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Hadoop - Hadoop Distributed File System and MapReduce processing. It stores intermediary data on Hadoop
Distributed File System, which is a disk-based distributed file system

Spark stores intermediary data in the memories of distributed computing nodes as Resilient Distributed
Dataset.

how memory size affects distributed processing of large volume of data, by comparing the running time of K-
means algorithm of HiBench benchmark on Hadoop and Spark clusters, with different size of memories

allocated to data nodes.

Our results show that Spark cluster is faster than Hadoop cluster as long as the memory size is big enough for
the data size.

But, with the increase of the data size, Hadoop cluster outperforms Spark cluster. When data size is bigger
than memory cache, Spark has to replace disk data with memory cached data, and this situation causes

performance degradation.
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Hadoop is
suitable for
batch
processing of
bigdata

main
technologies of
Hadoop are
HDFS and
MapReduce
processing

Spark is well
known for
CENINE
bigdata
processing.

Spark uses RDD
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Table 1. Experimental platform

. INTEL COERE I5-4690
Lrt CPU @ 3.50GHZ
Phyzical Node Memory L85
HDD 500GHB
Network 1CGhps Ftharmet
EXPERIMENT 0s Ubranta 15.04
A L D ETA' LS Apache Spark | 1.56.1
Hadoop 270
JDK 17079
Benchmark HiBanch +4.0
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Compared the running time of K-means algorithm of HiBench benchmark on
Hadoop and Spark clusters, with different size of memories allocated to data
nodes, to show how memory size affects distributed processing of large volume of
data.

Our results show that Spark cluster is faster than Hadoop cluster as long as the

memory size is big enough for the data size

But, with the increase of the data size, Hadoop cluster outperforms Spark cluster. With the increase
of the data size, Spark cluster requires more time and its data processing throughput decreases
rapidly. When data size is bigger than memory cache, Spark has to replace disk data with memory
cached data, and this situation causes performance degradation.

CONCLUSIONS



Related with K-means algorithm processing, Spark is better
than Hadoop when total input data size is smaller than
33.5% of total memory size assigned to whole worker nodes

while Hadoop is better than Spark when the total data size is
greater than 33.5% of total memory size

CONCLUSIONS



FUTURE WORK

* Additional experiments considering
further parameters, such as node
numbers, will be helpful to find out more
performance-influencing factors.
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