
1

Comp 5311 Database Management Systems

13. Transactions-2PL

2

Transaction Concept

• A transaction is a unit of program execution that
accesses and possibly updates various data items.

• A transaction must see a consistent database.

• During transaction execution the database may be
inconsistent.

• When the transaction is committed, the database must
be consistent.

• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system
crashes

– Concurrent execution of multiple transactions

3

ACID Properties

To preserve integrity of data, the database system must ensure:

• Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

• Consistency. Execution of a transaction in isolation preserves
the consistency of the database.

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.
– That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

• Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

4

Example of Fund Transfer

• Transaction to transfer $50 from account A to account B:
– 1. read(A)

– 2. A := A – 50

– 3. write(A)

– 4. read(B)

– 5. B := B + 50

– 6. write(B)

• Atomicity requirement — if the transaction fails after step 3 and
before step 6, the system should ensure that its updates are not
reflected in the database, else an inconsistency will result.

• Consistency requirement – the sum of A and B is unchanged by
the execution of the transaction.

5

Example of Fund Transfer (Cont.)

• Isolation requirement — if between steps 3 and 6, another
transaction is allowed to access the partially updated
database, it will see an inconsistent database
(the sum A + B will be less than it should be).
Can be ensured trivially by running transactions serially,
that is one after the other. However, executing multiple
transactions concurrently has significant benefits, as we
will see.

• Durability requirement — once the user has been notified
that the transaction has completed (i.e., the transfer of the
$50 has taken place), the updates to the database by the
transaction must persist despite failures.

6

Transaction State

• Active, the initial state; the transaction stays in this state while it
is executing

• Partially committed, after the final statement has been
executed.

• Failed, after the discovery that normal execution can no longer
proceed.

• Aborted, after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

– restart the transaction – only if no internal logical error

– kill the transaction

• Committed, after successful completion.

7

Transaction State (Cont.)

8

Concurrent Executions

• Multiple transactions are allowed to run concurrently
in the system. Advantages are:

– increased processor and disk utilization, leading to
better transaction throughput: one transaction can be using
the CPU while another is reading from or writing to the disk

– reduced average response time for transactions: short
transactions need not wait behind long ones.

• Concurrency control schemes – mechanisms to
achieve isolation, i.e., to control the interaction among
the concurrent transactions in order to prevent them
from destroying the consistency of the database
(problems occur when concurrent transactions access
the same items).

9

Schedules

• Schedules – sequences that indicate the
chronological order in which instructions of
concurrent transactions are executed

– a schedule for a set of transactions must consist of all
instructions of those transactions

– must preserve the order in which the instructions appear in
each individual transaction.

10

Serial Schedule

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A
to B. The following is a serial schedule, in which T1 is followed by T2.

A=100

A=50

B=200

B=250

Lets start with A=100 B=200

A=50

temp=5

A=45

B=250

B=255

We end with A=45 B=255

11

Not Serial but Correct Schedule
equivalent to the previous serial schedule

We end again with A=45 B=255 In both Schedules, the sum A + B is preserved.

A=100

A=50

B=200

B=250

A=50

temp=5

A=45

B=250

B=255

Lets start with A=100 B=200

12

The following concurrent schedule does not preserve the value of the
the sum A + B – The schedule is wrong and should not be allowed.

A=100

A=50

B=200

B=200

A=100

temp=10

A=90

B=250

B=210

We end with A=50 B=210

Not Serial and Incorrect Schedule

13

Serializability

• Basic Assumption – Each transaction preserves
database consistency.

• Thus serial execution of a set of transactions
preserves database consistency.

• A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule.

• We ignore operations other than read and write
instructions, and we assume that transactions may
perform arbitrary computations on data in local
buffers in between reads and writes. Our simplified
schedules consist of only read and write
instructions.

14

Conflict Serializability

• Instructions li and lj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed
by both li and lj, and at least one of these instructions
writes Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

• Intuitively, a conflict between li and lj forces a (logical)
temporal order between them. If li and lj are consecutive
in a schedule and they do not conflict, their results would
remain the same even if they had been interchanged in
the schedule.

15

Conflict Serializability (Cont.)

• If a schedule S can be transformed into a schedule S´ by a

series of swaps of non-conflicting instructions, we say that
S and S´ are conflict equivalent.

