

the indexing structure could also be used for other types of

queries, such as joins. It is also important for uncertain data

strategies to be incorporated into database management sys-

tems. Parallelization should also be explored further.

References

[1] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing un-

certain data. In Symposium on Principles of Database Systems
(PODS), pages 137–146, 2009.

[2] L. Arge and J. S. Vitter. Optimal external memory inter-

val management. SIAM Journal on Computing, 32(6):1488–

1508, 2003.
[3] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Ef-

ficient indexing methods for probabilistic threshold queries

over uncertain data. In Proc. International Conference on
Very Large Data Bases (VLDB), pages 876–887, 2004.

[4] S. Prabhakar, R. Shah, and S. Singh. Managing and Min-
ing Uncertain Data, chapter Indexing Uncertain Data, pages

299–325. Springer, 2009.
[5] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prab-

hakar. Indexing multi-dimensional uncertain data with ar-

bitrary probability density functions. In Proc. International
Conference on Very Large Data Bases (VLDB), 2005.

[6] J. Yu, M.-S. Yang, and P. Hao. A novel multimodal probabil-

ity model for cluster analysis. In RSKT ’09: Proceedings of
the 4th International Conference on Rough Sets and Knowl-
edge Technology, pages 397–404, Berlin, Heidelberg, 2009.

Springer-Verlag.

268

