Impact of Memory Size on Bigdata
Processing based on Hadoop and
Spark

Presenting...
Shaista Gulnaar

CONCEPT
ANID)
INTRODUCTI
ON

OUTLINE

RELATED
WORK

e

DATA
PROCESSING
METHODS OF
HADOOP AND
SPARK

Hadoop - Hadoop Distributed File System and MapReduce processing. It stores intermediary data on Hadoop
Distributed File System, which is a disk-based distributed file system

Spark stores intermediary data in the memories of distributed computing nodes as Resilient Distributed
Dataset.

how memory size affects distributed processing of large volume of data, by comparing the running time of K-
means algorithm of HiBench benchmark on Hadoop and Spark clusters, with different size of memories

allocated to data nodes.

Our results show that Spark cluster is faster than Hadoop cluster as long as the memory size is big enough for
the data size.

But, with the increase of the data size, Hadoop cluster outperforms Spark cluster. When data size is bigger
than memory cache, Spark has to replace disk data with memory cached data, and this situation causes

performance degradation.

CONCEPT

INTRODUCTION

--
-

RELATED WORK

Hadoop is
suitable for
batch
processing of
bigdata

main
technologies of
Hadoop are
HDFS and
MapReduce
processing

Spark is well
known for
CENINE
bigdata
processing.

Spark uses RDD

Hadoop
cluster with

one master
node and two
slave nodes

Client

Name Node

N

A4

Job Tracker

N

Data Node 1

Job Tracker

Data Node 2

Job Tracker

N
W

J

. Iteratlonl Iteration2
lterative
. HDFS HDFS HDFS| | HDFS
p roOcessin g /_.\Read Write_ Read | Write_/_-\
8 Data | | Data | | { o |
(on Disk) (on D;sk) (on Disk)
Ha d 00 p L . SO g

Spark cluster

Driver Program

Spark Context

Cluster Manager
(YARN)

Worker Node 1

Executor

Worker Node 2

Executor

Iterative
processing

Iterationl

using Spark
RDD

1l
o)

- d
\[ZA
& ,/ - X
©

=

J =

=

) —

¢ ™

Table 1. Experimental platform

. INTEL COERE I5-4690
Lrt CPU @ 3.50GHZ
Phyzical Node Memory L85
HDD 500GHB
Network 1CGhps Ftharmet
EXPERIMENT 0s Ubranta 15.04
A L D ETA' LS Apache Spark | 1.56.1
Hadoop 270
JDK 17079
Benchmark HiBanch +4.0

Data
processing
time with 4GB

memory per
node.

2500

2000

1500

Time (s)

1000

500 -

2 3
Data Size (GB)

e HADOOP
e SPARK

Data
processing
rate with 4GB

memory per
node.

7000000

6000000

5000000

4000000

3000000

2000000

Throughput/node (bytes/s)

1000000

0_.

RN NN

0a/72uz5

2935463

1873214 1841375
2615

2970

1 2 3 4
Data Size (GB)

M HADOOP
M SPARK

Data
processing
time with 8GB

memory per
node.

Time (s)

3000

2500

2000

1500

1000

500

E ?76
1.
s
98
3 ,319 :
1 3 4 5 6
Data Size (GB)

e HADOOP
e SPARK

Data
processing
rate with 8GB

memory per
node

9000000

— 8000000

6Z2/1133

7930990

7000000

6809288

2 6000000

5000000

4000000

3000000

M HADOOP

2000000 1%
1000000 -

Throughput/node (bytes/s

0 -

m SPARK

1907217

5685526
1647 e
i% 55349

4 5 6
Data Size (GB)

storage memory

0.6 (60%)
Spark '\ S
ffl
memory kel
structure =
0.2 (20%)

reserved memory
300MB

Figure 9. Spark memory structure.

Spark processing
time with
different storage

memory size
(4GB memory
per node).

2,500

2,000

1,500

Time (s)

1,000

500

1 2 3 4
Data Size (GB)

~4=0.5 or 50% =#=0.6 or 60%(default) =#=0.7 or 70% ==0.8 or 80%

Spark processing
time with
different storage

memory size
(8GB memory
per node).

3,000

2,500

2,000

1,500

Time (s)

1,000 -

0 i

1 2 3 4 5 6
Data Size (GB)

—4—0.5 or 50% =8~ 0.6 or 60%(default) =#=0.7 or 70% ===0.8 or 80%

Spark processing
time with
different shuffle

memory size
(4GB memory
per node).

3,000

2,500

2,000 -

1,500

Time (s)

1,000 -

500

~=0.2 or 20%(default)

Data Size (GB)

==0.3 or 30% == 0.4 or 40%

===().5 or 50%

2,500
2,000
Spark processing
time with 1500
different shuffle 2
memory size o
(8GB memory
500
per node).
0 . ‘
1 2 3 4
Data Size (GB)
—t=0.2 or 20%(default) =E=0.3 or 30% =0.4 or 40% ====0.5 or 50%

Compared the running time of K-means algorithm of HiBench benchmark on
Hadoop and Spark clusters, with different size of memories allocated to data
nodes, to show how memory size affects distributed processing of large volume of
data.

Our results show that Spark cluster is faster than Hadoop cluster as long as the

memory size is big enough for the data size

But, with the increase of the data size, Hadoop cluster outperforms Spark cluster. With the increase
of the data size, Spark cluster requires more time and its data processing throughput decreases
rapidly. When data size is bigger than memory cache, Spark has to replace disk data with memory
cached data, and this situation causes performance degradation.

CONCLUSIONS

Related with K-means algorithm processing, Spark is better
than Hadoop when total input data size is smaller than
33.5% of total memory size assigned to whole worker nodes

while Hadoop is better than Spark when the total data size is
greater than 33.5% of total memory size

CONCLUSIONS

FUTURE WORK

* Additional experiments considering
further parameters, such as node
numbers, will be helpful to find out more
performance-influencing factors.

THANK YOU ©