• We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

 Example of a schedule that is not conflict serializable:

 T3 T4

 read(Q)
 write(Q)
 write(Q)
we are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

16

Conflict Serializable Schedule

The following schedule is equivalent to a serial schedule
where T2 follows T1, by a series of swaps of non-
conflicting instructions.

17

Recoverability

• Recoverable schedule — if a transaction Tj reads data items
previously written by a transaction Ti , the commit operation of Ti
must appear before the commit operation of Tj.

If T9 commits immediately after the read, the following schedule is not
recoverable and the durability property is violated. If T8 should abort,
T9 would have read (and possibly shown to the user) an inconsistent
database state. All schedules must be recoverable.

T8
T9

Read(A)

Write(A)

Read(A)

Commit

Read (B)

18

Cascading Rollback

• The following schedule is recoverable because every transaction Ti
commits after all transactions that wrote items which Ti read.

• Cascading Rollback: when a single transaction failure leads to a series of
transaction rollbacks. If T10 fails, T11 and T12 must also be rolled back.
This can lead to the undoing of a significant amount of work
– How would you put the commit statements to make the schedule cascadeless?

T10
T11 T12

Read(A)

Write(A)

Read(A)

Write(A)

Read(A)

Commit

Commit

Commit

19

Cascadeless Schedules

• Schedules where cascading rollbacks cannot occur;
for each pair of transactions Ti and Tj such that Tj
reads a data item previously written by Ti, the commit
operation of Ti appears before the read operation of
Tj.

• Every cascadeless schedule is also recoverable

• It is desirable to restrict the schedules to those that
are cascadeless

20

Testing for Serializability

• Consider some schedule of a set of transactions T1, T2,
..., Tn

• Precedence graph — a direct graph where the
vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction
conflict, and Ti accessed the data item on which the
conflict arose earlier.

• We may label the arc by the item that was accessed.

21

Example Schedule (Schedule A)

T1 T2 T3 T4 T5

 read(X)

read(Y)

read(Z)

 read(V)

 read(W)

 read(W)

 read(Y)

 write(Y)

 write(Z)

read(U)

 read(Y)

 write(Y)

 read(Z)

 write(Z)

read(U)

write(U)

22

Precedence Graph for Schedule A

T3
T4

T1 T2

23

Concurrency Control vs. Serializability Tests

• Testing a schedule for serializability after it has
executed is too late!

• Goal – to develop concurrency control protocols that
will assure serializability. They will generally not
examine the precedence graph as it is being created;
instead a protocol will impose a discipline that avoids
nonseralizable schedules.

24

Lock-Based Protocols

• A lock is a mechanism to control concurrent access to a
data item

• Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well
as written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

• Lock requests are made to concurrency-control manager.

Transaction can proceed only after request is granted.

• Should only allow conflict-serializable schedules.

25

Lock-Compatibility Matrix

• A transaction may be granted a lock on an item if the requested
lock is compatible with locks already held on the item by other
transactions

• Any number of transactions can hold shared locks on an item,
but if any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is made
to wait till all incompatible locks held by other transactions have
been released. The lock is then granted.

26

Example of Lock-Based Protocol

A transaction that displays A+B:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

• Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the read of A
and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict the
set of possible schedules.

27

Pitfalls of Lock-Based Protocols-Deadlock

• Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock.

– To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

28

Pitfalls of Lock-Based Protocols - Starvation

• The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

• Starvation is also possible if concurrency control manager
is badly designed. For example:

– A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock
on the same item.

T1 T2 T3 T4

lock-S(A)
lock-X(A)

wait

lock-S(A)

lock-S(A)

lock-S(A)

T5

29

The Two-Phase Locking Protocol

• This is a protocol which ensures conflict-serializable schedules.

• Phase 1: Growing Phase

– transaction may obtain locks

– transaction may not release locks

• Phase 2: Shrinking Phase

– transaction may release locks

– transaction may not obtain locks

• The protocol assures serializability. It can be proved that the

transactions can be serialized in the order of their lock points (i.e.

the point where a transaction acquired its final lock).

• If a schedule is executed by 2PL it must be conflict serializable.

• If a schedule is conflict serializable it may or may not be executed
by 2PL.

30

Lock Conversions

• Two-phase locking with lock conversions:

First Phase:

– can acquire a lock-S on item

– can acquire a lock-X on item

– can convert a lock-S to a lock-X (upgrade)

Second Phase:

– can release a lock-S

– can release a lock-X

– can convert a lock-X to a lock-S (downgrade)

31

Implementation of Locking

• A lock manager can be implemented as a separate
process to which transactions send lock and unlock
requests

• The lock manager replies to a lock request by sending a
lock grant messages (or a message asking the transaction
to roll back, in case of a deadlock).

• The requesting transaction waits until its request is
answered

• The lock manager maintains a data structure called a lock
table to record granted locks and pending requests

• The lock table is usually implemented as an in-memory
hash table indexed on the name of the data item being
locked

32

Lock Table • Black rectangles indicate
granted locks, white ones
indicate waiting requests

• Lock table also records the type
of lock granted or requested

• New request is added to the end
of the queue of requests for the
data item, and granted if it is
compatible with all earlier locks

• Unlock requests result in the
request being deleted, and later
requests are checked to see if
they can now be granted

• If transaction aborts, all waiting
or granted requests of the
transaction are deleted
– lock manager may keep a list of

locks held by each transaction,
to implement this efficiently

33

Strict 2PL

• Cascading roll-back is the situation where the failure of a

transaction Ti may lead to failures of other transactions

(because they read items written by Ti before its

commitment)

• Cascading roll-back is possible under two-phase locking.

• To avoid this, follow a modified protocol called strict

two-phase locking. Here a transaction must hold all

its exclusive locks till it commits/aborts.

34

Deadlock Handling

• System is deadlocked if there is a set of transactions
such that every transaction in the set is waiting for
another transaction in the set. 2PL permits deadlocks.

• Deadlock prevention protocols ensure that the
system will never enter into a deadlock state. Some
prevention strategies :

– Require that each transaction locks all its data items before it
begins execution (predeclaration).

– Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by
the partial order (graph-based protocol).

35

More Deadlock Prevention Strategies

• The following schemes use transaction timestamps for
the sake of deadlock prevention alone.

• wait-die scheme — non-preemptive

– older transaction may wait for younger one to release data
item. Younger transactions never wait for older ones; they
are rolled back instead.

– a transaction may die several times before acquiring needed
data item

• wound-wait scheme — preemptive

– older transaction wounds (forces rollback of) younger
transaction instead of waiting for it. Younger transactions
may wait for older ones.

– may be fewer rollbacks than wait-die scheme.

36

Deadlock prevention (Cont.)

• Both in wait-die and in wound-wait schemes, a rolled
back transactions is restarted with its original
timestamp. Older transactions thus have precedence
over newer ones, and starvation is hence avoided.

• Timeout-Based Schemes :

– a transaction waits for a lock only for a specified amount of
time. After a pre-defined waiting period, the transaction is
rolled back.

– Simple to implement; but starvation is possible. Also difficult
to determine good value of the timeout interval.

37

Deadlock Detection

• Deadlocks can be described as a wait-for graph, which
consists of a pair G = (V,E),

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair Ti Tj.

• If Ti  Tj is in E, then there is a directed edge from Ti to
Tj, implying that Ti is waiting for Tj to release a data item.

• When Ti requests a data item currently being held by Tj,
then the edge Ti Tj is inserted in the wait-for graph. This
edge is removed only when Tj is no longer holding a data
item needed by Ti.

• The system is in a deadlock state if and only if the wait-for
graph has a cycle. Must invoke a deadlock-detection
algorithm periodically to look for cycles.

38

Deadlock Detection Examples

Wait-for graph without a cycle Wait-for graph with a cycle

39

Deadlock Recovery

• When deadlock is detected :

– Some transaction will have to rolled back (made a victim) to
break deadlock. Select that transaction as victim that will
incur minimum cost.

– Rollback -- determine how far to roll back transaction

• Total rollback: Abort the transaction and then restart it.

• More effective to roll back transaction only as far as necessary
to break deadlock.

– Starvation happens if same transaction is always chosen as
victim. Include the number of rollbacks in the cost factor to
avoid starvation

